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Abstract. Zeno-timelocks constitute a challenge for the formal verification of timed automata: they are
difficult to detect, and the verification of most properties (e.g., safety) is only correct for timelock-free
models. Some time ago, Tripakis proposed a syntactic check on the structure of timed automata: If a certain
condition (called strong non-zenoness) is met by all the loops in a given automaton, then zeno-timelocks are
guaranteed not to occur. Checking for strong non-zenoness is efficient, and compositional (if all components
in a network of automata are strongly non-zeno, then the network is free from zeno-timelocks).

Strong non-zenoness, however, is sufficient-only: There exist non-zeno specifications which are not strongly
non-zeno. A TCTL formula is known that represents a sufficient-and-necessary condition for non-zenoness;
unfortunately, this formula requires a demanding model-checking algorithm, and not all model-checkers are
able to express it. In addition, this algorithm provides only limited diagnostic information.

Here we propose a number of alternative solutions. First, we show that the compositional application of
strong non-zenoness can be weakened: Some networks can be guaranteed to be free from Zeno-timelocks, even
if not every component is strongly non-zeno. Secondly, we present new syntactic, sufficient-only conditions
that complement strong non-zenoness. Finally, we describe a sufficient-and-necessary condition that only
requires a simple form of reachability analysis. Furthermore, our conditions identify the cause of zeno-
timelocks directly on the model, in the form of unsafe loops. We also comment on a tool that we have
developed, which implements the syntactic checks on Uppaal models. The tool is also able to derive, from
those unsafe loops in a given automaton (in general, an Uppaal model representing a product automaton of
a given network), the reachability formulas that characterise the occurrence of zeno-timelocks. A modified
version of the CSMA/CD protocol is used as a case-study.
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1. Introduction

Timed automata are one of the most successful techniques for modelling and verifying real-time systems.
This is particularly evident from the success of region graph based model checking techniques such as
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Uppaal [BDL04], Kronos [DOTY96] and HyTech [HH95]. From amongst this set, Uppaal2 is perhaps the
most prominent, having been extensively applied in protocol verification [DKRT97, BGK+02, GVZ06]. In
particular, it is now a mature and usable verification tool [IKL+00, BHV01, LBB+01, HLP01, HBL+04].
Despite these successful applications of timed automata model checking, there are some difficulties with the
approach. Among these, one of the most important is that timelocks can freely arise and furthermore, it can
be very difficult to determine whether timelocks occurs in non-trivial models.

A timelock is a state in the execution of timed automata where no further run allows time to diverge (i.e.,
pass by an infinite amount). Timelocks can arise for a number of reasons, and different classes of timelock
need to be handled in different ways. In particular, we can distinguish between the following two classes of
timelock. Time-actionlocks are states in which neither time nor action transitions can be performed. Zeno-
timelocks are situations in which time is unable to pass beyond a certain point, but actions continue to be
performed. Thus, the system is continuing to evolve, but none of these evolutions will allow time to diverge
(in other words, the system is infinitely fast!).

Timelocks are quite different from actionlocks, which are the analogue of deadlocks in untimed specifi-
cations. Critically, actionlocks allow time to pass; the automaton may not be able to perform any further
“useful” computation, but it can still pass time, which means that it does not prevent other component
automata from passing time. The fact that local actionlocks do not propagate globally is the reason why
actionlocks are much more palatable than timelocks. Timelocks propagate globally because all components
synchronise on the passage of time (a network of timed automata can only pass time by t time units if all
components can pass time by t time units).

This explains the threat that timelocks pose to verification. For example, Uppaal may confirm that a
safety property holds just because a timelock prevents some error-state from being reached. Critically, this
error-state might appear again at some implementation stage; after all, a system which “stops time” is not
physically realisable. Verification in models with timelocks, then, may be invalidated.

In the early work on timed concurrency theory, which largely focussed on timed process algebra, the
problem of timelocks was noted and partially resolved. As a result most timed process algebra only allow
urgency to be applied to internal actions. This is the so called as soon as possible (asap) principle [Reg93],
which prevents the occurrence of timelocks due to synchronisation mismatches. In timed process algebra
with asap, the hiding operator, which turns observable into internal actions, has an important role since
(implicitly) it makes actions urgent. Unfortunately, this is not a suitable solution for timed automata,
because a hiding operator is not available. The absence of hiding in timed automata means that it is not
possible to (selectively) take an observable action that results from synchronising half actions, and turn it
into an (urgent) internal action.

The timelock problem is real, and unless significant care is taken, the possible presence of timelocks is
a major issue for the formal analysis of time critical systems. This problem was highlighted by Bowman
et al. [BFK+98], who discovered by hand a number of timelock errors in a timed automata model of a lip-
synchronisation protocol. However, machine verification did not give any method to check for such situations.
Furthermore, it was then shown [Bow99] that, when using timed automata, even the simple task of defining
a timeout in a communication protocol is hampered by the possible presence of timelocks.

Currently, only Uppaal and Kronos allow for some form of non-zenoness detection. Uppaal relies on test
automata [ABBL03] and leads-to properties (a kind of TCTL [ACD93] liveness properties); the problem
with this approach is that it is sufficient-only, and the verification of leads-to properties is computationally
demanding.3 Kronos’ requirements language is more expressive than Uppaal’s, and allows for the verification
of the TCTL formula ∀2∃3=1true, which represents a sufficient-and-necessary condition for timelock freedom
[Yov97]. However, Kronos must run a demanding fixpoint algorithm (see [HNSY94]) to verify this formula (in
general, Uppaal’s algorithm is much more efficient). Furthermore, Kronos must build the product automaton
before this verification takes place, and can only provide limited diagnostic information (this corresponds
to a path in the reachability graph leading to the timelock state, and so it is difficult to visualise the cause
of the timelock in the component automata) [Tri98, Tri99]. Thus, it could be that for some specifications,
checking timelock freedom in Kronos would be the most expensive requirement to check and the need to
check it could prevent a complete verification. Section 8 discusses the detection of timelocks in Uppaal in
more detail.

2 www.uppaal.com
3 Model-checking leads-to properties requires nested reachability analysis.
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In previous papers we have considered the timelock problem, classified different types of timelocks and
highlighted solutions corresponding to the needs of these different classes [Bow01, Bow99, BFK+98, BGS05].
This paper provides a complete and updated presentation of these results. One reason for this presentation
is that, although many different authors have considered the issue of timelocks, they have each treated the
problem in different ways. For example, there is little terminological consistency across the body of papers
on this issue. In response, this paper also seeks to provide a unified and consistent terminological treatment.

The main results presented here though focus on zeno-timelocks. We present an analytical method to
ensure absence of zeno-timelocks, which builds upon the notion of strong non-zenoness introduced by Tripakis
[Tri98, Tri99]. We show how Tripakis’ results can be extended, broadening the class of timed automata
specifications that can be guaranteed to be free from zeno-timelocks. In particular, the relationship between
strong non-zenoness and synchronisation is analysed in more detail, which results in a new compositional
application of strong non-zenoness. In addition, new invariant-based syntactic properties are presented that
also ensure that zeno-timelocks do not occur (although, because these conditions are not compositional, they
must be applied on a network’s product automaton). These conditions are sufficient-only: if they are not
satisfied, zeno-timelocks may or may not occur, but we cannot be certain. However, the conditions work at a
syntactic level (thus, it is more efficient than the analysis in Uppaal or Kronos, which rely on model-checking),
and they identify possible sources of zeno-timelocks directly on the model (unsafe loops). Therefore, even if
a given model cannot be guaranteed to contain zeno-timelocks, our syntactic method narrows the scope of
further analysis.

We also propose a sufficient-and-necessary condition for non-zenoness, whose test can be reduced to
simple reachability analysis. To our knowledge, this is the first time a method to reduce non-zenoness to a
reachability test has been proposed (as a further benefit, this analysis can be performed in most real-time
model-checkers, including Uppaal and Kronos). Briefly, a TCTL reachability formula can be derived from
the syntactic structure of a loop, whose satisfiability is sufficient and necessary to decide whether zeno-
timelocks occur in the loop. This reachability-based condition is applied on the product automaton, and
requires invariants either to be true (i.e., invariants that do not impose timed constraints), or right-closed
(i.e., conjunctions of constraints x ≤ c, where x is a clock and c ∈ N). In addition, we assume that clocks
can only be reset to zero (our sufficient-only conditions also depend on this).

Our intention is not only to provide the theory behind a sufficient-and-necessary condition, but also
a practical method that can be integrated with the existing facilities offered by Uppaal. Correspondingly,
we implemented a tool that checks our non-zenoness conditions on Uppaal models. Static checks include
our proposed compositional application of strong non-zenoness, and our invariant-based conditions. The
tool is also able to derive, for unsafe loops in the product (i.e., those that do not pass the static checks),
the reachability formula that characterises the occurrence of zeno-timelocks (our sufficient-and-necessary
condition). A version of the CSMA/CD protocol serves as our case study.

Paper Outline. Section 2 defines timed automata. Section 3 presents a classification of deadlocks in timed
automata. In particular, we distinguish between time-actionlocks and zeno-timelocks and argue that a con-
structive approach should be applied to preventing the former of these, while an analytical approach should
be used to prevent the latter. Then in accordance with this position, we consider how the interpretation of
parallel composition in timed automata could be revised in order to prevent time-actionlocks from happen-
ing, c.f. Section 4. The theory behind sufficient-only and sufficient-and-necessary, non-zenoness conditions is
developed in Sections 6 and 7, respectively. Section 8 presents a case study of zeno-timelock verification on
the CSMA/CD protocol, and briefly describes our tool. Section 9 presents concluding remarks.

2. Timed Automata

The literature on timed automata is very rich, and many variations of the original model [AD94] have been
proposed (see, e.g., [HNSY94], [Tri98, Tri99] and [AM04]) and adopted by tools such as Uppaal and Kronos.
Here we discuss a basic timed automata model, which suffices to illustrate the main elements of our theory.4
This model is similar to Timed Safety Automata [HNSY94], and corresponds closely to the notation used in
Uppaal.

4 Our notation and terminology are largely inherited from [Bow01].
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Notation. CAct is a set of completed (or internal) actions. HAct= { a?, a! | a ∈ CAct } is a set of half ac-
tions. These give a simple CCS style [Mil89, BG06] point-to-point communication similar, for example, to
the synchronisation primitives found in Uppaal [BDL04]. Thus, two actions, a? and a! can synchronise and
generate a completed action a. Act = HAct ∪ CAct is the set of all actions. R+ denotes the positive reals
without zero and R+0 = R+ ∪ {0}. C is the set of all clock variables, which take values in R+0. CC is a set
of clock constraints, whose syntax is given by:

φ ::= x ∼ c | x− y ∼ c | φ ∧ φ

where c ∈ N, x, y ∈ C, φ ∈CC and ∼ ∈ {<,>, =,≤,≥} (note, other constraints can be easily derived, such
as true, false and x = y). Clocks(φ) is the set of clocks occurring in φ ∈ CC . C ⊆ C denotes the set of clocks
of a particular automaton, and CCC is the set of constraints over clocks in C. Similarly, V : C→ R+0 is the
space of clock valuations, and VC : C → R+0 is the space of valuations restricted to clocks in C.

If φ is a clock constraint and v is a valuation, then v |= φ denotes that v satisfies φ. If r is a reset set,
and d ∈ R+0 a delay, then v + d is the valuation such that (v + d)(x) = v(x) + d, for all x ∈ C. r(v) is the
valuation that results from v by resetting all clocks in r, i.e. r(v) = v′, where v′(x) = 0 whenever x ∈ r, and
v′(y) = v(y) for all y /∈ r.

2.1. Syntax

A timed automaton is a tuple A = (L, l0,TL, C, T, I), where the elements are defined as follows.

• L is a finite set of locations.
• l0 ∈ L is the initial location.
• TL ⊆ Act is a finite set of transition labels.
• C ⊆ C is a finite set of clocks.
• T ⊆ L×TL×CCC ×P(C)×L is a transition relation. Transitions (l, a, g, r, l′) ∈ T are usually denoted,

l a,g,r−−−−→ l′

where a ∈ TL is the action, g ∈ CCC is the guard and r ∈ P(C) is the reset set. Informally, g is a clock
constraint denoting those valuations for which the transition is enabled, and r is a set of clocks which
are reset to zero5 when the transition is performed.

• I : L → CCC is a mapping that associates invariants with locations. Informally, an invariant is a clock
constraint which denotes the set of valuations for which that location is enabled, i.e., the automaton can
remain in a given location only as long as the invariant is satisfied by the current clock valuation.

Invariants are typically used as time-progress conditions, and thus to express urgency. For example, given
I(l) , x ≤ 1, the automaton in question can only remain in l as long as v(x) ≤ 1 (or equivalently, time can
only pass in l as long as v(x) ≤ 1). What happens, then, when v(x) = 1? Because time cannot progress any
further in l, the automaton is “forced” to change to a different location immediately, i.e., by urgently taking
some enabled outgoing transition. We will be precise about the interpretation of invariants when we discuss
the semantics of timed automata shortly. However, it is important to understand the difference between the
role of guards and invariants. In this respect we have to distinguish between may and must timing.

Guards express may behaviour, i.e., they represent execution states where a transition may be performed.
However, transitions are not necessarily performed when the guard is satisfied. In contrast, invariants define
must behaviour. This corresponds to urgency , because an alternative expression is that when an invariant
expires (i.e., when time cannot pass any further), outgoing transitions must be performed immediately.

Network of Timed Automata. A network of timed automata is denoted |A = |〈A1, ... , An〉, where Ai

is a timed automaton. Usually, we would expect components to only specify possible synchronisations: If a
component includes a half action a!, then another component should include the complementary action, a?.

5 As we will see later, the results presented in this paper rely on this form of reset.
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Parallel Composition (Product Automaton). Consider a network |A = |〈A1, ... , An〉, where Ai =
(Li, li,0,TLi, Ci, Ti, Ii). Let u and u′ denote location vectors in L1×· · ·×Ln (e.g., u = 〈u1, . . . , un〉). We use
the substitutions

〈u1, . . . , uj , . . . , un〉[l → j] for 〈u1, . . . , uj−1, l, uj+1, . . . , un〉 ; and

u[l1 → i1, . . . , lm → im] for u[l1 → i1] . . . [lm → im]

The product automaton for |A is defined as the timed automaton Π,

Π = (L, l0,TL, C, T, I)

where

• L = { l0 } ∪ {u′ | ∃u ∈ L, a, g, r . u a,g,r−−−−→u′ };
• l0 = 〈l1,0, . . . , ln,0〉;
• TL =

n⋃
i=1

TLi;

• C =
n⋃

i=1

Ci;

• T is as defined by the following rules (1 ≤ i 6= j ≤ n),

(P1)
ui

a?,gi,ri−−−−−−→i l uj
a!,gj ,rj−−−−−→j l′

u
a,gi ∧ gj ,ri∪rj−−−−−−−−−−→u[l → i, l′ → j]

(P2)
ui

a,g,r−−−−→i l a ∈ CAct
u a,g,r−−−−→u[l → i]

• I(〈u1, ..., un〉) =
n∧

i=1

Ii(ui).

Rule (P1) adds a completed action in the product for every possible (binary) synchronisation between
components. The guard and reset set in this action correspond to the conjunction of guards and the union
of the reset sets in the synchronising transitions, respectively. This rule ensures that synchronisation is only
possible if both parties are enabled. Rule (P2) denotes the interleaving of completed actions.

2.2. Semantics

The behaviour of a timed automaton can be formalised in terms of a timed transition system (TTS)
[BLT94, BG06]. We assume here that the automaton does not contain half actions, thus, its behaviour
can be completely determined from its own structure. With this approach, the behaviour of a network
corresponds to the TTS of the product automaton.6

TTS Semantics. Let A = (L, l0,TL, C, T, I) be a timed automaton where all actions are completed actions
(i.e., TL ⊆ CAct). The behaviour of A is represented by the timed transition system TSA = (S, s0,Lab, TS),
which is defined as follows.

• S ⊆ L×VC is the set of reachable states in the automaton’s executions. A state is of the form s = [l, v],
where l is a location in A and v is a clock valuation. The set of reachable states is defined

S = { s0 } ∪ { s′ | ∃ s ∈ S, γ ∈ Lab . s
γ

=⇒ s′ }
• s0 = [l0, v0] is the initial state, where l0 is the initial location in A, and v0 is the initial valuation, which

sets all clocks to zero.
• Lab = TL ∪ R+ is the set of transition labels.

6 Bengtsson and Yi [BY04] present a TTS-based semantics for network of timed automata, which does not involve the product
automaton.
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• TS ⊆ S×Lab×S is the transition relation. Transitions can be of one of two types: action transitions (ac-
tions), e.g. (s, a, s′), where a ∈ Act , or time transitions (delays), e.g. (s, d , s′), where d ∈ R+. Transitions
are denoted

s
γ

=⇒ s′

where γ ∈ Lab. The transition relation is defined by the following inference rules,

(R1)
l a,g,r−−−−→ l′ v |= g r(v) |= I(l′)

[l, v] a=⇒ [l′, r(v)]
(R2)

∀ d′ ≤ d , (v + d′) |= I(l)

[l, v] d=⇒ [l, v + d]

A TTS represents the interleaving of actions with the passage of time. A transition l a,g,r−−−−→ l′ is said to be
enabled in the state [l, v], if the current valuation satisfies the guard (v |= g), and performing the transition
does not invalidate the invariant of the target location (r(v) |= I(l′)). This interpretation, usually known as
the strong-invariant interpretation, is the one adopted by Uppaal and the non-zenoness conditions presented
in this paper (Sections 6 and 7). Rule (R1), then, says that the TTS contains an action transition

[l, v] a=⇒ [l, r(v)]

whenever l a,g,r−−−−→ l′ is enabled in [l, v]. Rule (R2) says that, from any state [l, v] where the automaton may
delay d ∈ R+ time units without invalidating the current invariant, I(l), the TTS contains a time transition
with the same delay. Note that this rule makes all the clocks in the automaton increase at the same rate
(note, that (v + d)(x) = v(x) + d, for all x ∈ C and d ∈ R+; i.e., clocks are synchronously incremented by d
time units). Moreover, rule (R2) implies that the TTS contains infinitely many time transitions,

[l, v] d′==⇒ [l, v + d′]

where d′ ∈ R+, 0 ≤ d′ ≤ d.

Runs. A run is a path in the TTS, i.e., a (finite or infinite) sequence of states and transitions ρ,

ρ , s1
γ1==⇒ s2

γ2==⇒ s3
γ3==⇒ . . .

where si ∈ S, γi ∈ Act∪R+, and only finitely many delays occur between consecutive actions. If the sequence
is finite, it ends in some state sn ∈ S.

We use ρ ⊆ ρ′ to denote that the sequence ρ is a prefix of ρ′. Runs(s) and FiniteRuns(s) ⊆ Runs(s)
denote the set of all runs starting from s, and the set of all finite runs starting from s, respectively. We
use s

γ
=⇒ ρs

′ to denote that s
γ

=⇒ s′ is performed at some point in ρ. Similarly, s ∈ ρ denotes that s is
reachable in ρ; s

∗=⇒ s′ρ denotes that s′ is reachable from s in ρ; and s
∗=⇒ s′ denotes that s′ is reachable from

s (equivalently, ∃ ρ ∈ Runs(s). s′ ∈ ρ). Trans(ρ) and Trans∞(ρ) ⊆ Trans(ρ) denote the set of all automata
transitions visited by ρ, and the set of all transitions that are visited infinitely often by ρ, respectively.
Formally,

Trans(ρ) = { l
a,g,r−−−→ l′ | ∃ v. v |= g ∧ [l, v] a=⇒ ρ[l′, r(v)] }

Trans∞(ρ) = { l
a,g,r−−−→ l′ | ∀s ∈ ρ.∃ v. s

∗=⇒ ρ[l, v] ∧ v |= g ∧ [l, v] a=⇒ ρ[l′, r(v)] }
We define delay(ρ) to be the limit of the sum of all delays occurring in ρ (if the limit exists), or ∞ otherwise.
A run ρ is divergent if delay(ρ) = ∞ (otherwise, the run is convergent). Both kinds of runs may reach a
deadlock (i.e., a state where no further action can ever be performed).

A timed automaton may also exhibit runs that cannot be extended to divergent runs. Because no physical
system can “stop” time, these runs are not considered natural executions. These runs may be extended to
runs that reach a state where either (a) no further delay or action is possible (this state is called a time-
actionlock), or (b) the only possible runs are Zeno runs: convergent runs where actions occur infinitely often.
We use ZRuns(s) ⊆ Runs(s) to denote the set of Zeno runs starting from s.
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3. A Classification of Deadlocks in Timed Automata

In a broad sense, deadlocks are states where the system is unable to progress further. In untimed systems,
deadlocks are states where the system is unable to perform any action. However, in timed automata, transi-
tions correspond either to time-progress or the execution of actions. Consequently, in this setting, the ways
of violating the requirements of progress can vary.

Generally speaking, an actionlock is a state where, for however long time is allowed to pass, no action
transition can be performed. Formally, given A = (L,TL, T, l0, C, I) ∈ TA with TTS (S,Lab, TS , s0), a state
s ∈ S is an actionlock if

∀ d ∈ R+0. (s + d) ∈ S =⇒ @ a ∈ Act . (s + d) a=⇒
where, if s = [l, v], then s + d = [l, v + d]. On the other hand, a timelock is a state s ∈ S where time is not
able to pass beyond a certain limit. Equivalently, s is a timelock if every run starting from s converges.

∀ ρ ∈ Runs(s). delay(ρ) 6= ∞
A timed automaton is actionlock-free (timelock-free) if none of its reachable states is an actionlock (timelock).
Actionlocks and timelocks can be further classified as pure-actionlocks, time-actionlocks or zeno-timelocks
(also called pure timelocks), which are explained next.

Pure-actionlock. A pure-actionlock is a state where the system cannot perform any action transitions,
but time is allowed to pass. Figure 1(i)7 shows an example of a timed automaton with a pure actionlock:
no action is enabled once the automaton reaches location 2, however, time is not prevented from passing.
Formally, a state s is a pure-actionlock if

∀ d ∈ R+0 , (s + d) ∈ S ∧ @ a ∈ Act . (s + d) a=⇒
Time-actionlock. Time-actionlocks are states where neither action nor time transitions can be performed.
For example, Figure 1(ii) shows a time-actionlock produced by a mismatched synchronisation between two
automata. Transition a! in the automaton on the left is urgent when v(x) = 5, but it cannot synchronise
with a? in the automaton on the right, because this transition is not enabled at that time. Consequently,
the system enters a time-actionlock state at v(x) = 5. Formally, s ∈ S is a time-actionlock if

@ a ∈ Act , d ∈ R+ . s
a=⇒ ∨ s

d=⇒
Zeno-timelock. In such a state, systems can still perform transitions (actions or delays), but time cannot
pass beyond a certain point. This represents a situation where the system performs an infinite number of
actions in a finite period of time. For example, any reachable state in the automaton shown in Figure 1(iii)
is a zeno-timelock, because time can only pass up to 5 time units and transition a is always enabled. Hence,
a becomes urgent at v(x) = 5 and will be performed infinitely often, without time passing at all. Formally,
s ∈ S is a zeno-timelock if (a) there are no divergent runs starting from s, and (b) all finite runs starting
from s can be extended to Zeno runs.

∀ ρ ∈ Runs(s). delay(ρ) 6= ∞ ∧ ∀ ρ′ ∈ FiniteRuns(s). ∃ ρ′′ ∈ ZRuns(s). ρ′ ⊆ ρ′′

The following two lemmas say a bit more about the nature of zeno-timelocks, and will become useful in
forthcoming sections. Proofs are trivial, and are omitted. Lemma 1 follows from the definition of zeno-
timelocks. Lemma 2 is a consequence of the semantics of invariants (see Section 2.2).

Lemma 1. Every state reachable from a zeno-timelock is also a zeno-timelock.

Lemma 2. Let A be a timed automaton, and l a location in A with invariant I(l) ,
n∧

i=1

xi ≤ ci. The

following two conditions hold.

1. If l is reachable, then there exists a finite run ρ that remains in l while the invariant holds. Moreover,
the last state in ρ is s = [l, v], where v(xi) = ci, for some 1 ≤ i ≤ n.

2. Time can pass in l only if ci > 0, for all 1 ≤ i ≤ n.

7 Omitted guards and invariants represent the constraint true.
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(i) (ii) (iii)

||
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x<=5 b

21

c

a?
x>5

3 4
a

2

x<=10
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1

Fig. 1. (i) Pure-actionlock. (ii) Time-actionlock. (iii) Zeno-timelock.

3.1. The Implications of Different Kinds of Deadlocks

One reason for presenting this classification is that we believe that different types of deadlocks bring different
types of problems and, hence, should be treated differently. Firstly, although pure actionlocks may be unde-
sirable within the context of a particular specification, they are not of themselves counterintuitive situations.
It is wholely reasonable that a component or a system might reach a state from which it cannot perform
any actions, as long as such an actionlock does not stop time. Thus, although analytical tools that detect
pure-actionlocks certainly have value, we do not believe there is any fundamental reason why actionlocks
should be prevented (by construction) at the level of the specification notation.

In contrast, we are strongly of the opinion that time-actionlocks are counterintuitive. Indeed, a system
that “stops time” cannot be implemented (whereas physical systems may contain actionlocks). In addition,
and as previously discussed, a local “error” in one component has a global effect on the entire system, even if
other components have no actions in common with the timelocked component. This is in contrast with local
actionlocks, which may not affect other components. Because of these particularly counterintuitive aspects,
we believe that time-actionlocks should be prevented by construction; i.e., the timed automata model should
be reinterpreted in such a way that time-actionlocks just cannot arise. Bowman [Bow01] presents such a
method for Timed Automata with Deadlines [BS98] (this is discussed later in Section 4).

Finally, to come to zeno-timelocks: Our position here is that analytical methods should be provided to
check on a specification-by-specification basis whether zeno-timelocks occur. Our reasons for advocating this
approach are largely pragmatic, because it is not clear how the timed automata model could be changed in
order to constructively prevent such situations. In particular, any mechanism that ensured at the level of
the semantics that a minimum time (say ε) was passed on every cycle, would impose rigid constraints on the
specifier’s ability to describe systems abstractly. Sections 6 and 7 consider just such an analytical method
for detecting zeno-timelocks.

4. Time-actionlocks

Perhaps the most counter-intuitive aspect of the timelock story is the manner in which timelocks can arise
from mismatched synchronisations, such as the composition in Figure 1(ii). If we consider how this problem
arises we can see that it is caused by the particular interpretation of urgent interaction employed in timed
automata. It is without doubt true that facilities to express urgency are required. In particular, if urgency is
not supported, certain important forms of timing behaviour cannot be expressed (e.g., timeouts). However,
it is our perspective that while urgency is needed, currently it is given an excessively strong formulation. We
illustrate the issue with the following example.

Example 1. Consider the specification of the Dying Dining Philosophers problem. The scenario is basically
the same as the Dining Philosophers except here we have extra constraints which state that philosophers die
if they do not eat within certain time periods. For example, if at a particular state, Aristotle must eat within
10 time units to avoid death, in timed automata his situation could be represented as location 1 of timed
automaton Aris in Figure 2. In addition, if say the fork he requires is being used by another philosopher,
the environment might not be able to satisfy this requirement. For example, the relevant global behaviour of
the rest of the system might correspond to the automaton Rest in location 3. In the present timed automata
formulation, the composition |〈Aris,Rest〉 will timelock when v(t) = 10. But, this seems counter-intuitive.
Aristotle knows he must pick-up his fork by a certain time otherwise drastic consequences will result for him
(this is why he “registers” his pick request as urgent). However, if he locally fails to have his requirement
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Fig. 2. Dying Dining Philosophers in Timed Automata

satisfied, he cannot globally prevent the rest of the world from progressing, rather a local deadlock should
result. As a consequence Aristotle might be dead, but as we all know, “the world will go on”.

Conceptually what is happening is that Aristotle is enforcing that his pick action must be performed
even if it is not possible. However, we would argue that urgency can only be forced if an action is possible.
In other words, it should only be possible to make an action urgent if it is enabled, i.e., “must requires may
or, in other terms, you can only force what is possible”.

One way in which such an interpretation of urgency has previously been obtained is through only allowing
urgency to be applied to completed actions. This is the approach employed in timed process algebra [BG06].
However, as discussed in the introduction, the absence of a hiding operator in timed automata prevents this
being a suitable solution in the timed automata setting. The next section considers the model of Timed
Automata with Deadlines [BS98, BST98] with which we can obtain the synchronisation interpretation we
desire.

4.1. Timed Automata with Deadlines

Informally speaking, Timed Automata with Deadlines (TADs) [BS98, BST98, Bow99, Bow01] can be de-
scribed as timed automata where the time progress condition is expressed by deadlines, instead of invariants.
Unlike invariants, which are attached to locations, deadlines are attached to transitions. Importantly, time-
actionlocks cannot occur in TADs. Different variants of TADs have been proposed, which differ in the
treatment of parallel composition (although all of them preserve time reactiveness), e.g. standard TADs,
sparse TADs and TADs with minimal priority escape transitions [Bow99]. Our presentation of TADs in this
section follows the model of Sparse-TADs, developed by Bowman in [Bow99, Bow01].

Syntax. A timed automaton with deadlines (or simply, TAD) is a tuple A = (L,TL, T, l0, C), where L is a
finite set of locations (l0 ∈ L is the initial location); TL ∈ Act is a set of labels; T is a transition relation
and C is a set of clocks. Transitions in T are denoted l a,g,d,r−−−−−→ l′, where l, l′ ∈ L are locations; a ∈ TL is
the action labelling the transition; g ∈ CCC is a guard; d ∈ CCC is a deadline; and r ∈ P(C) is a reset set.
Note that, action, guard and reset set are familiar from the timed automata model; only the deadline is new
here. In addition, deadlines and guards satisfy the following conditions.

1. Deadlines imply guards,

(C1) l a,g,d,r−−−−−→ l′ =⇒ (d ⇒ g)

2. If both a deadline and its corresponding guard denote the same solution set, then this set must denote
a left-closed time interval,

(C2) l a,g,d,r−−−−−→ l′ =⇒ ((d = g) ⇒ ∃ v . (v |= g) ∧ ∀ v′ , (v′ |= g) ⇒ v′ ≥ v)

Let us illustrate the necessity for condition (C2) with the following example. Assume a transition with guard
g = x > 1 and deadline d = x > 1, where x ∈ C. Notice that both g and d denote the same solution set,
which corresponds to the left-open interval v(x) ∈ (1,∞). This transition will be urgent as soon as it is
enabled, but the constraint imposed by d does not allow time to progress beyond v(x) = 1 (to see why, check
the semantic rule S2 below). It should not be difficult to see, then, that TADs that do not fulfill (C2) are
not guaranteed to be time reactive, even if deadlines imply guards (C1).

Semantics. Let A = (L,TL, T, l0, C, I) be a TAD where all actions are completed (i.e. TL ⊆CAct). The
semantics of A are given by the TTS (S,Lab, TS , s0), where
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• S ⊆ L× VC is the set of reachable states; i.e.,

S = { s0 } ∪ { s′ | ∃s ∈ S, γ ∈ Lab . s
γ

=⇒ s′ }
• s0 = [l0, v0] is the starting state;
• Lab = TL ∪ R+ is the set of transition labels; and
• TS ⊆ S × Lab × S is the transition relation, defined by the following inference rules (again, (v + t)(x) =

v(x) + t, for all x ∈ C and t ∈ R+),

(S1)
l a,g,d,r−−−−−→ l′ v |= g

[l, v] a=⇒ [l′, r(v)]

(S2)
∀ l′ , l a,g,d,r−−−−−→ l′ ⇒ ∀ t′ < t ∈ R+ , v + t′ 6|= d

[l, v] t=⇒ [l, v + t]

Parallel Composition (Sparse TADs). Let |A = 〈A1, ... , An〉 be a network of TADs, where

Ai = (Li,TLi, Ti, li,0, Ci)

for 1 ≤ i ≤ n. Let u, u′, etc. denote location vectors. The product automaton is defined as

Π = (L,TL, T, l0, C)

where

• L = { l0 } ∪ {u′ | ∃u ∈ L, a, g, d, r . u a,g,d,r−−−−−→u′ };
• TL =

n⋃
i=1

TLi;

• T is as defined by the following rules (1 ≤ i 6= j ≤ n),

(TAD1)
ui

a?,gi,di,ri−−−−−−−→i l uj
a!,gj ,dj ,rj−−−−−−−→j l′

u
a,g′,d′,ri∪rj−−−−−−−−−→u[l → i, l′ → j]

(TAD2)
ui

a,g,d,r−−−−−→i l a ∈ CAct

u a,g,d,r−−−−−→u[l → i]

where g′ , gi ∧ gj and d′ , gi ∧ gj ∧ (di ∨ dj);
• l0 = 〈l1,0, . . . , ln,0〉; and

• C =
n⋃

i=1

Ci

Rule (TAD1) defines synchronisation in TADs. As in timed automata, guards and reset sets of component
transitions (matching half actions) are combined in the resulting transition in the product automaton (com-
pleted actions). Two things must be noticed in the definition of the resulting deadline. First, the disjunction
of component deadlines ensures that synchronisation is made urgent if at least one of the involved half ac-
tions is urgent. Second, and as it is necessary to prevent time-actionlocks, conjoining the component guards
ensures that deadlines in the product automaton’s transitions imply their guards. In other words, synchro-
nisation is urgent only if it can be performed. Finally, rule (TAD2) gives the standard interpretation for
completed actions in component TADs.

Furthermore, as a consequence of these characteristics of sparse TADs, we have revised the interpretation
of synchronisation in the manner we just proposed. For example, if we consider again the Dying Dining
Philosophers illustration, the obvious TADs formulation of the automata of Figure 2 are the automata Aris
and Rest shown in Figure 3 (deadlines are shown in brackets). Now sparse TADs composition of the two
automata yields the behaviour shown on the right of Figure 3, which is action locked. This is the outcome
that we were seeking. Since the pick synchronisation is not enabled, urgency cannot be enforced. This is
reflected in both the guard and deadline in Figure 3 being false.
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5. Zeno-timelocks: Preliminaries

This section introduces some notation and concepts that are used in the rest of the paper. The distinction
between simple and non-simple loops is relevant to understand where zeno-timelocks can occur. Properties
that ensure non-zenoness depend on whether certain clocks are bounded from below (or bounded from above)
in some constraint (e.g., a guard). We also define the smallest upper bound of a clock w.r.t. a loop. This
concept is necessary to characterise a particular non-zenoness condition.

Loops. Let A be a timed automaton. A simple loop is a cycle in A; i.e., a sequence of transitions,

l0
a1,g1,r1−−−−−→ l1

a2,g2,r2−−−−−→ l2 · · · ln−1
an,gn,rn−−−−−−→ ln

where l0 = ln and li 6= lj for all 0 ≤ i 6= j < n. A non-simple loop is a strongly connected subgraph8 of
A, which is not itself a simple loop. Note that, by definition, a non-simple loop contains at least (all the
transitions of) two simple loops.

By way of example, Figure 4(i) shows two simple loops, 〈a, b〉 and 〈c, d〉; and one non-simple loop,
〈a, c, d , b〉. Similarly, Figure 4(ii) depicts two simple loops, 〈e, f 〉 and 〈g , h, f 〉, and one non-simple loop,
〈e, f , g , h, f 〉. 9

Let A be a timed automaton, and lp a loop in A. We define the following sets. Loops(A) is the set of all
loops in A. SimpleLoops(A) ⊆ Loops(A) is the set of all simple loops in A. Loc(lp) is the set of all locations
of lp; Clocks(lp) is the set of all clocks occurring in any invariant of lp; Trans(lp), Guards(lp) and Resets(lp)
are, respectively, the sets of all transitions of lp, all guards of lp, and all clocks that are reset in lp; and
Act(lp) is the set of all actions labelling transitions in lp.

A half loop is a loop that contains at least one transition labelled with a half action. A completed loop is a
loop which is not a half loop; i.e., a loop where all transitions are labelled with completed actions. Two half
loops (in different network components) are referred to as matching loops if they contain transitions labelled
with matching half actions (e.g., a? and a!, where a is an action label).

Bounded from Below (clock). Given a clock constraint φ ∈ CCC , a clock x ∈ C is said to be bounded
from below in φ, if φ contains a term x ∼ c, or a term x−y ∼ c, where y ∈ C , c ∈ N, c > 0 and ∼ ∈ {=, >,≥}.

8 A directed graph is strongly connected if there exist a path between any two nodes.
9 We denote loops as a sequence of actions that starts and ends in the same location. In the case of non-simple loops, this
sequence will contain repeating actions. In addition, unless we explicitly restrict their focus, our definitions and results apply
to both simple and non-simple loops.
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By extension, a clock is bounded from below in a given location or transition if it is bounded from below in
the location’s invariant, or in the transition’s guard, respectively.

Bounded from Above (clock). Given a clock constraint φ ∈ CCC , a clock x ∈ C is said to be bounded
from above in φ if any of the following conditions hold.

• φ contains a term x ∼ c, where c ∈ N, c > 0 and ∼ ∈ {=, <,≤}.
• φ contains a term x− y ∼ c, where y ∈ C , c ∈ N, c > 0, ∼ ∈ {=, <,≤}; and y is bounded from above in

φ.
• φ contains a term y− x ∼ c, where y ∈ C , c ∈ N, c > 0, ∼ ∈ {=, >,≥}; and y is bounded from above in

φ.

By extension, a clock is bounded from above in a given location or transition if it is bounded from above in
the location’s invariant, or in the transition’s guard, respectively.

Smallest Upper Bound. Let lp be a loop and x a clock in lp, where at least one invariant in the loop
contains a term of the form x ∼ c, where c ∈ N, c > 0 and ∼ ∈ {=, <,≤}. We define cmin(x, lp) ∈ N to be
the smallest upper bound for x occurring in any invariant in lp, i.e., cmin(x, lp) ≤ c′, for any term x ∼ c′
occurring in any invariant of the loop (c′ ∈ N, c′ > 0 and ∼ ∈ {=, <,≤}).

6. Zeno-timelocks: Sufficient-only Conditions

In this section, we present an analytical method to ensure absence of zeno-timelocks, which builds upon the
notion of strong non-zenoness introduced by Tripakis [Tri98, Tri99]. We show that it is possible to detect
non-zenoness in some models that may not be strongly non-zeno. In particular, we analyse the relationship
between strong non-zenoness and synchronisation in more detail, and propose new syntactic conditions that
guarantee non-zenoness.

The Strong Non-Zenoness property is a condition on the guards and resets of a loop, which guarantees
that in every iteration of the loop time passes at least by d time units (d ∈ N, d ≥ 1). Clearly, any run ρ
that visits such a loop infinitely often must diverge, i.e.,

delay(ρ) = lim
n→∞

Σn
i=1di = ∞

where di ∈ N, di ≥ 1, denotes the time elapsed between the i-th and i + 1-th iterations of the loop. For
zeno-timelocks to occur, Zeno runs must be possible. In turn, Zeno runs are convergent runs where actions
occur infinitely often. For actions to occur infinitely often, some loop must be visited infinitely often. If every
loop in the automaton is strongly non-zeno, actions occur infinitely often only in divergent runs, and so
zeno-timelocks cannot occur. We recall the definition of strong non-zenoness below.

Strong Non-zenoness (SNZ). Let A be a timed automaton, and lp a loop in A. The loop lp is called
strongly nonzeno (or an SNZ-loop) if there exists a clock x and two transitions t1 and t2 in the loop (not
necessarily different) such that x is reset in t1 and bounded from below in t2. If every loop in A is SNZ, then
A is said to be SNZ.

Figure 5 shows an example of a strongly non-zeno loop. Strong non-zenoness guarantees absence of zeno-
timelocks, and it is preserved by parallel composition. Lemma 3 formalises these results (a proof is given in
[Tri98]).
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Fig. 6. Synchronisation Preserves Strong Non-zenoness

Lemma 3. Let A be a timed automaton. If A is strongly non-zeno, then A is free from zeno-timelocks.
Moreover, if all components in a network |A = |〈A1, . . . , An〉 are strongly non-zeno, then the network |A is
free from zeno-timelocks.

6.1. Strong Non-zenoness and Synchronisation

Lemma 3 suggests a static verification method; in order to ensure that zeno-timelocks do not occur in a
network, we have to check that every loop (in every component) is SNZ. It turns out to be the case, however,
that not every loop needs to be strongly non-zeno for a network to be free from zeno-timelocks.

We can argue that a network is free from zeno-timelocks if the product automaton is SNZ, i.e., if every
loop in the product automaton is SNZ. Now, the structure of any loop in the product is derived from that
of loops in the network. In fact, by construction (see Section 2.1) a loop lpπ in the product must satisfy one
of the following conditions.

• The loop lpπ contains all the transitions of some completed loop in the network, lpc. In particular, if a
clock x is reset and bounded from below in lpc, then so is it in lpπ.

• The loop lpπ contains all transitions that result from the (pairwise) synchronisation of two (or more)
matching loops in the network. Let lph be any of these matching half loops. If a clock x is reset and
bounded from below in lph, then so is it in lpπ (remember: synchronisation unions reset sets, and conjoins
guards).

Assume that every completed loop in a network is SNZ, and that, for every pair of matching loops in the
network, at least one of these loops is SNZ. Necessarily, then, every loop in the product automaton must be
SNZ (even when some half loops may not be SNZ). Effectively, we have weakened the requirements imposed
by Lemma 3. This result is illustrated in Figure 6, where the composition between a strongly non-zeno loop
and another loop which is not strongly non-zeno yields a strongly non-zeno loop in the product automaton.
Theorem 1 below formalises our findings.

Theorem 1. Let |A = |〈A1, . . . , An〉 be a network of timed automata. Let HL(|A) be the set of matching
half loops, and CL(|A) the set of completed loops in the network, where

HL(|A) = { (lp, lp′) | ∃ i, j (1 ≤ i 6= j ≤ n) . lp ∈ Loops(Ai) ∧ lp′ ∈ Loops(Aj)
∧∃ a? ∈ Act(lp). a! ∈ Act(lp′) }

CL(|A) = { lp | ∃ i (1 ≤ i ≤ n) . lp ∈ Loops(Ai) ∧ ∀ a ∈ Act(lp) , a ∈ CAct }
If at least one loop in every pair in HL(|A) is SNZ and every loop in CL(|A) is SNZ, then the product
automaton obtained from |A is SNZ. Equivalently, the network |A is free from zeno-timelocks.
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Proof. Assume that at least one loop in every pair in HL(|A) is SNZ and every loop in CL(|A) is SNZ.
Consider the structure of a loop in the product automaton: it is either derived from some completed loop in
the network, or from two or more matching loops in the network.

Case 1. The loop lpπ contains all the transitions of some completed loop in the network, lpc. In particular,
the following holds.

Resets(lpπ) = Resets(lpc)
Guards(lpπ) = Guards(lpc)

Let x be the clock that witnesses the strong non-zenoness of lpc (every loop in CL(|A) is SNZ), i.e., x is
reset and bounded from below in lpc. It is not difficult to see that x is also reset and bounded from below
in lpπ. Then, lpπ is SNZ.

Case 2. The loop lpπ contains all transitions that result from the (pairwise) synchronisation of two (or
more) matching loops in the network. Let lp1, lp2 be two such matching loops, such that lp1 is SNZ (at least
one loop in every pair in HL(|A) is SNZ). In particular, the following holds.

Resets(lpπ) ⊇ Resets(lp′) ∪ Resets(lp′′)
Guards(lpπ) ⊇ {g | l

a,g,r−−−→ l′ ∈ Trans(lp′) ∪ Trans(lp′′)}∪
{gi ∧ gj | li

a?,gi,r−−−−→ l′i ∈ Trans(lp′) ∧ lj
a!,gj ,r−−−−→ l′j ∈ Trans(lp′′)}

Let x be a clock that is reset and bounded from below in lp1. Then, x is also reset and bounded from below
in lpπ. Hence, lpπ is SNZ. We conclude the proof confirming that every loop in the product is SNZ. Hence,
the network is free from zeno-timelocks

6.2. Invariant-based Conditions to Ensure Non-zenoness

We present here a number of syntactic conditions that guarantee non-zenoness; in the spirit of strong non-
zenoness, these conditions also ensure that time is allowed to diverge in loops, if these loops are visited
infinitely often. Unlike strong non-zenoness (which only considers the syntax of transitions), these conditions
take invariants into consideration, and so they characterise a class of non-zeno models that are not SNZ.
These new, invariant-based conditions are enumerated in Lemma 6. A number of auxiliary concepts and
lemmas are introduced first.

Covering Runs. Let lp be a loop, and ρ an infinite run. We say that ρ covers lp if it visits lp infinitely
often (i.e, ρ denotes an infinite iteration of lp). Formally, ρ covers lp if Trans(lp) ⊆ Trans∞(ρ). We use
CoveringRuns(s, lp) to denote the set of all runs starting from s that cover lp.

Covering Zeno-timelocks. Let lp be a loop, and s a zeno-timelock. We say that s covers lp if every finite
run starting from s can be extended to a run that covers lp. Formally, if s is a zeno-timelock, s covers lp if
∀ ρ ∈ FiniteRuns(s).∃ ρ′ ∈ CoveringRuns(s, lp). ρ ⊆ ρ′

Lemma 4. If actions occur infinitely often in a run, that run covers some simple loop.

Proof. Let ρ be a run where actions occur infinitely often. Automata transitions are finite, so ρ must visit a
(simple or non-simple) loop infinitely often. Every non-simple loop contains a simple loop. Hence, even if ρ
visits a non-simple loop infinitely often, it must necessarily visit a simple loop infinitely often.

Lemma 5. From any zeno-timelock, another zeno-timelock can be reached that covers some simple loop.

Proof. Let s1 be a zeno-timelock (by Lemma 1, every state reachable from s is a zeno-timelock). Let ρ1 be
any Zeno run starting from s1. By Lemma 4, ρ1 must cover simple loop lp (i.e., ρ1 visits lp1 infinitely often).

Suppose, by contradiction, that the lemma does not hold. In other words, there is no state s reachable
from s1, and no simple loop lp, such that s covers lp. Then, after visiting lp1 a finite number of times, ρ1

must reach a state s2, from where lp1 cannot be visited again. Because there are only finitely many simple
loops to visit, we can apply our previous reasoning to postulate the existence of some state sn, from where
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no simple loop can ever be visited again. This implies that no run starting from sn can be extended to a Zeno
run (once sn is reached, no action can occur infinitely often). By definition, sn cannot be a zeno-timelock,
which contradicts Lemma 1. Hence, our initial contradiction cannot be justified, and the lemma holds.

Corollary 1. A zeno-timelock occurs if and only if a zeno-timelock occurs that covers a simple loop.

Inherently Safe Loops. A loop lp is inherently safe if there is no zeno-timelock that covers lp.

Lemma 6. Let lp be a loop, such that

1. lp is SNZ; or
2. there is an invariant in lp where no clock is bounded from above; or
3. there is a clock that is reset in lp, and bounded from below in some invariant of lp; or

4. there is an invariant in lp, I(l) ,
n∧

i=1

xi ≤ ci, where (for all 1 ≤ i ≤ n) either (a) xi ∈ Resets(lp) and

ci > 0, or (b) ci > cmin(xi, lp).

Then, lp is inherently safe.10

Proof. Let lp be a loop that satisfies at least one of the conditions stated by this lemma. Suppose, by
contradiction, that there exists a zeno-timelock that covers lp. Let s be such zeno-timelock. Consider the
possible cases.

Condition 1. Let t1, t2 ∈ Trans(lp), s.t. v(x) = 0 immediately after t1 is performed, and t2 requires
v(x) ≥ c, (c ∈ N, c > 0) to be performed. Then, any run that covers lp accumulates a delay of at least c
time units in every iteration; i.e., it is a divergent run.

Condition 2. Let l ∈ Loc(lp), s.t. no clock in I(l) is bounded from above. Then, I(l) cannot prevent time
from passing. Hence, if l is reached, a divergent run (starting from l) is possible.

Condition 3. Let x ∈ Resets(lp), and l ∈ Loc(lp) s.t. x is bounded from below in I(l). Let t1 be the
transition in lp where x is reset, and t2 be the transition in lp that is ingoing to l. Every time a run reaches
l, it must be the case that v(x) ≥ c, (c ∈ N, c > 0). Note that, at least c time units must pass between the
execution of t1 and t2. Hence, any run that covers lp is divergent.

Condition 4. Let l ∈ Loc(lp) s.t. I(l) ,
n∧

i=1

xi ≤ ci, where (for all 1 ≤ i ≤ n) either (a) xi ∈ Resets(lp)

and ci > 0, or (b) ci > cmin(xi, lp). Let s be zeno-timelock that covers lp. By definition, every finite run
starting from s can be extended to a run that covers lp. Let ρ(s) be a run that covers lp, s.t. every time it
reaches l, it remains there while the invariant holds (Lemma 2).

Assume that condition (a) is satisfied. Every time that ρ iterates over lp, all the clocks in I(l) are reset
before l is reached. Because ρ remains in l while the invariant holds, every iteration has a delay of at least d
time units, where d = min(c1, c2, . . . , cn) (note that, d > 0 because ci > 0, for all 1 ≤ i ≤ n). Hence, ρ must
be a divergent run.

Assume that condition (b) is satisfied. Let y be a clock occurring in I(l) (i.e., y = xi, for some 1 ≤ i ≤ n).
Let l′ 6= l be a location in lp where y is bounded from above by its smallest upper bound (i.e., y ≤ cmin(y, lp)
is a term in I(l′)). We assumed that ρ visits lp infinitely often, and that remains in l while the invariant
holds. In particular, every time ρ leaves l, the value of y is such that v(y) > cmin(y, lp). Then, y must be
reset before ρ reaches l′ again (otherwise, the invariant in l′ would prevent this location to be entered). But
if this is the case, then every iteration has a delay of at least d time units, where d = min(c1, c2, . . . , cn)
(again, note that d > 0 because ci > 0, for all 1 ≤ i ≤ n). Hence, ρ must be a divergent run.

We proved that if any of the four conditions stated in the lemma are satisfied, and a zeno-timelock s
occurs that covers lp, a divergent run must exists that starts from s. This contradicts the assumption that
s is a zeno-timelock. Hence, either s is not a zeno-timelock, or it is a zeno-timelock that does not cover lp:
by definition, lp is inherently safe.

10 We have presented some of these conditions in previous work [BGS05]; there, the second and third conditions are called
“location non-urgency” and “reset non-urgency”, respectively.
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Fig. 7. Syntactic Conditions

Figure 7 illustrates the last three conditions enumerated in Lemma 6 (Figure 5 shows an example of a
strongly non-zeno loop). Figure 7 (i) shows a loop that satisfies the second condition: Note that location 2
has a true-invariant, and so it does not impose upper bounds on any clock occurring in the loop.

The loop in (ii) satisfies the third condition: x is reset in b and bounded from below in 2. Figures (iii) to
(vi) illustrate the last syntactic condition, which involves smallest upper bounds. Note in (iii) that location
1 always allows time to pass by 1 time unit, because x is reset in b (and it is the only clock occurring in that
location). Correspondingly, Lemma 6 confirms that no zeno-timelock can cover this loop. On the other hand,
the loop in (iv) does not satisfy Lemma 6: y is not reset, and every invariant imposes the same (smallest)
upper bound on y (cmin(y, lp) = 1). In particular, the state s = [1, v] is a zeno-timelock, where v(y) = 1 and
v(x) = v(z) = 0. The loop in (v) satisfies the forth condition. All conjuncts in the invariant of location 2
refer to constants that are greater than the smallest upper bound (for every clock). Note that the difference
between the upper bounds in locations 1 and 2 confirms that time is allowed to pass by at least 1 time
unit in location 2 (if so, we will end up with a time-actionlock, but no zeno-timelock can cover this loop).
Finally, the loop in (vi) shows a slightly different arrangement of upper bounds, but does not satisfy the
premises of Lemma 6. Note that there does not exist an invariant where every clock is either greater than
its smallest upper bound, or reset in the loop. In fact, the loop contains the zeno-timelock s = [1, v], where
v(x) = v(y) = 1.

Theorem 2. Let A be a timed automaton, where every simple loop in A satisfies Lemma 6. Then, A is
non-zeno.

Proof. Assume that every simple loop in A satisfies any of the conditions enumerated in Lemma 6. By
Lemma 6, no simple loop in A can be covered by a zeno-timelock. By Corollary 1, A is free from zeno-
timelocks.

6.3. Invariant-based Conditions and Non-zenoness

Theorem 2 formalises an attractive method to detect non-zenoness: this method is syntactic (thus, no model-
checking is necessary), and only simple loops need to be considered (detecting non-simple loops is harder).
There are, however, some limitations.

All Conditions Are Sufficient-only. The conditions stated in Lemma 6 are sufficient-only: there exist
automata that do not satisfy Theorem 2, which are free from zeno-timelocks. Figure 8 shows that the loop
〈a〉 does not satisfy any of these conditions, but nonetheless it does not contain a zeno-timelock. The key
point here is that even when Zeno runs do exist (e.g., the run starting in location 1 that remains there,
performing an infinite number of a-transitions in 1 time-unit), there is no state in the model that prevents
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divergent runs. Note that transition b is always enabled in location 1, and that time is always allowed to
diverge in location 2.11

Some Conditions Are Not Compositional. As we have discussed previously, strong non-zenoness is
compositional. However, the second condition in Lemma 6 is not compositional, because new upper bounds
can occur as the result of conjoining invariants during the construction of the product automaton. For the
same reason, the last condition is not compositional either. Finally, the third condition is compositional,
but it has not been applicable to the specifications we have been working with. Nevertheless, it remains an
interesting alternative given the fact that (at least in principle) invariants with lower-bounds (e.g., 1 < x ≤ 2)
might occur when modelling real-time constraints. All things considered, if Theorem 2 is to be applied to a
network of automata, it must be applied to the product automaton. Nevertheless, this syntactic check is in
general more efficient than model-checking.

7. Zeno-timelocks: A Sufficient-and-necessary Condition

One may argue that in most systems the presence of zeno-timelocks during modelling stages is rare, and
for that reason sufficient-only checks suffice. However, there is always the possibility of systems that fail to
satisfy the syntactic properties, in which case non-zenoness cannot be formally proved (or disproved). In
response to this problem, we want to derive a sufficient-and-necessary condition for non-zenoness. Moreover,
we want to infer such a condition from the syntactic structure of loops. Unfortunately, this does not seem
possible if we only consider simple loops, because Zeno runs may extend to non-simple loops. Conditions
that only look at simple loops “miss the big picture”: maybe the Zeno runs reach a state outside the loop
where time can always pass (so, we are not in the presence of a zeno-timelock), or maybe execution is
always “trapped” among simple loops (so, a zeno-timelock has occurred, but the Zeno runs are confined
to some non-simple loop). The problem is, the simple loop does not give us enough information to confirm
(or deny) the occurrence of zeno-timelocks. We argue, then, that conditions that only take simple loops
into account cannot be sufficient-and-necessary. Instead, we need to investigate how zeno-timelocks behave
w.r.t. non-simple loops. The interaction between zeno-timelocks and loops is characterised by the concept of
locality, which we discuss next. Before we present the theoretical framework, however, we must impose some
restrictions on the class of timed automata that can be analysed.

First, our sufficient-and-necessary condition can be applied only over a single automaton (A), and this
automaton cannot contain half actions (in addition, many of our proofs rely on the fact that resets are
zero-valued). Correspondingly, in order to analyse a network of automata, the condition must be checked
on the product automaton. On the positive side though, we can decide precisely whether (and where) zeno-
timelocks occur in a model (because the condition is sufficient-and-necessary), and the check requires only
basic reachability analysis (Section 7.1).

Secondly, we require all invariants in the automaton to be true-invariants (i.e., invariants that do not
impose bounds on any clock), or invariants that denote right-closed intervals. The syntax of right-closed
invariants is given by the following BNF.

I ::= x ≤ c | I ∧ I

where I is an invariant, x is a clock, and c ∈ N is a constant. This does not impose any severe limitations:
In practice, most systems can be modelled just with true- and right-closed invariants.

11 This is strongly related to the notion of escape transitions, which we exploit in Section 7 to define a sufficient-and-necessary
condition for non-zenoness.
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Fig. 9. Simple Loops, Non-simple Loops and Local Zeno-timelocks

Local Runs. Let lp be a loop and ρ a run. We say that ρ is local to lp if it only visits transitions of lp.
Formally, ρ is local to lp if Trans(ρ) ⊆ Trans(lp). We use LocalRuns(s, lp) to denote the set of all runs
starting from s that are local to lp.

Local Zeno-timelocks. Let lp be a loop, and s a zeno-timelock that covers lp. We say that s is local to lp
if, once s is reached, only transitions in lp can be visited (note that, because s covers lp, lp can be visited
infinitely often from s). Formally, s is a zeno-timelock local to lp if (a) Runs(s) = LocalRuns(s, lp) and (b)
Runs(s) ∩ CoveringRuns(s, lp) 6= ∅.

By way of example, Figure 9 (i) shows that the state s = [1, v] (v(x) = 1) is a zeno-timelock local to the
(non-simple) loop 〈a, b, d , c, d〉. Note that, if a zeno-timelock is local to some loop lp, then it also covers lp,
but the converse is not always true. For example, in (i), s = [1, v] (v(x) = 1) is a zeno-timelock that covers
the simple loop 〈c, d〉, because every finite run starting from s can be extended to a run that visits c and d
infinitely often. However, s is not local to 〈c, d〉; there are runs starting from s that visit a and b, which are
not part of the loop. For the same reason, s is not local to the simple loop 〈a, b, d〉 either. In some models,
then, zeno-timelocks may occur that are only local to non-simple loops.

In contrast, Figure 9 (ii) shows that s′ = [1, v′], where v′(x) = 2, is a zeno-timelock local to the simple
loop 〈c, d〉 (once s′ is reached, neither a nor b are enabled).

Lemma 7. From any zeno-timelock, another zeno-timelock can be reached that is local to some (simple or
non-simple) loop.

Proof. Let s be a zeno-timelock (remember, by Lemma 1, that any state reachable from s is also a zeno-
timelock). By Lemma 5, there exists a simple loop, lp1, and a zeno-timelock, s1, that covers lp and is
reachable from s. By definition, every finite run starting from s1 can be extended to a run that covers lp1.
Given s1 and lp1, only two cases are possible.

Case 1. There exists s′1 reachable from s1, s.t. runs starting from s′1 visit only transitions in lp1 (i.e.,
every run starting from s′1 is local to lp1). By definition, s′1 is a zeno-timelock local to lp1. Hence, we have
proved our claim.

Case 2. Case 1 is not true; i.e., from every state that is reachable from s1, some transition outside lp1 can
always be visited. In fact, because lp1 can be visited infinitely often, a stronger assumption can be made.
There exists s2 reachable from s1, and a set of transitions T2 ⊃ Trans(lp1), s.t. every transition in T2 can
be visited infinitely often, from any state that is reachable from s2. Note that T2 represents a non-simple
loop lp2, s.t. Trans(lp2) = T2. Again, the same two cases are possible for s2 and lp2, and we apply the same
reasoning.

Note that, every time that Case 1 does not hold, a bigger non-simple loop can be built (according to
Case 2). But there are only finitely many transitions to try. Thus, our reasoning can only be applied a finite
number of times, and Case 1 must eventually hold for some state sn and non simple loop lpn, where

Trans(lpn) ⊃ Trans(lpn−1) ⊃ . . . ⊃ Trans(lp1)

This state sn is a zeno-timelock local to lpn, and sn is reachable from s. Together, sn and lpn justify the
lemma.
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Corollary 2. A zeno-timelock occurs if and only if a zeno-timelock occurs that is local to a (simple or
non-simple) loop.

Converged Zeno-timelocks and Maximal Valuations. Let s = [l, v] be a zeno-timelock. We say that
s is a converged zeno-timelock if no valuation, other than v, is reachable from s. Formally, a zeno-timelock
s = [l, v] is a converged zeno-timelock if

∀ l′, v′. (s ∗=⇒ [l′, v′]) ⇒ (v′ = v)

In addition, we say that v is maximal w.r.t. Runs(s).

Figure 9(i) serves to illustrate the concept of converged zeno-timelocks. Every state that is reachable in
〈a, b, d , c, d〉 is a zeno-timelock, but only those where v(x) = 1 are converged zeno-timelocks (no clock can
ever change its value after v(x) = 1).

Lemma 8. From any zeno-timelock, another zeno-timelock is reachable from where no further delay is pos-
sible.

Proof. Let s be a zeno-timelock. Suppose, by contradiction, that every state that is reachable from s allows
some delay (although, time cannot diverge). By definition of zeno-timelock, every finite run starting from s
can be extended to a Zeno run. In addition, all locations that are reachable from s must have a right-closed
invariant (true-invariants would imply the existence of divergent runs, by Lemma 6). Therefore, it is possible
to build a Zeno run, ρ, that starts in s and remains in every location it visits while the invariant holds
(Lemma 2). Because there are only finitely many locations to visit, there must exists a location l that is
visited infinitely often by ρ, s.t. that some delay is possible whenever l is entered.

By Lemma 2, and because ρ remains in l while the invariant holds, there is a term y ≤ c in I(l), s.t.
v(y) = c (c ∈ N, c > 0) every time that ρ leaves l. Note that once l is left, ρ must reset all clocks in I(l)
before it can visit l again (including the clock y). Because ρ visits l infinitely often, it must accumulate an
infinite number of delays d > 0, d ∈ N; i.e., it is a divergent run (this contradicts our assumption that ρ is
a Zeno run).

We proved that if s is a zeno-timelock, some state s′ must exist that is reachable from s, where time
cannot pass any further (by Lemma 1, s′ is itself a zeno-timelock). Hence, the lemma holds.

Lemma 9. From any zeno-timelock, a converged zeno-timelock is reachable.

Proof. Let s be a zeno-timelock. By Lemma 8, there exists a zeno-timelock s′ reachable from s, where no
further delay is possible. Consider the set R of all clocks that can be reset from s′. Clearly, R is finite and a
state s′′ must exist, which is reachable from s′, such that every clock in R has been reset at least once before
s′′ is reached.

In our timed automata model, a clock value can change only as a result of time passing (the value
increases) or resets (the value is set to zero). This observation, and the fact that further time passing is not
possible from s′, has two important consequences. First, once a clock has been reset after s′ is reached, its
value becomes permanently zero. In particular, once s′′ is reached, the value of all clocks in R is permanently
zero. Secondly, if a clock is never reset after s′ is reached, then its value never changes. In particular, once
s′′ is reached, the value of any clock that is not in R never changes.

Hence, if s′′ = [l, v], no valuation other than v is reachable from s′′. By definition, s′′ is a converged
zeno-timelock, and the lemma holds.

Corollary 3. Any state reachable from a converged zeno-timelock is also a converged zeno-timelock.

Converged zeno-timelocks denote valuations with some particular features, which makes them easier to
detect. Naturally, for some loop in the automaton, we want to determine whether a converged zeno-timelock
may occur, which is local to this loop. Let us refer to such loops as Zeno-loops.

Zeno-loops And Maximal Valuations. Let lp be a loop, and s a state reachable in lp (i.e., s = [l, v] is
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Fig. 10. Zeno-loops, Converged Zeno-timelocks And Maximal Valuations

a reachable state, where l ∈ Loc(lp) and v is some clock valuation). We say that lp is a zeno-loop if, once s
is reached, lp can be visited infinitely often by local runs, but none of these runs can pass time. Formally, if
s = [l, v] is reachable in lp, lp is a zeno-loop if LocalRuns(s, lp)∩CoveringRuns(s, lp) 6= ∅, and v is maximal
w.r.t. LocalRuns(s, lp). In addition, we say that v is a maximal valuation of lp.

The syntactic structure of zeno-loops plays a role in the reachability of maximal valuations. Indeed, if lp
is a zeno-loop and v is a maximal valuation of lp, certain conditions hold.

• v satisfies all invariants and guards of lp (lp can be visited infinitely often).
• v(x) = 0, for every clock x that is reset in lp (once v is reached, no clock can ever decrease).
• v reaches at least one upper bound in every invariant of lp (once v is reached, no clock can ever increase).

By way of example, Figure 10(i) shows a zeno-loop, 〈b, c〉 where a number of converged zeno-timelocks may
occur. For example, the state s = [2, v] (v(x) = v(y) = 1, v(z) = 0) is a converged zeno-timelock that is
reached if transition a is performed as soon as possible. On the other hand, the converged zeno-timelock
s′ = [2, v′] (v′(x) = 1, v′(y) = 2, v′(z) = 0) is reached if a was performed as late as possible. Note that, in this
model, the possible maximal valuations are represented by the set { v | v(x) = 1 ∧ 1 ≤ v(y) ≤ 2∧ v(z) = 0 }.
In general, many different maximal valuations may be reachable in a loop; in turn, different converged
zeno-timelocks may be local to the same loop.

Lemma 10. Let lp be a zeno-loop; s = [l, v] a state reachable in lp; and v a maximal valuation of lp. Every
finite run in LocalRuns(s, lp) can be extended to an infinite run in LocalRuns(s, lp). Every infinite run in
LocalRuns(s, lp) is a Zeno run.

Proof. By definition of zeno-loop, there is a run in LocalRuns(s, lp) that visits lp infinitely often (i.e., that
covers lp). Because v is maximal w.r.t. LocalRuns(s, lp), no such local run can ever reach other valuation
than v. Therefore, every finite run can be extended to a run that visits just the transitions of lp, infinitely
often (i.e., an infinite local run). Again, because v is maximal, no location in lp can ever pass time (if reached
from a transition in lp). Hence, every infinite run in LocalRuns(s, lp) is a Zeno run.

Zeno-loops are responsible for Zeno runs that visit the loop infinitely often. In turn, such runs are possible
once a maximal valuation has been reached in the loop. Therefore, when this happens, no location in the
loop will allow time to pass. This is a necessary condition for the occurrence of (converged) zeno-timelocks;
however, maximal valuations may enable runs that are divergent, or finite runs that cannot be extended to
infinite runs (e.g., a time-actionlock). Nevertheless, one thing is certain: If a maximal valuation does not
imply that a converged zeno-timelock has occurred (local to the loop), then it must enable some transition
outside the loop. This motivates the definition of escape transitions.

Escape transitions. Let lp be a loop in A. We will say that a transition l
a,g,r−−−→ l′ is an escape transition

of lp if l ∈ Loc(lp) and l
a,g,r−−−→ l′ /∈ Trans(lp). We use Esc(lp) to denote the set of escape transitions from lp.

Figure 10(ii) shows that 〈b, c〉 is a zeno-loop, with maximal valuations in {v | v(x) = 1 ∧ 1 ≤ v(y) ≤
2 ∧ v(z) = 0}. In turn, transition d is an escape transition that is enabled by any maximal valuation of
the loop. Clearly, zeno-loops and maximal valuations do not necessarily determine the existence of zeno-
timelocks: Any run visiting the loop 〈b, c〉 can be extended to a divergent run that visits e infinitely often.
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It is not difficult to see that, if a maximal valuation is reached and escape transitions are not enabled at
this point, a zeno-timelock occurs. On the other hand, zeno-timelocks may occur even if escape transitions
are enabled by maximal valuations. When escape transitions are enabled, all we are guaranteed is that, if a
zeno-timelock occurs, it is not local to the loop in question.

Consider again Figure 9 (i), and the zeno-loop 〈c, d〉. Transition a is an escape transition from this
loop, which is enabled by any of its maximal valuations (which satisfy v(x) = 1). Therefore, there is no
zeno-timelock which is local to the loop 〈c, d〉. However, a zeno-timelock occurs that is local to 〈a, b, d , c, d〉.
Theorem 3. Let lp be a loop in A. There exists a converged zeno-timelock s = [l, v], local to lp, if and only
if lp is a zeno-loop, v is a maximal valuation of lp, and there are no escape transitions of lp that are enabled
by v.

Proof. (⇒) Assume that s = [l, v] is a converged zeno-timelock, local to lp. By definition, no run in Runs(s)
can ever reach a valuation other than v; there exists at least one run in Runs(s) that covers lp; and every
run in Runs(s) visits only transitions of lp. Hence, lp is a zeno-loop; v is a maximal valuation of lp; and no
escape transition can be enabled by v.

(⇐) Assume that lp is a zeno-loop; v is a maximal valuation of lp; and there are no escape transitions
from lp that are enabled by v. By Lemma 10, every finite local run (starting from s) can be extended to an
infinite local run, and every such infinite run is a Zeno run. Because escape transitions are not enabled by v,
every run starting from s must be local to lp, and v is the only valuation that can be reached. By definition,
s is a converged zeno-timelock, local to lp. Hence, the lemma holds.

Corollary 4. A zeno-timelock occurs in A if and only if there is a zeno-loop lp in A, s.t. some maximal
valuation of lp is reachable that does not enables any escape transition of lp.

We have accomplished one of our main goals. Corollary 4 (and Theorem 3) represents a sufficient-and-
necessary condition for the occurrence of zeno-timelocks. However, this check depends on finding loops,
maximal valuations, and escape transitions. In order to derive a practical method (and in particular, one
that complements the standard verification facilities provided by Uppaal), a feasible way to obtain maximal
valuations must be found. The following section shows that this can be done through simple reachability
analysis.

7.1. Using Reachability Analysis To Detect Zeno-timelocks

The following results relate maximal valuations and escape transitions with simple reachability formulas
(incidentally, these formulas can be verified in Uppaal). As before, we assume a single automaton (A)
without half-actions, where all invariants are either true- or right-closed. In this section, in particular, we
use lp to refer to a loop in A that does not satisfy Lemma 6 (i.e., lp has not been proved to be inherently
safe, according to the syntactic conditions discussed in Section 6.2).

Let lp be a loop, and Loc(lp) = {l1, . . . , ln}. Let
∏

= Clocks(l1) × . . . × Clocks(ln). The formula Θ(x, l)
(where x ∈ Clocks(lp) and l ∈ Loc(lp)) denotes that x has reached its smallest upper bound, if such bound
occurs in the invariant of l.

Θ(x, l) ,
{

x = cmin(x, lp) if x ≤ cmin(x, lp) occurs in I(l)
false otherwise

Using Θ(x, l), the formula sub(lp) denotes a valuation that has reached at least one smallest upper bound
in every location of lp.12

sub(lp) ,
∨

(x1,...,xn)∈Q
∧n

i=1 Θ(xi, li)

Using sub(lp), the formula α(lp) denotes a maximal valuation of lp.

12 We have assumed that lp does not satisfy Lemma 6, in particular, the fourth syntactic condition does not hold. This ensures
that in every location of lp, at least one clock must be compared against its smallest upper bound, and so sub(lp) is well-defined.
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α(lp) ,
∧

l∈Loc(lp) I(l)
∧ ∧

g∈Guards(lp) g
∧ ∧

y∈Resets(lp) y = 0
∧ sub(lp)

By way of example, we show below the values of Θ(X,L) and α(lp), for lp = 〈a, b, c, d〉 in Figure 11(i).

Θ(X, L) =

clock X / location L 1 2 3 4
t Θ(t, 1) = false false false t = 0
x x = 1 false false false
y y = 2 false y = 2 false
z false z = 2 false false
w false false w = 1 false

α(lp) = (x ≤ 1 ∧ y ≤ 2) ∧ (z ≤ 2 ∧ y ≤ 3) ∧ (y ≤ 2 ∧ w ≤ 1) ∧ (t ≤ 0)
∧ (z > 1 ∧ y = 2)
∧ (t = 0 ∧ w = 0)
∧ ( (x = 1 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (x = 1 ∧ z = 2 ∧ w = 1 ∧ t = 0)∨

(y = 2 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (y = 2 ∧ z = 2 ∧ w = 1 ∧ t = 0) )

Note that once a valuation that satisfies α(lp) is reached, and provided the execution does not leave the
loop, every location can be visited (first conjunct), every transition can be performed (second conjunct), and
clock values cannot decrease (third conjunct), or increase (fourth conjunct). Equivalently, α(lp) characterises
the maximal valuations of lp. This is proved by the following two lemmas.

Lemma 11. Let lp be a loop, and v a valuation that satisfies sub(lp). For any location l ∈ Loc(lp) s.t.
s = [l, v] is reachable, time cannot pass any further in l.

Proof. Let Loc(lp) = {l1, . . . , ln} and
∏

= Clocks(l1)× . . .× Clocks(ln). By definition, if v satisfies sub(lp),
then v satisfies

∨
(x1,...,xn)∈Q

∧n
i=1 Θ(xi, li)

In turn, v satisfies at least one disjunct
∧n

i=1 Θ(xi, li)

for some (x1, . . . , xn) ∈ ∏
. By definition of Θ(xi, li), this conjunction is satisfied if v has reached at least

one upper bound in every invariant of lp. Hence, for any l ∈ Loc(lp) s.t. s = [l, v] is reachable, time cannot
pass any further in l (by semantics of invariants).

Let A be a timed automaton, l a location in A, and φ a state formula.13 We say that the formula
∃3(A.l ∧ φ) is satisfiable, if a state s = [l, v] is reachable in some execution of A, where v |= φ (i.e, the
standard interpretation of satisfiability for TCTL formulas).

Lemma 12. Let lp be a loop in A. For any l ∈ Loc(lp), the reachability formula

∃3(A.l ∧ α(lp))

is satisfiable if and only if s = [l, v] is reachable; v |= α(lp); lp is a zeno-loop; and v is a maximal valuation
of lp.

13 For our purpose, a state formula is built upon clock references, natural numbers, relational operators (such as <, ≤, =,
etc.) and logic operators (such as ∧,∨,⇒ and ¬).
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Proof. (⇒) Assume that ∃3(A.l ∧ α(lp)) is satisfiable. Then, a state s = [l, v] is reachable where v |= α(lp).
By definition of α(lp), v satisfies every invariant and guard of lp, and v(y) = 0 for every y that is reset
in lp. Therefore, once v is reached, lp can be visited infinitely often. Because the effect of resets in lp has
been considered in v, clock values cannot decrease in local runs. Moreover, because v |= sub(lp), clock values
cannot increase in local runs (by Lemma 11). By definition, lp is a zeno-loop and v is a maximal valuation
of lp.

(⇐) Assume that s = [l, v] is a reachable state (l ∈ Loc(lp)), lp is a zeno-loop, and v is a maximal
valuation of lp. By definition, once s is reached, lp can be visited infinitely often by local runs, and local
runs cannot change the valuation (v is maximal w.r.t. LocalRuns(s, lp)). Necessarily, v must satisfy every
invariant and guard of lp, and v(y) = 0 for every y that is reset in lp. For the same reason, clock values
cannot increase in local runs. This means that v reaches at least one upper bound in every invariant of lp
(i.e., for every l ∈ Loc(lp), v(x) = c, where x ≤ c is a term in I(l)). In order to prove that v |= α(lp), we
just need to prove that this upper bound is in fact the smallest upper bound (for some clock in I(l)). This
would allows us to prove that v |= sub(lp).

Suppose, by contradiction, that v(x) = c and x ≤ c is a term in I(l), where c > cmin(x, lp) (for some
l ∈ Loc(lp)). There is, of course, another location l′ ∈ Loc(lp), where x ≤ cmin(x, lp) is a term in I(l′). We
have assumed that local runs can visit lp infinitely often, without changing the valuation. However, l′ cannot
be entered once v has been reached, because v(x) > cmin(x, lp). Therefore, must v reach at least one smallest
upper bound in every location of lp. By definition, v |= sub(lp).

Finally, because s = [l, v] is reachable (l ∈ Loc(lp)) and v |= α(lp), the formula ∃3(A.l ∧ α(lp)) is
satisfiable.

The formula α(lp) can be used to determine whether the loop lp is a zeno-loop, and maximal valuations
can be reached. But this is not enough to characterise zeno-timelocks. By Theorem 3, in order to ensure that
a zeno-timelock occurs in lp, we also have to check that escape transitions are not enabled.

Let t , l
a,g,r−−−→ l′ denote an escape transition, and v a valuation. As we know, v enables t if v |= g and

r(v) |= I(l′) (i.e., the invariant in the target location holds from v, after resets have been performed). By
definition, r(v)(x) = v(x) if x /∈ r, and r(v)(x) = 0 if x ∈ r. In our timed automata model, invariants do
not impose lower bounds, so resets cannot invalidate invariants. We can safely claim that r(v) |= I(l′) if and
only if v satisfies all conjuncts in I(l′) that do not refer to clocks in r.

Correspondingly, we define the formula Target(l′, r) to extract those conjuncts in I(l′) that do not refer to
clocks in r. Then, with Target(l′, r) as an auxiliary formula, we define the formula IsEnabled(g, r, l′) to check
whether a transition is enabled (where g, r and l′ are the guard, reset set, and target location, respectively).

Target(l′, r) , {x ≤ c |x ≤ c occurs in I(l′) and x /∈ r }

IsEnabled(g, r, l′) , g ∧ ∧
conj ∈Target(l′,r)

conj

Let lp be a loop, and Esc(lp) = {l1 a1,g1,r1−−−−−→ l′1, . . . , ln
an,gn,rn−−−−−−→ l′n} be the set of escape transitions of lp. We

define β(lp), which checks whether the current valuation enables some t ∈ Esc(lp).

β(lp) ,
∧n

i=1 ¬ IsEnabled(gi, ri, l
′
i)

Now, with α(lp) and β(lp), we can use reachability analysis to characterise (precisely) the zeno-timelocks
local to lp. This is formalised in Theorem 4.

Theorem 4. Let lp be a loop in A. For any l ∈ Loc(lp), the reachability formula

∃3(A.l ∧ α(lp) ∧ β(lp))

is satisfiable if and only if s = [l, v] is a converged zeno-timelock local to lp, and v |= α(lp) ∧ β(lp).

Proof. By definition, a valuation satisfies β(lp) if and only if it does not enable any escape transition from
lp. By Lemma 12, ∃3(A.l ∧ α(lp)) is satisfiable if and only if s = [l, v] is reachable; lp is a zeno-loop; v is a
maximal valuation of lp; and v |= α(lp). In turn, by Theorem 3, this can only happen if and only if s = [l, v]
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Fig. 11. Zeno-loops and Escape transitions

is a converged zeno-timelock local to lp (by TCTL semantics, ∃3(A.l ∧ α(lp) ∧ β(lp)) holds if and only if
s = [l, v] is reachable, and v |= α(lp) ∧ β(lp)).

Corollary 5. Let A be a timed automaton. A zeno-timelock occurs in A if and only if there is some
(simple or non-simple) loop lp that does not satisfy Lemma 6, s.t. ∃3(A.l ∧ α(lp) ∧ β(lp)) is satisfiable for
any l ∈ Loc(lp).

Consider the loop lp = 〈c, d〉 in Figure 11(ii). Formulas Esc(lp), α(lp) and β(lp) are shown below
(expressions have been simplified).

Esc(lp) = {1 a, y<1, {y}−−−−−−−−→ 2, 3
e, y=1, {z}−−−−−−−→ 4}

α(lp) = x = 2
β(lp) = ¬ (y < 1 ∧ x ≤ 2) ∧ ¬ (y = 1)

Depending on the reachable valuations, 〈c, d〉 may or may not contain a local zeno-timelock. For example,
∃3(A.1 ∧ α(lp) ∧ β(lp)) is satisfiable if any state in {[1, v] | v(y) > 1} is reachable. If so, a converged zeno-
timelock s = [1, v], v(x) = 2, v(y) > 1 occurs, and s |= ∃3(A.1 ∧ x = 2 ∧ ¬ (y < 1 ∧ x ≤ 2) ∧ ¬ (y = 1)).
Note that escape transitions a and e are not enabled, because v(y) > 1.

On the other hand, 〈c, d〉 does not contain a (local) zeno-timelock if any state in {[1, v] | v(x) > 1∧v(y) =
0} is reachable. When v(x) = 2 is reached, v(y) < 1 necessarily holds, so transition a is enabled by any
maximal valuation of the loop. In addition, any reachable state in {[1, v] | v(x) > 1 ∧ v(y) = 0} is a
zeno-timelock local to 〈a, b, d , c, d〉 (transition e is not enabled); and no state in {[1, v] | v(x) > 1} is a
zeno-timelock local to 〈a, b, d〉 (transition c is enabled).

7.2. Simplifying the reachability formulas

So far we have presented α(lp) and β(lp) in such a way that they clearly reflect our intuition behind zeno-
loops, maximal valuations and escape transitions. These expressions can be simplified by tools like theorem
provers and SAT solvers (most decision procedures can effectively deal with the simple arithmetic constraints
found in these reachability formulas). Nevertheless, we present below some easy-to-spot reductions.

The following reductions concern α(lp), which we recall below.

α(lp) :
∧

l∈Loc(lp) I(l)
∧ ∧

g∈Guards(lp) g
∧ ∧

y∈Resets(lp) y = 0
∧ sub(lp)

It follows, from the definition of cmin(x, lp), that any valuation that satisfies all invariants in the loop
necessarily assigns, to every clock in the loop, a value that is less than or equal to its smallest upper bound.
In addition, the value of all clocks that are reset in the loop is already zero (

∧
y∈Resets(lp) y = 0). We can
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simplify α(lp) and obtain α′(lp) instead, where

α′(lp) :
∧

z∈Clocks(lp)\Resets(lp) z ≤ cmin(z, lp)
∧ ∧

g∈Guards(lp) g
∧ ∧

y∈Resets(lp) y = 0
∧ sub(lp)

For example, α′(lp) is calculated below for lp = 〈a, b, c, d〉 in Figure 11(i).

α′(lp) : (x ≤ 1 ∧ y ≤ 2 ∧ z ≤ 2)
∧ (z > 1 ∧ y = 2)
∧ (t = 0 ∧ w = 0)
∧ ( (x = 1 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (x = 1 ∧ z = 2 ∧ w = 1 ∧ t = 0)∨

(y = 2 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (y = 2 ∧ z = 2 ∧ w = 1 ∧ t = 0) )

The following reductions concern β(lp), which we recall below.

β(lp) :
∧n

i=1 ¬ IsEnabled(gi, ri, l
′
i)

Consider any transition l
a,g,r−−−→ l′ ∈ Esc(lp) where the guard g is of the form

∧p
k=1 xk ∼ ck, where xk ∈ C,

ck ∈ N and ∼∈ {<,>, =,≤,≥}. Consider, in addition, a maximal valuation v of lp and any conjunct in g,
say xk ∼ ck for some 1 ≤ k ≤ n, where xk is reset in lp. If this conjunct is of the form xk ∼′ ck, where
∼′∈ {>,=,≥} and ck > 0, then clearly the transition is not enabled by v (by definition of maximal valuation,
v(xk) = 0) and so it does not need to be considered in β(lp). If, on the other hand, the conjunct is of the
form xk ∼′′ ck, where ∼′′∈ {<,≤} and ck ∈ N, it is easy to see that it is trivially satisfied by v and so it can
be replaced, in g, by true. For example, for lp = 〈a, b, c, d〉 in Figure 11(i),

β(lp) = ¬ (x = 1 ∧ w = 1) ∧ ¬ (x = 1 ∧ w ≤ 1)

But transition e is not enabled by any maximal valuation of lp, because w is reset in the loop. The conjunct
w ≤ 1 in transition f is trivially satisfied by any maximal valuation of lp, for the same reason. Therefore, we
can simplify β(lp) and obtain the equivalent:

β′(lp) = ¬ (x = 1 ∧ false) ∧ ¬ (x = 1 ∧ true) ≡ ¬ x = 1

7.3. An Algorithm to Detect Zeno-timelocks

Here we discuss a possible implementation of the reachability-based condition for non-zenoness. We give an
algorithm that receives a single automaton as input, A, and returns a set of loops where local zeno-timelocks
occur, LS ∪ LNS (see steps 3 and 4). The automaton A is assumed to contain only completed actions, and
invariants in A are either true- or right-closed. Next, we describe the algorithm as a series of steps, where
each step discards those loops in A that are guaranteed not to contain zeno-timelocks. High-level operations
such as set operations, loop detection and reachability analysis, are assumed to be primitive.

1. L0 =SimpleLoops(A) \ { lp | lp ∈ SimpleLoops(A), lp satisfies Lemma 6 }
2. L1 = L0 \ { lp | lp ∈ L0, and ∃3(A.l ∧ α(lp)) is not satisfiable }
3. LS = { lp | lp ∈ L1, and ∃3(A.l ∧ α(lp) ∧ β(lp)) is satisfiable }
4. LNS = findZTs(L1 \ LS , A)

The first step applies the static conditions in Lemma 6 (Section 6.2), to identify simple loops that do not
contain a zeno-timelock. This results in a set of unsafe loops, L0. The second step removes simple loops in
L0 where maximal valuations cannot be reached (i.e., those loops that are not zeno-loops). This leaves a set
of simple loops L1. In this way, we may reduce the number of loops to consider in the following steps (which
are more demanding). For example, we can avoid checking escape transitions in loops that cannot even reach
a maximal valuation. The third step identifies simple loops in L1 that contain local zeno-timelocks. These
loops may or may not participate in non-local zeno-timelocks; however, they have already been identified as
a source of zeno-timelocks, so we do not need to consider them any further.
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Function findZTs(L,A)
begin

Z ← ∅;
while L 6= ∅ do

Choose lp ∈ L;
L ← L \ {lp};
Z ← Z ∪ getZTsFrom(lp, L, A, Z);

end
return Z;

end.

Function getZTsFrom(lp, L, A,ZTLoops)
begin

Aux ← ∅;
while ∃ lp′ ∈ L. Loc(lp) ∩ Loc(lp′) 6= ∅ do

L ← L \ {lp′};
lp′′ ← lp ∪ lp′;
if @ vlp ∈ ZTLoops. lp′′ ⊆ vlp then

Choose l ∈ Loc(lp′′);
if ∃3(A.l ∧ α(lp′′) ∧ β(lp′′)) then

Aux ← Aux ∪ {lp′′};
else

Aux ← Aux ∪ getZTsFrom(lp′′, L, A,ZTLoops);
end

end
end
return Aux ;

end.

Fig. 12. Detecting Zeno-timelocks in Non-simple Loops

The final step identifies non-simple loops that contain zeno-timelocks. These non-simple loops result from
simple loops in L1 \ LS . This is realised by findZTs(), shown in Figure 12.14 This function systematically
looks for non-simple loops (which contain only simple loops in L1 \ LS), and checks (using the reachability
formula) for the occurrence of zeno-timelocks.

The description of findZTs() assumes the following definitions. We define lp ∪ lp′ = lp′′, where lp and
lp′ are s.t. Loc(lp) ∩ Loc(lp′) 6= ∅; and lp′′ results from joining lp and lp′ through their common locations.
Equivalently, lp′′ is s.t. Loc(lp′′) = Loc(lp) ∪ Loc(lp′), and Trans(lp′′) = Trans(lp) ∪Trans(lp′). In addition,
we used lp ⊆ lp′ to denote that lp = lp′ or ∃ lp′′. lp ∪ lp′′ = lp′.

Example. Figure 13 depicts a non-trivial automaton (which could represent a product automaton) that
serves to illustrate how the algorithm works. We have identified six loops, which are clearly marked in
boldface. Thus,

SimpleLoops(A) = { lp1, lp2, lp3, lp4, lp5, lp6 }
In the first step, lp5 is the only loop that is recognised to be inherently safe (in fact, lp5 is SNZ). This loop
does not need to be considered any further, and so

L0 = { lp1, lp2, lp3, lp4, lp6 }
The second step finds that, of all loops in L0, lp6 is the only one that is not a zeno-loop: location 9 is not
even reachable (location 8 can only be reached if v(x) > 1), which in turn disables transition p). As a result

14 Parameters are passed by-value.
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Fig. 13. Detecting Zeno-timelocks

of the second step, we get

L1 = { lp1, lp2, lp3, lp4 }
The third step confirms that none of these loops spawns a local zeno-timelock: for each of these loops, an
escape transition is always enabled (once a maximal valuation has been reached). We get, then, LS = ∅.
Now, it is possible that zeno-timelocks occur in non-simple loops. The last step confirms that zeno-timelocks
occur in the following non-simple loops.

nslp1 = lp1 ∪ lp2 ∪ lp3 (if a is performed)
nslp2 = lp1 ∪ lp2 ∪ lp4 (if c is performed)

Actually, the non-simple loop nslp3 = lp1∪lp2∪lp3∪lp4 also contains a zeno-timelock (if b is performed).
However, the algorithm does not return this combination, because it includes non-simple loops that are known
to contain zeno-timelocks. This can be confirmed by inspecting the behaviour of function getZTsFrom(),
which looks for bigger combinations (in terms of number of simple loops) only if the current one does not
contain a zeno-timelock. In addition, combinations such as lp2 ∪ lp3 or lp2 ∪ lp4 are not verified, because
they are part of non-simple loops that are known to contain zeno-timelocks (we use the variable ZTLoops in
getZTsFrom(), to keep track of visited loops).

Complexity. Loop detection, and reachability analysis, may bring exponential complexity in worst-case
scenarios.15 However, this complexity is rarely suffered in practice. First, in most practical cases the set of
loops that have to be considered is small. Indeed, the algorithm attempts to reduce, at every step and as
much as possible, the set of loops to check. This ensures that subsequent steps are kept reasonably efficient.

Secondly, model-checkers (and in particular, Uppaal) can perform reachability analysis very efficiently
(even for complex models). Moreover, for many timelock-free models, the static analysis performed in step
1 (i.e., checking the sufficient-only conditions of Lemma 6) will suffice, and reachability analysis will not be
required. Furthermore, most models will be guaranteed to be timelock-free by compositional application of
strong non-zenoness (see Section 6.1), and so building the product automaton is not necessary. Even when
this analysis may indicate unsafe loops, this knowledge may be enough to inspect and correct the model
accordingly, avoiding the construction of the product automaton (and further loop detection).

15 The size of the product automaton can be at most exponential in the size of the network’s components (i.e. number of
locations and transitions). The number of loops in a given automaton can be at most exponential in the size of the automaton
(see e.g., [Tri98]). The worst-case complexity of reachability analysis is linear in the size of the automaton, and exponential in
the number of clocks and the maximal constants in clock constraints (see e.g., [AM04]).
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8. Zeno-timelocks: Practice

We show that Uppaal offers limited support for the detection of timelocks. Then, we introduce a tool that
we have implemented, which assists the detection of zeno-timelocks in Uppaal models (according to our
syntactic and reachability-based conditions).

The rest of this section is devoted to a case study. We apply our non-zenoness conditions to a modified
version of the CSMA/CD protocol. We show how timelocks may occur in a seemingly correct model of the
protocol;16 in particular, a zeno-timelock occurs that hides a time-actionlock. We will see that syntactic
conditions are not enough to decide whether the model contains zeno-timelocks, but they identify a number
of unsafe loops (hence, the analysis can be restricted to consider just these loops). Then, we apply our
reachability-based condition to detect, with certainty, which loops in the product automaton contain zeno-
timelocks. Furthermore, we have used our tool to support the analysis at different stages.

8.1. Detection of Timelocks in Uppaal

In Uppaal, a model is free from actionlocks if the formula A[]not deadlock is verified. However, this check
cannot distinguish between pure-actionlocks and time-actionlocks. Detection of timelocks, and in particular
of zeno-timelocks, is difficult in Uppaal.

Non-zenoness can be detected with the help of a test automaton [ABBL03]. Figure 14(i) shows a test
automaton; this is added to the original system as a new autonomous component (t is a clock local to the
test automaton). The original system is free from timelocks if a state where v(t) = 1 can be reached from
every state where v(t) = 0; i.e., if the system can always pass time (clocks in Uppaal can be compared only
with integer constants). This can be checked in Uppaal by verifying the leads-to property (t==0)-->(t==1).
However, this formula represents a sufficient-only condition; there are timelock-free models where the formula
does not hold. The formula (t==0)-->(t==1) is actually the Uppaal version of the TCTL formula ∀2((t =
0) ⇒ ∀3(t = 1)), which is satisfiable only if for every state s in which v(t) = 0, a state in which v(t) = 1 is
reachable in every possible run starting from s. This condition is too strong; a system with a zeno run, where
time does not pass beyond v(t) = 0, may still be free from timelocks (by virtue of other runs). Figure 14(ii)
shows such a timelock-free system. In fact, a system is timelock-free if there exists at least one run starting
at every (v(t) = 0)-state where a (v(t) = 1)-state is reachable. This condition, which is weaker than that
arising from Uppaal’s leads-to property, can be expressed by the TCTL formula ∀2((t = 0) ⇒ ∃3(t = 1)).
Unfortunately, such a formula cannot be verified in Uppaal.

8.2. Urgent and Committed Locations in Uppaal

Having said that one of our goals is to integrate our theory with Uppaal, the way in which we deal with urgent
and committed locations deserves an explanation. In Uppaal’s timed automata, locations can be declared as
urgent or committed to express different types of urgency conditions [BGK+02].

Intuitively, an urgent location can always be entered, but does not allow time to pass. This implies that
at least one of its outgoing transitions must be performed without delay. Semantically, a timed automaton
A, with an urgent location l and ingoing transitions In(l) = {l1 a1,g1,r1−−−−−→ l, . . . , ln

an,gn,rn−−−−−−→ l}, is equivalent
to another timed automaton A′ (without urgent locations), which is identical to A save for the following:

1. Location l in A is replaced in A′ with location l′, where I(l′) , y ≤ 0 and y is a clock which does not
appear in A.

16 This is inspired by a similar model in [Yov97].
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Fig. 15. The Semantics of Urgent Locations in Uppaal

2. In(l) in A is replaced in A′ with In(l′) = {l1 a1,g1,r1∪{y}−−−−−−−−→ l′, . . . , ln
an,gn,rn∪{y}−−−−−−−−−→ l}.

Figure 15(i) shows two automata components; the uppermost contains an urgent location (at location 2).
In the same figure, you can see how this automaton is replaced by its semantically equivalent counterpart,
where the urgent location has been replaced by one with the invariant y ≤ 0 (y is a new clock) and y has
been added to the reset set of its ingoing transition a. Notice, in the resulting product automaton, that
transition b will be performed without delay since v(y) = 0 when location 2 is entered (and correspondingly,
when locations 〈2, 5〉 and 〈2, 6〉 are entered in the product automaton), but interleaving with transition d is
still possible. Indeed, this interleaving causes the branching with sequences b,d and d,b. Figure 15(ii) shows
that the situation does not change when two urgent locations are composed together. Urgent locations, then,
enforce a zero-delay but do not restrict the set of enabled transitions.

Committed locations are similar to urgent ones, in the sense that they can always be entered and do
not allow time to pass. However, they impose a stronger form of urgency, which is realised in the execution
of a network of automata; if the system is in a state where at least one automaton is in a committed
location, then the only enabled transitions are those which come from (or synchronise with) automata in
committed locations. This suggests that, in the presence of committed locations, a syntactic transformation
as the one described for urgent locations is not sufficient to obtain a semantically equivalent network:
parallel composition (according to Section 2) must also be redefined. Figure 16 shows the interpretation of
committed locations (∗∗ is used to mark the committed locations after the initial syntactic transformation,
and ||∗ denotes a redefined parallel composition operator that properly interprets the semantics of committed
locations). Notice how interleaving is restricted in Figure 16(i): transition b must be performed before d. In
Figure 16(ii), the interleaving between b and d is possible because both locations 2 and 5 are committed.
Compare Figures 15 and 16.

Non-zenoness Conditions and Urgent and Committed Locations. Here we discuss how our theory
deals with models with urgent and committed locations. First, note that locations are not taken into account
in checks for strong non-zenoness (Section 6), because this property relies only on the syntax of guards and
reset sets. Therefore, urgent and committed locations are irrelevant to the compositional application of
strong non-zenoness described in Theorem 1. Similarly, when dealing with a single component in a network,
these kinds of locations cannot witness the satisfiability of any invariant-based condition of Lemma 6 (and
Theorem 2). On the other hand, our reachability-based conditions (Theorem 4 in Section 7) check for the
occurrence of zeno-timelocks in a loop (which urgent and committed locations may contribute to), and they
are defined in terms of all invariants in the loop. In this case, we assume that the reachability-based conditions
are applied only after the syntactic transformation of urgent and committed locations is performed (as we
have explained previously in this section, and illustrated by Figures 15 and 16). Furthermore, when checking
a network of automata, we also assume that parallel composition is applied so that the product automaton
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Fig. 16. The Semantics of Committed Locations in Uppaal

preserves the semantics of the network. This construction is also necessary if the conditions of Lemma 6
must be checked on a network.

8.3. A Tool to Detect Zeno-timelocks in Uppaal Models

Our tool implements the compositional analysis of strong non-zenoness (Theorem 1, see Section 6.1) over a
network of automata. The tool accepts the XML format of Uppaal networks; in this way, the user benefits
from Uppaal’s GUI. The tool is able to handle the subset of Uppaal specifications that correspond to our
basic timed automata model. In particular, our theory cannot yet deal with data variables, or non-zero resets.

The tool can also assist the verification of reachability-based conditions. In this case, the tool expects a
network’s product automaton. Here, we expect the automaton to contain only true- or right-closed invariants
(in addition to zero-valued resets). The tool returns all simple loops of the automaton that do not satisfy the
syntactic conditions of Lemma 6 (Section 6.2). For each unsafe loop lp, the tool also returns the reachability
formula ∃3(A.l∧α(lp)∧β(lp)) (see Theorem 4 in Section 7.1), which the user can verify directly in Uppaal.
Let us mention that, although we have not implemented it yet, we could easily make the tool interact
directly with Uppaal, so the reachability check can be done transparently (i.e., without user interaction).
The detection of non-simple loops, which corresponds to the function findZTs() of Figure 12 (Section 7.3),
will also be added to the tool.

8.4. Case Study: The CSMA/CD Protocol

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol controls the transmission
of data between stations sharing a common medium, and is widely used on Ethernet networks. The following
description mainly follows [Sta00].

A station wishing to transmit a frame first listens to the medium to determine if another transmission
is in progress. If the medium is idle, the station begins to transmit; otherwise the station continues to listen
until the medium is idle, then it begins to transmit immediately. It may happen that two or more stations
begin to transmit at about the same time. If this happens, there will be a collision and the data from both
transmissions will be garbled and not received successfully. If such a collision is detected during transmission,
the station transmits a brief jamming signal (to ensure that all stations know that there has been a collision)
and then it ceases transmission. After transmitting the jamming signal, the station waits a random amount
of time and then attempts to retransmit the frame.

Collisions can only occur when more than one station start transmitting within a short time (the propa-
gation delay). If a station attempts to transmit a frame, and there are no collisions during the time it takes
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Fig. 17. An Uppaal Model For The CSMA/CD Protocol

for the leading edge of the packet to propagate to the farthest station, then there will be no collision because
all other stations are aware of the transmission (i.e., the medium will be found busy). Note, as well, that the
time needed to detect a collision is no greater than twice the propagation delay.

Figures 17(i) and (iii) show part of an Uppaal model for the protocol. We have considered only two
stations, Station1 (Figure 17(i)) and Station2 (similar to (i) modulo renaming). The main role of ÄStation1
is to model the transmission of frames, and the retransmission of frames in the case of a collision. The
automaton Medium (Figure 17 (iii)) models the state of the medium; this includes collision detection and the
broadcast of the jamming signal. Both Station1 and Medium have temporal constraints derived from either
the end-to-end propagation delay (26 µs.), or the frame transmission-time (782 µs.).17 We have included
the automaton UpperLayer1 (Figure 17 (ii)) to model a client layer that uses the protocol service in the
station (UpperLayer2 is similar). It simply provides frames to the protocol layer, and acknowledges ongoing
transmission and successful termination.

Automaton Station1 starts in Idle, waiting for UpperLayer1 to send a new frame (send1?). If this happens,
Station1 moves to Send, which is an urgent location. The station may find that either the medium is idle, and
so the transmission of the new frame can start immediately (begin1!), or that the medium is busy, and so the
station has to wait (busy1!). Location Transmitting denotes that a transmission has started. Transmission

17 Constants respect the IEEE 802.3 standard (Ethernet CSMA/CD).
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of a complete frame takes 782 µs. Immediately after ending a transmission (location Fin), a signal fin1! is
sent to the upper layer. Ongoing transmission is also signaled to the upper layer (trans1!).

A collision with another station may occur in Transmitting, in which case the jamming signal cd1? is
detected. The guard x1 ≤ 26 denotes that no collision can occur after 26 µs. have passed since a station
started sending a frame. Location Retry denotes that a collision indeed occurred and that the station is
waiting to attempt a retransmission (begin1!). The station remains in Retry if a retransmission attempt finds
a busy medium (note that, begin1? is not enabled in such a situation, because v(x1) > 26).

The Medium starts in Idle, waiting for stations to begin their transmissions (begin1?/begin2?); then it
moves to Active and clock y is reset. Active denotes that a station is currently using the medium. In Active,
the value of y denotes the time elapsed since the station started its transmission. Transitions busy1?/busy2?
denote that stations can already acknowledge that the medium is busy and thus, that new transmissions are
not yet possible. The guard y > 26 in busy1?/busy2? denotes that a second station can only acknowledge a
busy medium after 26 µs. (the propagation delay) have passed since the first station started its transmission.
Location Collision denotes that a collision has happened, and that the jamming signal is about to reach
the stations. The Medium moves from Active to Collision through begin1?/begin2? happening at v(y) ≤ 26,
i.e., a second station has started transmitting a frame before it could acknowledge that the medium is busy.
In Collision, y denotes the time elapsed since a collision occurred; note that y is reset when the second
transmission begins while Medium is in Active (to simplify matters, we have assumed that a collision occurs
as soon as this second transmission begins). The sequences cd1!-Next2-cd2! and cd2!-Next1-cd1! model the
jamming signal reaching Station1 and Station2, in any order. Moreover, the invariants y ≤ 26 in Collision and
Next1/Next2 indicate that the jamming signal reaches the stations not later than 26 µs. after the collision.

8.5. Detection of Zeno-timelocks in CSMA/CD: Sufficient-only Conditions

We show how the inclusion of automaton UpperLayer1 (UpperLayer2) disguises a time-actionlock in the
model, making it undetectable to Uppaal. In fact, this (hidden) time-actionlock results in a zeno-timelock,
which our tool helps to detect. We start our verification by checking that actionlocks do not occur; this is
confirmed in Uppaal, because the formula A[]not deadlock is satisfiable. We then use our tool to discover
that a number of half loops can possibly cause zeno-timelocks. These unsafe loops correspond to the inter-
action between Station1 and UpperLayer1 (Figure 17(iv)), between Station2 and UpperLayer2 (not shown),
and between Station1, Station2 and Medium (Figure 17(v)).

By way of example, we describe below the completed loops that result from synchronising the unsafe
loops of Figure 17(v). We use l1l2l3 to denote a location in the product automaton where l1, l2 and l3 are
respectively locations in Station1, Medium and Station2. We use R, I, T, A, C, N1 and N2 to denote locations
Retry, Idle, Transmitting, Active, Collision, Next1 and Next2, respectively. Locations in UpperLayer1 and
UpperLayer2 are omitted (these have true invariants, so they are irrelevant to our analysis). Internal actions
begin1, begin2, cd1 and cd2 result from synchronisation between the corresponding half-actions.

lp1 = 〈 RIR, begin1 ,TAR, begin2 ,TCT , cd1 ,RN2T , cd2 ,RIR 〉
lp2 = 〈 RIR, begin2 ,RAT , begin1 ,TCT , cd1 ,RN2T , cd2 ,RIR 〉
lp3 = 〈 RIR, begin1 ,TAR, begin2 ,TCT , cd2 ,TN1R, cd1 ,RIR 〉
lp4 = 〈 RIR, begin2 ,RAT , begin1 ,TCT , cd2 ,TN1R, cd2 ,RIR 〉

These loops correspond to situations in which stations continue to retransmit their frames too soon, therefore
colliding again after every attempt. They are considered unsafe because there are no syntactic conditions
ensuring that time will pass in every iteration; i.e., they are not strongly non-zeno (note in Figure 17(v)
that clocks are reset in the loops, but they are not bounded from below). These loops contain zeno runs
that correspond to zero-delay, infinite sequences of collisions and retransmissions. However, the location
RIR, whose invariant is true (because invariants in Retry and Idle are true), is included in every loop.
Therefore every loop is inherently safe (by the second condition of Lemma 6), and thus they do not contain
zeno-timelocks. Intuitively, time can always pass in RIR.

Now we focus our attention on the unsafe loop in Station1 (Figure 17(iv)). A zeno-timelock occurs in
location Transmitting (Figure 17(i)) if trans1! is the only enabled transition when v(x1) = 782. If this is the
case, then the invariant in Transmitting will make this transition urgent, and so it will be infinitely performed
without time passing at all. Note that if this zeno-timelock occurs, an actionlock should occur if trans1! is
removed. Effectively, Uppaal detects an actionlock in the resulting model, after trans1! is removed. This is
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caused by an error in the guard of cd1? in Station1, v(x1) ≤ 26 (a similar error is present in Station2).18 As it
is, this guard denotes that collisions cannot occur after 26 µs. have passed since Station1 started transmitting
a frame. But 26 µs. happens to be too small an upper bound for collision detection, as the following scenario
illustrates.

1. Station1 starts transmitting a frame and moves to location Transmitting; Medium moves to Active.
2. Station2 starts transmitting a frame just before 26 µs have passed since Station1 started transmitting.

Because of the propagation delay, Station2 has not yet been able to detect that the medium is in use.
Note that in Medium, transition begin2! can be performed in Active as long as v(y) ≤ 26. At this point,
Station1 remains in Transmitting, Station2 has changed to Transmitting, and Medium has changed to
Collision. Note, also, that v(x1) ≤ 26 and v(x2) = v(y) = 0.

3. Based on the previous observations, v(y) ≤ 26 and v(x1) ≤ 52 while the automaton remains in Collision.
But then, if 26 < v(x1) ≤ 52, cd1! in Collision will not be able to synchronise with cd1? in Station1. Should
this happen, transition cd2! can still be performed to reach Next1, but cd1! cannot be performed from
Next1 either. It is evident, then, that no action is enabled while Medium remains in Next1. Furthermore,
the invariant y ≤ 26 in Next1 also prevents time from diverging, causing a time-actionlock when v(y) = 26.

This time-actionlock shows that the guard x1 ≤ 26 in cd1? (in Station1) should be modified to account
for a bigger delay, i.e., it should be x1 ≤ 52. This is saying that after a transmission has started, the
jamming signal could be detected up to 52 µs. later, that is, twice the propagation delay [Sta00]. Also, note
that the hidden time-actionlock resulted in a zeno-timelock in the original model (i.e., before trans1! was
removed). When Medium is in Collision and v(y) = 26, and Station1 and Station2 are in Transmitting,
trans1! (trans2!) will be infinitely performed while time is prevented from passing (because synchronisation
with UpperLayer1/UpperLayer2 is always possible).

Now, if we correct the specifications of Station1 and Station2 (x1 ≤ 52 in cd1? and x2 ≤ 52 in cd2?), we
can verify that the model is free from actionlocks (and thus free from time-actionlocks). In turn, because now
a time-actionlock no longer arises, the loop trans1! (Figure 17(i)) does not cause a zeno-timelock. Time will
not be prevented from passing in Next1/Next2 (Figure 17(iii)), so the model is allowed to evolve normally.
After a collision occurs, the stations move from Transmitting to Retry; i.e., trans1! in Transmitting is no
longer enabled.

To clarify then, we have taken a model of the CSMA/CD protocol (where some guards were not correctly
specified) and checked for timelocks. We first checked for time-actionlocks, using the Uppaal formula for
pure-actionlocks (deadlocks): the formula A[]not deadlock. This formula was found to hold; i.e., from an
Uppaal perspective, the system was safe. However, we then applied our tool to check for zeno-timelocks,
which identified a number of potentially unsafe loops (pairs of synchronising loops where no loop was SNZ).
Furthermore, some of these loops were found to cause zeno-timelocks. Note that, because an action is always
offered, the formula A[]not deadlock is satisfiable, so it cannot be used to detect such timelocks. We
thus removed the offending loops from the model, and found that zeno-timelocks were indeed hiding time-
actionlocks (once the loops were removed, time-actionlocks could be detected in Uppaal as pure-actionlocks,
using the formula A[]not deadlock). Finally, the system was corrected to remove the time-actionlocks. As
a consequence, zeno-timelocks could no longer occur.

8.6. Detection of Zeno-timelocks in CSMA/CD: Sufficient-and-necessary Condition

In the previous section we showed that a zeno-timelock occurs in our model for the CSMA/CD protocol.
However, our syntactic checks only suggested that such a zeno-timelock could occur. Actually, finding that
this was indeed the case required hard work. We first needed to remove an unsafe loop, and check for a
pure-actionlock to occur. However, the removal of a loop is not in general a trivial task (i.e., one has to be
very careful not to modify the semantics of the system in an unpredictable way).

Here we apply our reachability-based condition (Corollary 5) on the model, to confirm the results of the
previous section. The analysis is more demanding, but our condition is sufficient-and-necessary: this gives
complete certainty about the occurrence of zeno-timelocks in unsafe loops. Another advantage of this check
is that changes in model are not necessary (e.g., no loop needs to be removed).

18 Yovine highlighted the same error in [Yov97].
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Fig. 18. CSMA/CD (Product Automaton)
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trans1 in l α(lp)

TTAII P.x1==782

TTAST P.x1==782 or P.u2==0

TTART P.x1==782

TTCTT P.x1==782 or P.x2==782 or P.y==26

TTN1RT P.x1==782 or P.y==26

TTAFT P.x1==782 or P.u2==0

Table 1. α-formulas

trans1 in l β(lp)

TTAII not P.x1==782 and not P.x1<=782

TTAST not P.x1==782 and
not (P.y<=26 and P.x1<=782) and
not (P.y>26 and P.x1<=782)

TTART not P.x1==782 and not P.y<=26

TTCTT not (P.x1<=26 and P.y<=26 and P.x2<=782) and
not (P.x2<=26 and P.y<=26 and P.x1<=782)

TTN1RT not P.x1<=26

TTAFT not (P.x1==782 and P.u2<=0 and P.u1<=0) and
not (P.x1<=782)

Table 2. β-formulas

Figure 18 depicts the product automaton for the CSMA/CD network of Figure 17. Location vectors are
given in the form l1l2l3l4l5, where l1 ∈ UpperLayer1, l2 ∈ Station1, l3 ∈ Medium, l4 ∈ Station2 and l5 ∈
UpperLayer2. Here, I, S, T, A, C, R, F, N1 and N2 denote, respectively, Idle, Send, Transmitting, Active,
Collision, Retry, Fin, Next1 and Next2.

Following from the static analysis of unsafe loops in the network components (Section 8.5), we know that
zeno-timelocks can only be produced by the composition of the following half loops.

1. 〈trans1 !〉 in Transmitting (Station1) || 〈trans1?〉 in Transmitting (UpperLayer1)
2. 〈trans2 !〉 in Transmitting (Station2) || 〈trans2?〉 in Transmitting (UpperLayer2)

These, in turn, result in the following set of completed loops in the product automaton (Figure 18).

1. 〈trans1 〉 in TTAII, TTAST, TTART, TTCTT, TTN1RT and TTAFT.
2. 〈trans2 〉 in IIATT, TSATT, TRATT, TTCTT, TRN2TT and TFATT.

Our tool confirmed that these are the only loops in the product that do not satisfy Lemma 6 (i.e., none
of them satisfies any syntactic condition). The tool also derived the characteristic reachability formulas
(Theorem 4). These formulas were then verified in Uppaal.

The α and β-formulas are shown in Tables 1 and 2. Table 3 summarise the analysis realised in Uppaal
(formulas are given in Uppaal syntax; P is the name assigned to the product automaton). Only loops involving
trans1 are shown; loops for trans2 are symmetric.

Satisfiability results (Table 3) show that all loops are zeno-loops (every loop satisfies ∃3(P.l∧α(lp))), but
the only loops that contain zeno-timelocks are 〈trans1 〉 in TTN1RT, and 〈trans2 〉 in TRN2TT (only these
two loops satisfy ∃3(P.l ∧ α(lp) ∧ β(lp))). This confirms the scenarios and static analysis of the previous
section.

Finally, following the last step of the algorithm of Section 7.3, we found that none of these simple loops
can be combined into non-simple loops (although we have not implemented this analysis in our tool, yet).
This means that non-simple loops in the product automaton do not cause zeno-timelocks. We have also
verified that the corrected CSMA/CD protocol (where twice the propagation delay is considered in Station1
and Station2) is free from zeno-timelocks.
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trans1 in l ∃3(P.l ∧ α(lp)) ∃3(P.l ∧ α(lp) ∧ β(lp))

TTAII SAT. NOT SAT.
TTAST SAT. NOT SAT.
TTART SAT. NOT SAT.
TTCTT SAT. NOT SAT.
TTN1RT SAT. SAT.
TTAFT SAT. NOT SAT.

Table 3. α+β-analysis

9. Conclusions

We have identified different types of timelocks which may arise in timed automata, and provided formal
definitions for each one of them. In particular, we have focused on zeno-timelocks, which are states in which
time cannot progress beyond a certain point, but the system can still perform actions. Not only may zeno-
timelocks make verification efforts meaningless (for example, giving false confidence in safety properties), they
are also themselves very difficult to detect. One of the main contributions of this paper is a new procedure to
check whether a system is free from zeno-timelocks. On the one hand, we have refined an existing syntactic,
sufficient-only check based on Tripakis’ strong non-zenoness property. We have proposed a new application
of strong non-zenoness to networks of automata, which guarantees non-zenoness for a wider class of models
than the original results. On the other hand, we have shown how a sufficient-and-necessary condition for
non-zenoness can be expressed in terms of reachability analysis.

Both the sufficient-only and the sufficient-and-necessary conditions proposed in this paper present inter-
esting advantages compared with existing approaches (Uppaal and Kronos). Kronos can verify the formula
∀2∃3=1true, whose satisfiability is sufficient-and-necessary to decide timelock-freedom. However, this for-
mula requires a demanding fixpoint computation, Kronos must be build the product automaton a-priori,
and the diagnostic information returned is limited. Uppaal can guarantee that timelocks do not occur in
a model, adding a test automaton and verifying a leads-to property (a kind of TCTL liveness property).
Although Uppaal is a highly-optimised model-checker, the verification of leads-to properties is still chal-
lenging, and less efficient than simple reachability analysis. The other disadvantage of leads-to properties is
that they represent sufficient-only conditions for timelock-freedom (if they are not satisfied, nothing can be
said about the model). Compared with Kronos or Uppaal, our static conditions are more efficient: model-
checking is expected to be, in most cases, much more demanding than simple syntactic analysis (and this is
particularly evident for our compositional application of strong non-zenoness). This is true, as well, for our
reachability-based conditions; the formulas require only the most basic reachability test (therefore, the check
is not as demanding as the full TCTL model-checking in Kronos, or the model-checking of leads-to proper-
ties in Uppaal). Although detection is not as efficient as for the syntactic conditions, the reachability-based
conditions have the benefit of being sufficient-and-necessary. Furthermore, our conditions identify the cause
of zeno-timelocks directly on the model, in the form of unsafe loops. This information is more useful to the
user than having only traces (as provided by Uppaal for leads-to properties), or witness states (as provided
by Kronos when ∀2∃3=1true is not satisfied).

We have implemented a tool that performs the static checks (sufficient-only conditions), and also de-
rives reachability-based conditions for those loops where zeno-timelocks may occur (sufficient-and-necessary
conditions). This tool currently works on the subset of Uppaal specifications that corresponds to our basic
timed automata model. In particular, clocks are reset to zero, and (in order to apply the reachability-based
conditions) invariants are either true- or right-closed. We are working to achieve further integration with
Uppaal (e.g., in order to deal with data variables); nevertheless, our detection method already complements
the verification capabilities of Uppaal. A modified CSMA/CD protocol has served as a case study.

Finally, we are also considering new ways of exploiting the relationship between strong non-zenoness and
synchronisation. This may further extend the scope of our sufficient-only method, to consider a wider class
of timed automata.
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