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Abstract

We address a number of limitations of Timed Automata and real-time model-checkers, which

undermine the reliability of formal verification. In particular, we focus on the model-checker

Uppaal as a representative of this technology.

Timelocks and Zeno runs represent anomalous behaviours in a timed automaton, and may

invalidate the verification of safety and liveness properties. Currently, model-checkers do not

offer adequate support to prevent or detect such behaviours. In response, we develop new meth-

ods to guarantee timelock-freedom and absence of Zeno runs, which improve and complement

the existent support. We implement these methods in a tool to check Uppaal specifications.

The requirements language of model-checkers is not well suited to express sequence and

iteration of events, or past computations. As a result, validation problems may arise during

verification (i.e., the property that we verify may not accurately reflect the intended require-

ment). We study the logic PITL, a rich propositional subset of Interval Temporal Logic, where

these requirements can be more intuitively expressed than in model-checkers. However, PITL

has a decision procedure with a worst-case non-elementary complexity, which has hampered the

development of efficient tool support. To address this problem, we propose (and implement) a

translation from PITL to the second-order logic WS1S, for which an efficient decision procedure

is provided by the tool MONA. Thanks to the many optimisations included in MONA, we obtain

an efficient decision procedure for PITL, despite its non-elementary complexity.

Data variables in model-checkers are restricted to bounded domains, in order to obtain fully

automatic verification. However, this may be too restrictive for certain kinds of specifications

(e.g., when we need to reason about unbounded buffers). In response, we develop the theory of

Discrete Timed Automata as an alternative formalism for real-time systems. In Discrete Timed

Automata, WS1S is used as the assertion language, which enables MONA to assist invariance

proofs. Furthermore, the semantics of urgency and synchronisation adopted in Discrete Timed

Automata guarantee, by construction, that specifications are free from a large class of timelocks.

Thus, we argue that well-timed specifications are easier to obtain in Discrete Timed Automata

than in Timed Automata and most other notations for real-time systems.
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Chapter 1

Introduction

1.1 Context: Formal Methods for Real-time Systems

Most systems are concurrent by nature; systems are made up of a number of processes (compo-

nents) evolving in parallel, which interact to realise the overall system behaviour. In computer

science, the need for concurrent theories is evident, and has been so for a long time [115, 86].

Our task is to map systems to representations that are amenable to computation; clearly, more

accurate mappings produce better models, which in turn enable a better analysis of the original

system, which in turn allows us to construct better (and more reliable) software and hardware

devices.

The sequential, monolithic abstractions which characterised our first attempts to model

systems, gave way to concurrent ones, and so the power of reasoning about a system in terms of

its components was gained, together with the inevitable complexity that arises from considering

the component interactions. Then, concurrency theory evolved to accommodate the analysis of

real-time systems, whose correct behaviour depends upon time constraints [1, 110, 129, 145, 168].

For example, the correct behaviour of communication protocols over unreliable media typically

depends on determining the minimum length of timeout intervals; if transmission delays are not

properly taken into account, data may be lost if timeouts occur too soon.

Real-time systems constitute the core of many safety-critical applications, where much de-

pends on guaranteeing that systems behave as expected. Safety-critical applications range from

simple gas burners, to gate controllers in train crossings, self-destruction mechanisms in rockets,

and air-traffic control systems. It is not difficult to imagine, for instance, how air-traffic control

systems that do not meet safety criteria put lives at risk.

Real-time systems are amongst the most challenging systems to analyse; verifying correct-

ness, and having confidence in the verification method itself, are both crucial. This motivates
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the use of formal methods for the analysis of real-time systems. For lack of a better definition,

a formal method usually consists of a computational model to describe the system behaviour; a

specification language in which the system can be modelled; a requirements language in which

the correctness criteria can be expressed; and verification techniques to prove that requirements

are met.

For example, the behaviour of real-time systems can be captured by timed transition systems

[129, 168, 31, 144]. Real-time systems can be specified in Timed Automata [7], and properties

can be expressed in requirements languages such as Computation Tree Logic (CTL) [58], Timed

Computation Tree Logic (TCTL) [6], or Timed Büchi Automata [5]. Model-checkers such as

HyTech [82], Uppaal [22], Kronos [169] and Red [165], can be used to explore the state space of

the timed automaton (a suitable finite-state abstraction of the timed transition system [102]),

looking for models (or counterexamples) of the stated property.

Formal methods are usually classified as deductive or algorithmic. Deductive methods were

the first formalisms to be developed; they are characterised by very expressive specification and

requirements languages, and verification techniques are based on proof systems (axioms and

inference rules). Correctness is then asserted by means of a mathematical proof and requires

considerable user interaction; verification is typically assisted by theorem provers. Timed I/O

Automata [92], the Temporal Logic of Actions [1] and Clock Transition Systems [110], are

probably the most mature deductive frameworks, supported by theorem provers such as PVS

[107], Isabelle [90], HOL [163] and Step [25].

Algorithmic methods, on the other hand, compromise expressiveness (both in the system

specification language and in the requirements language) to allow for automatic verification.

Timed Automata and real-time model-checkers are representative of algorithmic methods, with

Uppaal being one of the most developed model-checkers currently available.

Deductive and algorithmic approaches have sustained continuous development over the years;

as a result, practitioners now have powerful notations and tools to analyse a broad range of non-

trivial problems. Nonetheless, much work is still needed to improve notations and the related

tool support. In particular, this thesis is concerned with the reliability of formal methods for

real-time systems; i.e., to what extent practitioners can trust their specifications, requirements

and the results of verification. The next section explores this issue in more detail.

1.2 Motivation: Reliability Issues in Model-checking

The previous section introduced our concern with reliability in formal methods. We want to use

formal methods to guarantee the correctness of our real-time systems: Formal methods provide

the means to deal with the complexity of real-time systems, and give us confidence in the results
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of our analysis (formal methods are grounded in sound mathematical theories). However, we

must be aware of the extent to which a formal method is able to guarantee correctness.

We know that systems can be proven correct only with respect to requirements, i.e., cor-

rectness is a relative concept. Similarly, our confidence in formal verification depends on how

faithfully our specification (e.g., a network of timed automata) represents the real system, and

to what extent our properties (e.g., temporal logic formulae) represent the system requirements.

In what follows, we comment on a number of limitations of specification and requirements

languages which undermine confidence in verification.

We will see that timed automata1 may represent abnormal behaviours that are not possible

in real systems, and which compromise verification. This is an example of unwanted expressive

power in the formal notation. However, in addition, problems arise due to limited expressiveness.

For example, model-checkers must deal with finite-state systems, variables are restricted to

bounded domains, and requirements that refer to sequences and iteration of events, or past

computations, cannot be intuitively expressed.

1.2.1 Timelocks in Timed Automata

In specifications of real-time systems, we often need to represent urgent actions, i.e., those whose

execution cannot be delayed beyond a given time bound. For instance, in certain communication

protocols, the sender will timeout and retransmit the last message, if an acknowledgment has

not been received by a certain time.

In all formal notations for real-time systems, the semantics of urgent actions is achieved by

preventing time from passing beyond a given bound. When such a bound is reached, the system

may evolve only through the immediate execution of an action, which (in this sense) becomes

urgent at that point.

In timed automata, the specifier may express constraints to prevent time from passing beyond

a certain bound; hence, urgent actions can be represented indirectly. However, it is the specifier’s

responsibility to ensure that, whenever a state is reached where time cannot pass any further, a

sequence of actions can be performed which lead to a state where time may pass again.

A timelock is a state where time cannot diverge (i.e., time cannot pass beyond a certain

bound).2 Timelocks are counterintuitive situations, and are caused by specification errors. For

instance, a timelock is reached when a constraint in the timed automaton prevents time from

passing any further, but no action is enabled at that point (or the enabled actions do not lead

to a state where time may diverge).

1Throughout this thesis, we will use “timed automata” (in lower case) to denote particular specifications, and
“Timed Automata” (in upper case) to denote the formal notation.

2In this thesis, divergence refers to time-divergence.
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Specifications cannot be reliably verified in specifications where timelocks occur. For in-

stance, a property stating that a certain unwanted state is never reached (namely, a safety

property) may hold in a timelocked specification just because a timelock prevents time from

passing up to a point where such a state becomes reachable. Thus, because timelocks cannot be

implemented, this unwanted state may still occur in some execution of the implemented system.

A related problem concerns the detection of Zeno runs, which denote arbitrarily fast ex-

ecutions. Zeno runs, like timelocks, are counterintuitive: a process cannot be infinitely fast.

However, unlike timelocks, Zeno runs may not be caused by specification errors, but simply be-

cause the specification is realised at a high-level of abstraction (e.g., when lower time bounds for

the execution of actions are irrelevant for the intended analysis). Zeno runs are not necessarily

undesirable, and do not imply the occurrence of timelocks.

For example, if the property to verify depends only on the ordering of events and not on

their relative timing, an “untimed” abstraction (of a more detailed specification) may suffice to

perform verification. Moreover, for complex specifications, such abstractions may be the only

way to cope with state explosion. Note that, loops in this untimed abstraction will naturally

induce Zeno runs, because lower time bounds were removed from the more detailed specification.

Nonetheless, in general, verification in real-time systems is well-defined only over divergent

executions. To some extent, the problem is similar to that of verification of liveness properties

without fairness assumptions: we do not want to consider runs where the system “chooses” to

perform infinitely fast. Thus, we need methods to guarantee absence of Zeno-runs, but we also

need methods to guarantee timelock-freedom that are insensitive to the occurrence of Zeno runs.

In the context of timed automata, timelocks have been investigated by a number of re-

searchers, including Henzinger et al. [85], Bornot et al. [33], Tripakis [156, 157] and Bowman

[38, 39]. Yet, model-checkers do not offer satisfactory support for timelock detection.

Model-checkers require the specification to be timelock-free (and in some cases, in addition,

free from Zeno runs). However, few model-checkers support detection of timelocks and Zeno

runs, and the methods implemented suffer from a number of shortcomings.

In addition, although timed automata models have been proposed where (a certain class of)

timelocks can be prevented by construction [33, 39], most model-checkers cannot support such

notations, which are fundamentally different in the semantics of urgency and synchronisation.

Therefore, we aim to improve timelock-detection in model-checkers, giving practitioners better

tools to guarantee the sanity of specifications.
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1.2.2 Requirements in Branching-time Logics

It is generally accepted that branching-time logics, such as CTL and TCTL, have expressiveness

limitations that hamper the natural representation of requirements [161]. Among other limita-

tions, formulae in branching-time logics do not characterise requirements in an intuitive manner

(practical experience with these logics supports this claim; see e.g., [14]).

This introduces a validation problem: a specification may satisfy a certain formula, but such

a formula may not properly represent the intended requirement, thus affecting our confidence

in the results of verification.

Real-time model-checkers use CTL- and TCTL-based requirements languages, and therefore

inherit such expressiveness limitations of branching-time logics. For example, requirements that

refer to sequencing and iteration of events, or past computations are difficult (or even impossible)

to express in model-checkers.

Linear-time logics, such as Linear Temporal Logic (LTL) [111], allow for more intuitive for-

mulae, but sequences and iterations cannot be modelled naturally (although, we can reason

about past computations if we consider LTL with past operators).3 Among other researchers,

Wolper [166], Pnueli [136, 140] and Vardi [161] have recognised that linear-time requirements

languages are preferred over branching-time ones, but also that both, the power of regular ex-

pressions and the flexibility offered by past operators, are necessary to facilitate the formulation

of requirements in a natural way.

Interval Temporal Logic (ITL) [121] is a linear-time formalism that is expressive enough to

overcome the limitations of point-based logics such as CTL and LTL. ITL models are finite

sequences of states, called intervals (ITL has also been extended to handle infinite intervals,

see e.g., [64, 128]). ITL has the power of regular expressions, and includes operators akin to

concatenation and Kleene-star (hence, sequence and iteration can be intuitively expressed) and

past operators. Moreover, quantitative time constraints can also be expressed in ITL, assuming

a discrete-time model (this, for instance, has been exploited to specify multimedia documents

and their related requirements [41]).

Although there has been a fair amount of research on proof systems for ITL (e.g., [125, 128,

49]), tool support has evolved at a much slower pace [122, 75, 98, 64], hampered by the non-

elementary complexity of the decision procedures. In particular, there is still a lack of efficient

implementations of decision procedures for propositional subsets of ITL.

This motivates our interest in the Weak Monadic Second-order Theory of 1 Successor (WS1S)

and the related tool, MONA [96]. WS1S [54, 66] has the expressive power of regular expressions

on finite words, and MONA implements a decision procedure for WS1S, based on a translation

3To our knowledge, RT-Spin [158], DT-Spin [35] and Profounder [159] are the only real-time model-checkers
that use linear-time requirements languages.
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from WS1S formulae to finite automata. MONA uses Binary Decision Diagrams (BDDs) [53, 52]

to encode the automata, and implements many optimisations to the translation algorithm. This

allows MONA to solve many non-trivial problems [96], despite the non-elementary complexity

of WS1S. The expressiveness of WS1S suggests that propositional ITL could be encoded, so

MONA could be used (indirectly) as an efficient decision procedure for propositional ITL.

We cannot yet expect real-time model-checkers based on ITL. Nonetheless, exploring to what

extent practical tool support can be obtained for ITL, and informing what the strengths and

limitations of ITL are as a requirements language for real-time systems, are necessary steps in

this direction.

1.2.3 Data in Timed Automata

Most model-checkers for timed automata do not support variables other than in simple data

domains, e.g., integers in a known range. Uppaal does better, and offers structured types such

as arrays of integers and clocks. However, model-checkers limit variables to bounded domains

to preserve a finite-state space. Despite the advantages of fully automatic verification, we may

find bounded domains too restrictive for our purposes.

For instance, when modelling communication protocols, we may need to represent unbounded

buffers. Given that this would not be possible in the specification language of the model-checker,

we would have to settle for some arbitrary buffer size (which is usually small, in order to avoid

state-explosion). However, our analysis would sacrifice generality, thus affecting our confidence

in the system at hand.

Deductive methods do better in this respect. For instance, Timed I/O Automata use first

order logic as the underlying assertion language, where variables in richer, unbounded data

domains can be represented [92]. The main drawback of deductive methods is that fully au-

tomatic verification is sacrificed to obtain greater expressiveness. Tool support for deductive

methods is usually given by theorem provers [107, 90, 163]; however with theorem provers much

interaction and expertise are usually required from the user in order to complete the proofs.

Another disadvantage of deductive methods is that proving timelock-freedom is particularly

difficult [1, 91, 25, 100].

This trade-off between expressive power and automatic verification encourages research into

the integration of algorithmic and deductive methods. This motivates our interest in the ap-

plication of WS1S and MONA (which we have introduced in the previous section) in formal

verification of real-time systems.

Among the many applications of MONA, the work of Smith and Klarlund [148] is partic-

ularly relevant here. Smith and Klarlund used WS1S, MONA and (untimed) I/O Automata

[109] to formally specify and verify a sliding window protocol. This suggests a way to pair
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richer specification and requirements languages (e.g., WS1S is expressive enough to represent

unbounded sets, and also permits quantification over sets) with automatic verification (MONA

is an automatic decision procedure for WS1S).

Following from [148], we aim to obtain a timed notation where specifications are based on

WS1S, and verification is assisted by MONA. In addition, we want to apply the semantics of

urgency and synchronisation of [33, 39] to yield a safer notation, i.e., one where timelocks can

be prevented by construction.

1.3 Contributions

1.3.1 Overall Contribution

This thesis improves the available tool support for formal verification of real-time systems, with

the general aim of obtaining more reliable methods. We address specific issues concerning time-

lock detection and expressiveness of requirements and specification languages. In this respect,

we highlight three main contributions.

1. We develop new methods to detect timelocks in timed automata, and implement these

methods in a tool to analyse Uppaal specifications. Our methods improve the support

provided by model-checkers in general, and that of Uppaal in particular. In this way, we

offer better tools to guarantee the sanity of timed automata, increasing the reliability of

model-checkers (and that of Uppaal, in particular).

2. We use MONA to implement an efficient decision procedure for PITL, a rich propositional

subset of ITL. Thanks to the many optimisations included in MONA, we offer an efficient

implementation despite the complexity of PITL. On the one hand, this work improves the

tool support that is currently available for propositional subsets of ITL. On the other hand,

we close the gap between expressive requirements languages and practical implementations.

This is a step towards model-checking requirements languages that are more natural than

branching-time logics, which will allow users to better map requirements to formulae (and

therefore increase the confidence in verification).

3. We present Discrete Timed Automata, a deductive framework for real-time systems based

on WS1S and MONA. WS1S is powerful enough to overcome some of the data limita-

tions in timed automata (e.g., WS1S can represent unbounded structures), while MONA

facilitates invariance proofs. In addition, specifications in Discrete Timed Automata are

safer, because an important class of timelocks are prevented by construction. Again, this

positively affects reliability: specifications are more flexible to better represent the system

8



under analysis, well-timed specifications are encouraged by the notation, and much of the

tedious (and error-prone) tasks in a proof are automatically handled by MONA.

Another contribution of this thesis is a comparison between Timed Automata, PITL and Discrete

Timed Automata, which reveals strengths and weaknesses of these formalisms and their related

tools (Uppaal and MONA).

This comparison is valuable and far from obvious. For example, unlike Timed Automata

and Uppaal, WS1S and MONA were not intended to be used in formal verification of real-time

systems. Nonetheless, we show that there are positive aspects in using WS1S and MONA to

define a deductive real-time framework. Similarly, decision procedures for propositional ITL are

traditionally tableau-based; however, we show the advantages of using WS1S and MONA to

achieve efficient implementations based on automata.

This comparison is stated in more detail in Chapters 7 and 8, with Chapter 9 presenting a

summary of our main findings. For the time being, let us just show you how it follows from the

analysis performed in the thesis.

1. We start by analysing the problems of timelocks in timed automata, and show to what

extent timelocks can be prevented and detected by model-checkers. However, other is-

sues also affect timed automata and model-checkers, such as the limited expressiveness of

branching-time logics and the restrictive support for data in timed automata models. This

motivates our work on PITL, WS1S and MONA.

2. We show that PITL can naturally express requirements that refer to sequences, iterations

and past computations, but data is limited to propositional variables, and the interleaving

of actions is not easy to model (which limits PITL’s suitability as a specification language).

3. On the other hand, Discrete Timed Automata is a natural specification language, and

thanks to the expressive power of WS1S, unbounded data domains can be represented.

Another advantage of Discrete Timed Automata, with respect to Timed Automata, is

that an important class of timelocks is prevented by construction. However, addition and

multiplication are restricted in WS1S; thus, certain time constraints are difficult (or even

impossible) to express in Discrete Timed Automata.

4. Another limitation of PITL and Discrete Timed Automata, compared with Timed Au-

tomata, is that they are restricted to discrete-time models (the advantages of dense-time

over discrete-time models are well understood [5]). While discrete-time is inherent to the

semantics of PITL, in Discrete Timed Automata it stems from the semantics of WS1S,

which is interpreted in the natural numbers.
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1.3.2 Improving Timelock Detection in Timed Automata

We distinguish between two classes of timelocks: time-actionlocks and Zeno-timelocks. Time-

actionlocks are states where neither the passage of time nor the execution of actions are possible.

Zeno-timelocks are states where time cannot pass beyond a certain bound, but actions continue

to be performed. Such a distinction is important because different approaches are needed to

deal with each class of timelocks. In this thesis, we focus on methods to detect Zeno runs and

Zeno-timelocks.

We present a classification of timelocks in Chapter 3, and explain the different consequences

that timelocks and Zeno runs have on verification. In addition, we compare timelock detection

in Uppaal and Kronos (which are based on model-checking liveness properties) with respect to

the strong non-Zenoness property [156], a static check that guarantees absence of Zeno runs.

We are interested in strong non-Zenoness for many reasons. This property can be statically

checked, is compositional, holds in most specifications, and implies absence of Zeno-timelocks.

Hence, in specifications where strong non-Zenoness holds timelock-freedom corresponds precisely

to deadlock-freedom. Therefore, and because deadlock-freedom is usually asserted before any

other verification takes place, in most cases, strong non-Zenoness suffices to guarantee timelock-

freedom (avoiding the demanding checks of liveness formulae in Uppaal or Kronos).

Nonetheless, strong non-Zenoness can be improved. Compared with the original definition

[156], we show that the application of strong non-Zenoness can be weakened to yield a more

efficient and comprehensive check, which permits the identification of a bigger class of safe

specifications.

On the other hand, we may have to deal with specifications where Zeno runs occur and do

not affect verification. However, we still need to guarantee timelock-freedom. In such cases,

methods that guarantee absence of Zeno runs, such as strong non-Zenoness, are unsatisfactory:

they will rule out specifications as unsafe whether or not they are timelock-free. In response

to this problem, we develop static checks that guarantee absence of Zeno-timelocks, but which

are insensitive to the occurrence of Zeno runs. We present these checks (including our refined

application of strong non-Zenoness) in Chapter 4.

The static checks we present in Chapter 4 are sufficient-only, and so nothing can be concluded

from the specification when the checks fail.4 In safety-critical systems, however, we need to

obtain greater confidence in the specification: inconclusive answers are not good enough. In

response to this limitation of static checks, we develop sufficient-and-necessary conditions for

absence of Zeno-timelocks and Zeno runs, based on reachability analysis. These conditions are

4Let p be an assertion such as absence of timelocks or Zeno runs. A check ck is considered sufficient-only for
p if a positive outcome of ck implies p, but a negative outcome does not necessarily imply ¬ p. Correspondingly,
a check ck is considered sufficient-and-necessary for p if the validity of p can always be decided by the outcome
of ck. We will use this interpretation throughout the thesis.

10



characterised by reachability formulae obtained from the syntactic structure of loops in the

timed automaton.

These reachability-based checks are interesting for a number of reasons. Firstly, they show

that timelock-freedom and absence of Zeno runs can be reduced to a combination of static

and simple reachability analysis (so far, time-divergence has been characterised only by liveness

properties). Secondly, these checks offer sufficient-and-necessary conditions and are available to

all model-checkers. In addition, depending on the specification at hand, these checks may be

more efficient than similar checks in Uppaal or Kronos, which require more demanding model-

checking algorithms. We present our semantic checks in Chapter 5, together with a tool that we

have implemented to perform both the static and semantic checks over Uppaal specifications.

1.3.3 An Efficient Decision Procedure for Propositional ITL

Chapter 7 introduces PITL, a propositional subset of ITL with finite quantification, future

operators such as len, chop, chop-star and projection, and past operators such as previous and

since. With these, PITL can naturally model requirements that refer to quantitative time

constraints, sequences and iteration of events, and past computations.

We explain how the semantics of PITL formulae can be expressed in WS1S, which allows us

to derive a translation from PITL to WS1S formulae. Briefly, for any PITL formula, a WS1S

formula can be derived where propositions and intervals are represented by finite sets in N, and

PITL operators are encoded as WS1S operations over sets. MONA constructs an automaton for

the resulting WS1S formula and looks for paths to accepting and rejecting states. These paths

represent the models and counterexamples of the PITL formula.

We implement a tool, PITL2MONA, which converts PITL formulae to MONA programs

and uses MONA (indirectly) as an efficient, automata-based decision procedure for PITL. To

our knowledge, this is the first implementation of an automata-based decision procedure for

PITL. We show that our implementation is efficient despite the non-elementary complexity of

PITL, and that it outperforms the tool LITE [99], a tableau-based implementation of another

propositional subset of ITL.

1.3.4 Discrete Timed Automata

Chapter 8 introduces Discrete Timed Automata, a deductive framework for real-time systems,

where WS1S is the underlying assertion language, and MONA assists invariance proofs [112].

Discrete Timed Automata is an assertional notation. Specifications consist of a set of WS1S

variables, which define the state space, and a set of actions defined through preconditions,

deadlines and effects, which are WS1S formulae. We use a distinguished variable T ∈ N to

denote (discrete) time, which actions can read but not modify: T is assumed to increment
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implicitly. Urgency is defined by deadlines as in [33, 39]: actions must be performed no later

than the deadline allows.

Deductive verification of invariance properties (a useful class of safety properties) is realised

by application of the well-known invariance rule [112]. This is possible by translating discrete

timed automata to (untimed) basic transition systems [111]. MONA assists proofs by automat-

ically validating the proof obligations that result from the invariance rule.

Discrete Timed Automata presents a number of convenient features. Thanks to WS1S,

one can represent unbounded data structures. Thanks to MONA, proofs that refer to such

structures are also facilitated. Thanks to the inclusion of deadlines, not only are we able to

model urgency, but we can do so more safely than in other frameworks (both deductive and

algorithmic): Deadlines, and parallel composition in Discrete Timed Automata, are defined in

such a way that time-actionlocks are prevented by construction. The limitations of Discrete

Timed Automata are also discussed in Chapter 8.

1.4 Organization

Throughout the thesis, we offer small examples to illustrate the concepts, and more substantial

examples as case studies to evaluate our solutions. Alongside our contributions, we discuss

related work, and suggest further research.

We have organized this thesis in four parts. In the first part we present an introduction to

the thesis (this chapter); the last part draws conclusions (Chapter 9).

In the second part of the thesis, we study the problem of timelocks in timed automata

specifications, and propose techniques to improve the support for timelock-detection that is

currently available in real-time model-checkers.

We present the theory of Timed Automata and comment on Uppaal (as a representative

model-checker) in Chapter 2. In Appendix A, we comment on reachability analysis and some

optimisations implemented in Uppaal. In Chapter 3, we present a classification of timelocks, dis-

cuss the different effects of timelocks and Zeno runs on verification, and review existing methods

to guarantee timelock-freedom. In Chapter 4 we introduce new static checks to guarantee ab-

sence of Zeno-timelocks and Zeno runs. In Chapter 5 we develop sufficient-and-necessary checks

for Zeno-timelocks and Zeno runs, which are based on reachability analysis. We also comment

on a tool that we have implemented, which performs our static and semantic checks over Uppaal

specifications. In Appendix B, we offer some simplifications for the semantic checks.

The third part of the thesis studies the applicability of WS1S and MONA to support expres-

sive requirements languages and deductive frameworks. As we explained before, this analysis

is motivated by shortcomings in timed automata and model-checkers. We present WS1S and
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MONA in Chapter 6. In Chapter 7, we use MONA as an efficient decision procedure for PITL.

Theorems related to the translation from PITL to WS1S are proven in Appendix C. In Chap-

ter 8, we present Discrete Timed Automata, which is based on WS1S and allows MONA to

assist invariance proofs.

1.5 Publications

This thesis presents the latest update on a number of the author’s publications. The classifica-

tion of timelocks (Chapter 3), the static checks for non-Zenoness (Chapter 4), and the tool for

non-Zenoness detection over Uppaal specifications (Chapter 5), evolved from our initial presen-

tation in [47]. The semantic checks for non-Zenoness (Chapter 5) appear in [46] (which has been

recently accepted for publication). Both static and semantic checks refine our presentation in

[45]. Chapter 7 extends our results in [72] (e.g., we extended PITL with propositional quantifica-

tion). The theory of Discrete Timed Automata (Chapter 8) has evolved from our presentations

in [71] and [45].
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Part II

Timed Automata
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Chapter 2

Timed Automata and Uppaal

Abstract. Timed Automata, and the model-checker Uppaal as tool support, are widely used

to represent and verify real-time systems. Timed Automata are a simple, yet quite expressive

graphical notation, and Uppaal is one of the most developed tools to verify timed automata

specifications. In this chapter we present the main elements of the theory of Timed Automata,

and we give an overview of Uppaal and real-time model-checking.

This chapter provides necessary background for the remainder of the thesis. Chapters 3, 4

and 5 explain the problem of timelocks in timed automata and model-checkers (and Uppaal in

particular), and propose solutions. Then, in Part III, we will study the application of WS1S

and MONA (which we will introduce in Chapter 6) to deal with other limitations of timed au-

tomata and Uppaal. These limitations concern the expressiveness of the requirements language

(Chapter 7), and the support for data variables and prevention of timelocks (Chapter 8).

Organization. We introduce Timed Automata in Section 2.1, and Uppaal in Section 2.2. We

comment on related work in Section 2.3. Section 2.4 concludes this chapter with a discussion

about limitations of timed automata and Uppaal (and model-checkers, in general). Appendix A

offers a more detailed explanation of reachability analysis and particular features of Uppaal.

2.1 Timed Automata

Timed Automata [7] is a formal notation to represent real-time systems, such as embedded

controllers and communication protocols (see, e.g., [22] and [70]). Timed Automata are a simple,

yet quite expressive graphical notation, which allows fully automatic verification via real-time

model-checkers (Uppaal [22], Kronos [169], Red [165], etc).

The literature on timed automata is very rich, and many variations of the original model [7]

have been proposed (see, e.g., [85, 156, 8]) and adopted by model-checkers. Here we present a
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basic timed automata model that suffices to illustrate the main elements of the theory. This

model is similar to Timed Safety Automata of Henzinger et al. [85], and also corresponds closely

to the specification language of Uppaal (Section 2.2).

A timed automaton is a finite automaton1 extended with clocks, clock constraints and syn-

chronisation primitives. A timed automaton represents the possible executions of a real-time

system. Locations represent the different states a system goes through; when execution reaches

a location in the automaton, the system stays there for a period of time, without performing any

visible activity. Transitions represent the possible actions the system may perform; in addition,

actions are assumed to occur instantaneously (in the semantics of a timed automaton, time

passes only in locations).

A clock is a variable in R+ whose value increases autonomously, representing the passage of

(dense) time. The value of all clocks in the automaton increase synchronously, and they do so at

the same rate (a global clock is assumed implicit in the model). Performing transitions can also

cause some clocks to be reset (in our model, clocks can be reset only to zero). This is specified

by annotating transitions with reset sets.

Expressions on clocks represent time constraints on the system’s behaviour. Clock constraints

are attached to transitions in the form of guards, which determine when transitions may be

performed, and to locations in the form of invariants, which determine for how long executions

may stay at a particular location. A transition is enabled at a given location when both (a) the

current valuation2 satisfies the guard, and (b) the invariant in the target location holds after

the transition has been performed (taking into account the current valuation and the reset set).

Enabled transitions are not guaranteed to be performed; instead, the execution may simply

remain in the current location, just passing time. Invariants can be used to force the executions

of actions at a given time. Executions can stay at a location only as long as the resulting

valuations satisfy the invariant; when this period expires (i.e. when time cannot progress any

further without invalidating the invariant), the execution must leave the location immediately.

When this happens, enabled transitions are regarded as urgent and (at least one of them) must

be performed for the execution to proceed.

In well-behaved specifications, whenever the execution must leave the current location, an-

other location can be reached that allows time to progress further; any possible execution of the

specification allows time to diverge (i.e. time increases ad infinitum). Unfortunately, specifica-

tions may contain timelocks: states from which no further execution allows time to diverge (we

will discuss timelocks in detail in Chapter 3).

1In the usual sense of the word, a finite automaton is composed of a finite set of states and labelled transitions.
Here, states in the finite automaton will be referred to as locations, to avoid confusion with semantic states
corresponding to the automaton’s executions.

2The current clock valuation denotes the value of all clocks at any given state in the execution of a timed
automaton.
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Complex systems can be represented by a network of automata executing in parallel. Con-

currency is modelled by interleaving, and communication is achieved through binary synchroni-

sation (similar to synchronisation in CCS [116]). Transitions in the automata are labelled with

completed actions, which are performed autonomously; or with half actions, which are performed

in pairs (i.e., half actions are the synchronisation primitives of timed automata).3 Half actions

can be output actions (e.g., a!, where a denotes some action label), or input actions (e.g., a? ).

A pair of output and input actions (in different components) is said to match if they refer to

the same action label (e.g., a! and a? ).

Synchronisation may happen only between matching half actions that are enabled. When

synchronisation occurs, both parties perform the half actions simultaneously. However, synchro-

nisation does not necessarily occur as soon as both parties are enabled. Executions may choose

to “miss” possible synchronisations. Again, this behaviour may be constrained with invariants,

but timelocks may occur due to mismatched synchronisations (e.g., when an output action is

urgent but the input action is not enabled).

The behaviour of a network corresponds to the interleaving of action and time transitions. An

action transition results from some component performing a completed action, or from a pair of

components synchronising on half actions. A time transition simply represents a possible delay

in the current locations (one current location in every component). The behaviour of a network

can be represented, as well, by means of a product automaton: this is a timed automaton that

can be constructed syntactically from the components, and can be regarded as the result of

parallel composition. Before we formally present syntax and semantics of timed automata, we

offer the following example to illustrate the main elements of the model.

1 2 3
x:=0

b

4 5 6
c

a!

a?

3<x<=5
x<=6

y<=10
4<y<6

a
b

c

c
b

3<x<=5,
4<y<6

x:=0

x:=0
x<=6,
y<=10

x<=6

y<=10

<3,5>

<2,6>

||    => <3,6><1,4> <2,5>

A1

A2

Figure 2.1: A Network of Timed Automata (left) and Its Product Automaton (right)

Figure 2.1 shows a network of automata (A1 and A2) and the corresponding product au-

tomaton (right). In the figure, initial locations are distinguished with a double circle, and

true-invariants are omitted (these invariants do not constrain the passage of time). Clocks are

initially set to zero. Reset sets are shown simply as clock assignments.

3When confusion cannot arise, we will use the terms “transition” and “action” interchangeably. Similarly, we
will refer to transitions labelled with completed actions or half actions simply as “completed actions” and “half
actions”, respectively.
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The guard attached to transition a! (3 < x ≤ 5), and the invariant in location 2 (x ≤ 6),

allow this transition to be performed at any time during the interval (3, 5]. However, because the

transition is labelled with a half action, a! , it can only be performed if the second automaton is

willing to synchronise (i.e., perform transition a? ) during (3, 5]. Therefore, the guards attached

to a! and a? imply that synchronisation can only occur in the interval (4, 5].

Synchronisation between a! and a? results in transition a (a completed action) in the product

automaton, with guards conjoined. If synchronisation occurs (instead, components may remain

indefinitely in their locations), then A1 may perform transition b at any time, provided v(x) ≤ 6;4

similarly, A2 may perform transition c as long as v(y) ≤ 10. Note that, while the network is in

locations 2 and 5, the valuation is such that v(x) = v(y).

Consider, now, an execution where A1 is still in location 2 when x = 6. Time cannot pass,

because the invariant in location 2 would be invalidated, and so b must be performed immediately

(i.e., b becomes urgent when v(x) = 6). However, even at this point, interleaving with other

actions is possible: c can be performed before b, although time would not be able to pass until

b is performed. This can be seen in the product automaton, if the path 〈2, 5〉 c 〈2, 6〉 b 〈3, 6〉 is

executed when v(x) = 6 in 〈2, 5〉 (at any location vector, the invariant results from conjoining

the invariants of the component locations).

2.1.1 Syntax

Basic Notation. CAct is a set of completed actions. HAct = { a?, a! | a ∈ CAct } is a set of

half actions. Two half actions, a? and a!, can synchronise and generate a completed action a.

Act = HAct ∪ CAct is the set of all actions. C is the set of clocks, all of which take values in

the positive reals (R+0). CC is a set of clock constraints, described by the following BNF.

φ ::= x ∼ c | x− y ∼ c | φ1 ∧ φ2

where c ∈ N, x, y ∈ C, φ, φ1, φ2 ∈CC and ∼ ∈ {<,>,=,≤,≥} (we will use true to denote the

constraint x ≥ 0). Clocks(φ) is the set of clocks occurring in φ ∈ CC ; C ⊆ C is the set of clocks

of a particular automaton; and CCC is the set of constraints restricted to C. V : C → R+0 is

the space of clock valuations, and VC : C → R+0 is the space of valuations restricted to C. For

any φ ∈ CC and v ∈ V, v |= φ denotes that v satisfies φ (equivalently, v is in the solution set

of φ). For any δ ∈ R+0, v + δ is the valuation s.t. (v + δ)(x) = v(x) + δ, for all x ∈ C. For any

reset set r ∈ P(C), r(v) is the valuation s.t. r(v)(x) = 0 for all x ∈ r and r(v)(y) = v(y) for all

y /∈ r.

4For any clock x, v(x) denotes the value of x at any given time.
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Timed Automaton. A timed automaton is a tuple A = (L, l0,TL, C, T, I), where the elements

are defined as follows.

• L is a finite set of locations.

• l0 ∈ L is the initial location.

• TL ⊆ Act is a finite set of transition labels.

• C ⊆ C is a finite set of clocks.

• T ⊆ L× TL× CCC × P(C)× L is a transition relation. Transitions (l, a, g, r, l′) ∈ T are

usually denoted,

l a,g,r−−−−→ l′

where a ∈ TL is the action, g ∈ CCC is the guard and r ∈ P(C) is the reset set.

• I : L→ CCC is a mapping that associates invariants with locations.

A network of timed automata is denoted |A = |〈A1, ... , An〉, where Ai is a timed automaton.

Usually, we would expect components to specify only possible synchronisations: if a component

includes a half action a!, then another component should include the complementary action, a?.

Product Automaton. Consider a network |A = |〈A1, ... , An〉, whereAi = (Li, li,0,TLi, Ci, Ti, Ii).

Let u and u′ denote location vectors in L1 × · · · × Ln (e.g., u = 〈u1, . . . , un〉). We use the sub-

stitutions

〈u1, . . . , uj , . . . , un〉[l→ j] for 〈u1, . . . , uj−1, l, uj+1, . . . , un〉; and

u[l1 → i1, . . . , lm → im] for u[l1 → i1] . . . [lm → im]

The product automaton for |A is defined as the timed automaton Π,

Π = (L, l0,TL, C, T, I)

where

• L is the smallest set of location vectors which includes l0 and is closed under the transition

relation T ,

L = { l0 } ∪ {u
′ | ∃u ∈ L, a ∈ TL, g ∈ CCC , r ∈ P(C) . u a,g,r−−−−→u′ ∈ T }
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• l0 is the initial location vector, l0 = 〈l1,0, . . . , ln,0〉;

• TL is the set of actions labelling transitions in T ,

TL = { a | ∃u, u′ ∈ L, g ∈ CCC , r ∈ P(C) . u a,g,r−−−−→u′ ∈ T }

• C is the set of clocks of the product automaton, C =
n⋃

i=1

Ci;

• T is the transition relation defined by the following rules (1 ≤ i 6= j ≤ n),

(P1)
ui

a?,gi,ri−−−−−−→i l uj
a!,gj ,rj−−−−−→j l

′

u
a,gi ∧ gj ,ri∪rj−−−−−−−−−−→u[l→ i, l′ → j]

(P2)
ui

a,g,r−−−−→i l a ∈ CAct

u a,g,r−−−−→u[l→ i]

• I is the function which associates invariants to location vectors,

I(〈u1, ..., un〉) =

n∧

i=1

Ii(ui)

Rule (P1) adds a completed action in the product for every possible synchronisation between

components. The guard and reset set in this action correspond to the conjunction of guards and

the union of the reset sets in the synchronising transitions, respectively. This rule asserts that

synchronisation is only possible if both parties are enabled. Rule (P2) denotes the interleaving

of completed actions.

The following concepts will become useful when we analyse techniques for detection of time-

locks and Zeno runs in Chapters 3, 4, and 5. We present these here to add to the general

terminology related to timed automata, as used in this thesis.

Loops. Let A be a timed automaton. A simple loop is an elementary cycle in A; i.e., a sequence

of transitions,

l0
a1,g1,r1
−−−−−→ l1

a2,g2,r2
−−−−−→ l2 · · · ln−1

an,gn,rn
−−−−−−→ ln

where l0 = ln and li 6= lj for all 0 ≤ i 6= j < n. A non-simple loop is a strongly connected

subgraph5 of A, which is not itself a simple loop. By definition, a non-simple loop contains at

least (all the transitions of) two simple loops.

We will denote loops as a sequence of actions that starts and ends in the same location.

In the case of non-simple loops, this sequence will contain repeating actions. This sequence

of actions, both for simple and non-simple loops, is used just for notational purposes, and is

5A directed graph is strongly connected if there exists a path between any two nodes.
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not intended to reflect a traversal of the loop during the execution of the timed automaton.

In addition, unless we explicitly restrict their scope, our definitions and results apply to both

simple and non-simple loops.6

By way of example, Figure 2.2(i) shows two simple loops, 〈a, b〉 and 〈c, d〉; and one non-simple

loop, 〈a, c, d , b〉. Similarly, Figure 2.2(ii) depicts two simple loops, 〈e, f 〉 and 〈g , h, f 〉, and one

non-simple loop, 〈e, f , g , h, f 〉.

1 32

a

b

c

d

(i) (ii)

e

f

g h

4

5

6

x:=0

x<=1

x<=1

x<=1

x<=1

x:=0x<=1 x<=1

Figure 2.2: Simple and Non-simple Loops

Let A be a timed automaton, and lp a loop in A. We define the following sets. Loops(A) is the

set of all loops in A. SimpleLoops(A) ⊆ Loops(A) is the set of all simple loops in A. Loc(lp)

is the set of all locations of lp; Clocks(lp) is the set of all clocks occurring in any invariant of

lp; Trans(lp), Guards(lp) and Resets(lp) are, respectively, the sets of all transitions of lp, all

guards of lp, and all clocks that are reset in lp; and Act(lp) is the set of all actions labelling

transitions in lp. In the following definitions, we use ⊑ (⊒) to denote any element in {<,=,≤}

({>,=,≥}); and we use t ∈ φ to denote that t is a conjunct of formula φ.

Half Loops, Completed Loops and Matching Loops. lp is a half loop if it contains at least

one transition labelled with a half action (formally, HAct ∩Act(lp) 6= ∅). lp is a completed loop if

all its transitions are labelled with completed actions (formally, Act(lp) ⊆ CAct). Two half loops

lp1 and lp2 (in different network components) are referred to as matching loops if they contain at

least a pair of matching half actions (formally, ∃ a?, a! ∈ HAct . a? ∈ Act(lp1) ∧ a! ∈ Act(lp2)).

Bounded from Below (clock). Given a clock constraint φ, a clock x is bounded from below

in φ, if x ⊒ c ∈ φ or x − y ⊒ c ∈ φ, where y is a clock and c > 0. By extension, a clock is

bounded from below in a given location or transition if it is bounded from below in the location’s

invariant, or in the transition’s guard, respectively.

6Our reasoning about simple and non-simple loops (as found in Chapters 3, 4 and 5) will be concerned with
the structure of the loops (the subgraph formed by locations and transitions), and not with the possible ways in
which the loops can be traversed by executions of the timed automaton.
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Bounded from Above (clock). Given a clock constraint φ, a clock x is bounded from above

in φ if x ⊑ c ∈ φ; or x− y ⊑ c ∈ φ; or y − x ⊒ c ∈ φ (where the clock y is bounded from above

in φ and c > 0). By extension, a clock is bounded from above in a given location or transition

if it is bounded from above in the location’s invariant, or in the transition’s guard, respectively.

Smallest Upper Bound (clock). Let lp be a loop and x a clock in lp, where at least one

invariant in the loop contains a conjunct x ⊑ c (c > 0). We define cmin(x, lp) ∈ N to be the

smallest upper bound for x occurring in any invariant in lp, i.e., cmin(x, lp) ≤ c′, for any conjunct

x ⊑ c′ occurring in any invariant of the loop (c′ > 0).

2.1.2 Semantics

We formalise, here, the behaviour of a timed automaton in terms of a timed transition sys-

tem (TTS) [31, 45]. We assume that the automaton contains only completed actions, thus,

its behaviour can be completely determined from its own structure. With this approach, the

behaviour of a network corresponds to the TTS of the product automaton.7

Let A = (L, l0,TL, C, T, I) be a timed automaton where all actions are completed actions

(TL ⊆ CAct). The behaviour of A is represented by the timed transition system TSA =

(S, s0,Lab, TS), which is defined as follows.

• S ⊆ L × VC is the set of reachable states in the executions of A; i.e., the smallest set of

states which includes s0 and is closed under the transition relation TS (a state is of the

form s = [l, v], where l is a location in A and v is a clock valuation),

S = { s0 } ∪ { s
′ | ∃ s ∈ S, γ ∈ Lab . s

γ
=⇒ s′ ∈ TS }

• s0 = [l0, v0] is the initial state, where l0 is the initial location in A, and v0 is the initial

valuation, which sets all clocks to 0;

• Lab = TL ∪ R+ is the labels for transitions in TS ;

• TS ⊆ S×Lab×S is the transition relation. Transitions can be of one of two types: action

transitions (actions), e.g. (s, a, s′), where a ∈ TL, or time transitions (delays), e.g. (s, δ, s′),

where δ ∈ R+ and the passage of δ time units is denoted. Transitions are denoted,

s
γ

=⇒ s′

7Bengtsson and Yi [21] present a TTS-based semantics for networks of timed automata directly in terms of
the component automata. This is equivalent to ours.
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where γ ∈ Lab. The transition relation is defined by the following inference rules.

(R1)
l a,g,r−−−−→ l′ v |= g r(v) |= I(l′)

[l, v]
a

=⇒ [l′, r(v)]
(R2)

∀ δ′ ≤ δ , (v + δ′) |= I(l)

[l, v]
δ

=⇒ [l, v + δ]

Note that rules (R1) and (R2) represent the interleaving of actions with the passage of time.

A transition l a,g,r−−−−→ l′ is said to be enabled in the state [l, v], if the current valuation satisfies

the guard (v |= g), and performing the transition does not invalidate the invariant of the target

location (r(v) |= I(l′)).

Runs. A run is a path ρ in the automaton’s TTS,

ρ , s1
γ1

==⇒ s2
γ2

==⇒ s3
γ3

==⇒ . . .

where si ∈ S and γi ∈ Act ∪ R+ (i ∈ N, i ≥ 1), such that ρ ends in some state sn ∈ S

(if ρ is finite). We use ρ ⊆ ρ′ to denote that the sequence ρ is a prefix of ρ′. Runs(s) and

FiniteRuns(s) ⊆ Runs(s) denote the set of all runs starting from s, and the set of all finite runs

starting from s, respectively. We use s
γ

=⇒ ρs
′ to denote that s

γ
=⇒ s′ is performed at some point

in ρ. Similarly, s ∈ ρ denotes that s is reachable in ρ; s
∗

=⇒ s′ρ denotes that s′ is reachable from

s in ρ; and s
∗

=⇒ s′ denotes that s′ is reachable from s (equivalently, ∃ ρ ∈ Runs(s). s′ ∈ ρ).

Trans(ρ) and Trans∞(ρ) ⊆ Trans(ρ) denote the set of all automata transitions visited by ρ,

and the set of all transitions that are visited infinitely often by ρ, respectively. Formally,

Trans(ρ) = { l
a,g,r
−−−→ l′ | ∃ v. v |= g ∧ [l, v]

a
=⇒ ρ[l

′, r(v)] }

Trans∞(ρ) = { l
a,g,r
−−−→ l′ | ∀s ∈ ρ.∃ v. s

∗
=⇒ ρ[l, v] ∧ v |= g ∧ [l, v]

a
=⇒ ρ[l

′, r(v)] }

Regarding loops, we say that a run ρ visits a loop lp if all transitions of lp occur in ρ (not

necessarily consecutively); i.e., if Trans(lp) ⊆ Trans(ρ). More interestingly, we will be concerned

with those runs that visit a certain loop infinitely often. Thus, we introduce next the concept

of covering runs, and offer the related Lemma 2.1.

Covering Runs. Let lp be a loop, and ρ an infinite run. We say that ρ covers lp if it visits lp

infinitely often. Formally, ρ covers lp if Trans(lp) ⊆ Trans∞(ρ). We use CoveringRuns(s, lp) to

denote the set of all runs starting from s that cover lp.
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lemma 2.1. If actions occur infinitely often in a run, then that run covers some simple loop.

Proof. Let ρ be a run where actions occur infinitely often. Automata transitions are finite, so

ρ must visit a (simple or non-simple) loop infinitely often. Every non-simple loop contains a

simple loop. Hence, even if ρ visits a non-simple loop infinitely often, it must necessarily visit a

simple loop infinitely often.

Consider again, for instance, the non-simple loop 〈e, f , g , h, f 〉 in Figure 2.2(ii). Any run

where the sequences of actions (1) g, h, f and (2) e, f occur infinitely often is considered to

cover the non-simple loop 〈e, f , g , h, f 〉 (and, necessarily, to cover both simple loops 〈g , h, f 〉 and

〈e, f 〉). On the other hand, a run that only visits e and f infinitely often, will be considered to

cover the simple loop 〈e, f 〉, but not to cover the non-simple loop 〈e, f , g , h, f 〉 (even if the run

visits g and h a finite number of times). In addition, note that the definition of covering run

is not concerned with the order in which transitions are visited (e.g., if there are many “entry

points” to the loop, different traversals may be possible).

Regarding the time spent by executions, we define delay(ρ) to be the limit of the sum of all

delays occurring in ρ (if the limit exists), or ∞ otherwise. A run ρ is divergent if delay(ρ) =

∞ (otherwise, the run is convergent). A timed automaton may exhibit runs that cannot be

extended to divergent runs, and runs where actions occur infinitely often in a finite period of

time (which we call Zeno runs); none of these runs correspond to natural executions. We use

ZRuns(s) ⊆ Runs(s) to denote the set of Zeno runs starting from s.8

Chapter 3 will discuss Zeno runs and timelocks, their consequences to verification and ways

to detect them (or avoid them). For the time being, let us illustrate the semantics of a timed

automaton with the following example.

Example. Figure 2.3 illustrates the behaviour of a timed automaton. Executions may remain

in location 1 for a maximum of 5 time units. Transition a can be performed at any time during

[2, 5], and is urgent when v(x) = 5. The automaton may perform b at any time during [0, 3];

thereafter (location 2), it can perform c at any time. The figure (right) shows part of the TTS

that represents the behavior of the automaton (vertical arrows denote time transitions).

8Non-Zeno runs are also known as finitely variable; e.g. [85, 144].
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Figure 2.3: A Timed Automaton and (a fragment of) its Timed Transition System

The automaton contains several Zeno runs, generated by transitions a and c. For example,

ρ1 = [1, 0]
2.5

==⇒ [1, 2.5]
a

=⇒ [1, 2.5]
0.5

==⇒ [1, 3]
b

=⇒ [2, 0] · · ·

ρ2 = [1, 0]
2.5

==⇒ [1, 2.5]
b

=⇒ [2, 0]
c

=⇒ [2, 0]
3

=⇒ [2, 3]
c

=⇒ [2, 3] · · ·

ρ3 = [1, 0]
2.5

==⇒ [1, 2.5]
a

=⇒ [1, 2.5]
2.5

==⇒ [1, 5]
a

=⇒ [1, 5]
a

=⇒ [1, 5] · · ·

where, for every state s = [l, v], l denotes a location, and v denotes the value of x. The run

ρ2 may represent one of them: once in location 2, the automaton may continuously perform c

without engaging in time transitions. The run ρ3 is another Zeno run, because a is performed

infinitely often when v(x) = 5. However, ρ2 and ρ3 lead to different scenarios. Once the

automaton is in location 2 it may perform c infinitely often, but time is allowed to diverge:

From any state reached in location 2, a time transition is always enabled. On the other hand,

if the automaton is in location 1 when v(x) = 5, the invariant prevents time from passing any

further. The only enabled transition, a, is then performed infinitely often in a finite period of

time. Effectively, the state s = [1, v] (v(x) = 5) is a timelock.

2.1.3 Example: A Multimedia Stream

Figure 2.4 depicts a simple abstraction of the flows of data in a multimedia system (see, e.g.,

[28]). A Source process generates a continuous sequence of packets (representing the transmission

of an audio or video stream), which are relayed by the Channel to a Sink process, which in turn

displays the packets. Actions sourceOut, sinkIn and play, transfer packets from the Source to

the Channel, from the Channel to the Sink, and display them at the Sink, respectively.
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sourceOut sinkIn

Figure 2.4: A Multimedia Stream (from [44])

As is usually the case for multimedia streams, the flows of data must observe certain timing

constraints.9 For the stream in Figure 2.4, we will assume the following settings. The Channel

is reliable and does not lose packets. The Source transmits a packet every 50 ms. Packets arrive

at the Sink between 80 ms and 90 ms after being sent; this specifies the latency of the Channel.

Whenever the Sink receives a packet, it needs 5 ms to process it (play) before it can accept the

next packet. In addition, we assume that the actual contents of the packets are irrelevant to the

protocol.

State1

State2
t4<=90

State1
t1<=50

State1

State2
t3<=90

State1

State2
t2<=5

play
t2=5

Place1 Place2 Sink
State0
t1=0

Source

sourceOut !

t1=50
sourceOut !
t1:=0

sourceOut ?
t4:=0

sourceOut ?
t3:=0

sinkIn ?
t2:=0sinkIn !

t4>=80
sinkIn !
t3>=80

Figure 2.5: Timed Automata Specification of the Multimedia Stream

Figure 2.5 shows a possible timed automata specification for the multimedia stream (this spec-

ification was first presented in [44]). The specification consists of four components: Source,

Place1, Place2 and Sink. The Source synchronises with either Place1 or Place2, representing

that a packet is delivered to the Channel. The Channel process itself is viewed as a buffer that

stores the packets for a period of time (the latency of the Channel) before delivering them to

the Sink. The automata Place1 and Place2 represent the Channel as a 2-place buffer: giving

the rate of Source and the latency of the Channel, there is always at most 2 packets travelling

through the Channel at any given time.

9For example, when a movie is played, subtitles should be displayed synchronised with the image stream.
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The initial location in the Source, State0, is annotated with the invariant t1 = 0 to ensure

that the first packet is sent immediately (via a sourceOut! action). In State1, sourceOut! is

enabled (and urgent) once every 50 ms. When synchronisation between sourceOut! (Source)

and sourceOut? (Place1) happens, t4 is reset and Place1 moves to State2. Simultaneously, the

Source moves to State1 if it was in State0, or resets t1 and remains in State1. Alternatively, the

Source automaton may synchronise with Place2.

After Place1 has synchronised with the Source (i.e., received a packet), it cannot do so with

the Sink (i.e., deliver the packet) until at least 80 ms have passed (the same occurs to Place2).

At the latest, this synchronisation would occur after 90 ms have passed. These delays effectively

model the latency of the Channel. Note, as well, that a new synchronisation between Place1

and Source cannot occur before Place1 and Sink have synchronised. In other words, Place1 is

not always ready to accept the next packet from the Source: the Source is faster than Place1

(the same reasoning applies to Place2).

However, verification would confirm that some sourceOut? action, either in Place1 or in

Place2, is always enabled when sourceOut! becomes urgent in the Source (otherwise, and because

of the urgency of sourceOut!, the specification would contain a timelock). Finally, note that Sink

synchronises with Place1 or Place2 by offering a sinkIn? action. The Sink needs exactly 5 ms

to play a packet, before it is ready to accept the next one.

t1<=50
t4<=90

t1<=50,
t3<=90

t1<=50,
t2<=5,
t4<=90

t1<=50,
t2<=5,
t3<=90

t2=5
play

t2=5
play

t1<=50
t4<=90

t1<=50,
t3<=90

t1<=50,
t3<=90,
t4<=90

t1<=0

<0,1,1,1>

<1,1,2,1>

<1,2,1,1>
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sourceOut
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sourceOut
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t3:=0

t4>=80
sinkIn
t2:=0

t3>=80
sinkIn
t2:=0

Figure 2.6: Product Automaton For The Multimedia Stream

Figure 2.6 shows part of the product automaton for this network. By way of example:

location 〈0, 1, 1, 1〉 corresponds to Source.State0, Place1.State1, Place2.State1 and Sink.State1;

transition sourceOut, from 〈0, 1, 1, 1〉 to 〈1, 2, 1, 1〉, results from synchronisation between source-

Out! in Source.State0 and sourceOut? in Place1.State1 (a similar transition exists from 〈0, 1, 1, 1〉

to 〈1, 1, 2, 1〉, which corresponds to initial synchronisation between Source and Place2); and the
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invariant in location 〈1, 2, 1, 1〉, t1 ≤ 50 ∧ t4 ≤ 90, corresponds to the conjunction of invariants

in Source.State1, Place1.State2, Place2.State1 and Sink.State1.

2.2 Uppaal: A Model-checker for Timed Automata

Uppaal [22] is a tool for reachability analysis of networks of timed automata. Uppaal has been

successfully applied in the verification of communication protocols and embedded systems, and

is under continuous development (see [22] for a description of case studies and other tools based

on Uppaal). Among real-time model-checkers, Uppaal represents the state-of-the-art thanks

to its efficient reachability engine, a rich modelling language, and a well-developed graphical

interface (this features a built-in simulator).

2.2.1 The Specification Language

Uppaal’s modelling language is an extension of the basic timed automata model presented in

this chapter. Here we discuss a few relevant features of the language. The full syntax can be

obtained from the online tutorial included in the tool.10 In what follows, bear in mind that

assignments and channels in Uppaal play the role of reset sets and half actions, respectively.

Variables. Data variables (in bounded domains) can be declared, including integers and arrays

of integers and clocks. Variables can be declared local to components, or shared by all compo-

nents in the network. Variables are initialised when declared, and can be assigned new values

when transitions are performed. Guards, invariants and assignments may contain expressions on

variables (with certain restrictions), written in C-like syntax (e.g., the auto-increment expression

i++ can be used in assignments).

Guards, Invariants and Clock Resets. Both guards and invariants are conjunction of

atomic constraints, which refer to single clocks and data variables. Disjunction and negation

can be used in subexpressions, but guards and invariants must be conjunctions at the top level.

Expressions on clocks denote lower and upper bounds on clocks and clock differences, where the

bound is given by an integer expression. However, clock expressions in invariants are restricted

to upper bounds (on single clocks, or difference between clocks). Clocks can be reset to any

integer expression (including data variables), but they cannot be assigned to other clocks.

10http://www.uppaal.com
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Urgent and Committed Locations. Locations in Uppaal’s timed automata can also be

declared as urgent or committed, in addition to the default type [20]. Both, urgent and committed

locations, block the passage of time as soon as they are entered (thus making outgoing actions,

urgent). Committed locations, however, further restrict the interleaving of actions. When one

or more components are in urgent locations, time cannot pass but any component is allowed

to perform (enabled) actions, even those components that are not in urgent locations. On the

other hand, if one or more components are in committed locations, then only these components

are allowed to progress. When interleaving is not necessary, committed locations reduce the

state-space generated during verification [19].

Synchronisation. Apart from binary synchronisation (as in the basic timed automata model of

this chapter), Uppaal supports urgent and broadcast synchronisation. Synchronisation on urgent

channels is binary, and occurs as soon as both parties are enabled. In transitions with urgent

channels, guards cannot refer to clocks. This restriction prevents the occurrence of disjunctions

of constraints during reachability analysis. The problem with disjunctions is that they cannot

be represented efficiently, and “splitting” them into zones (conjunctions) is a time-consuming

operation. A broadcast channel allows a component (output action) to synchronise with more

than one component (input action) at the same time. Broadcast synchronisation is nonblocking:

A given output action, say a!, where a is declared as a broadcast channel, can be performed

even when input actions (a?) are not enabled. Multiway synchronisation (e.g., as in [169]), and

other synchronisation modes, can be implemented with committed locations [22].

2.2.2 The Requirements Language and Verification

Uppaal is a model-checker biased towards reachability analysis, where correctness properties are

expressed as formulae in a subset of CTL [58]. Uppaal constructs a reachability graph, which is

a finite-state abstraction describing the semantics of the network.

A node in the reachability graph represents a pair (l, Z), where l is a location vector and

Z, called a zone, is a conjunction of clock constraints. Informally, the pair (l, Z) is a symbolic

state in the execution of the network, denoting a (typically infinite) number of reachable states

[l, v], v |= Z. For every node (l, Z), and every transition a in the network from l to l′ that is

enabled at some v |= Z, there is a successor node (l′, Z ′) denoting all states that are reachable

in l′ after a is performed (and letting some time pass in l′).

Uppaal does not construct the product automaton a priori; instead, it generates the symbolic

states on demand until the fragment of the graph (generated so far) suffices to determine the sat-

isfiability of the property. We explain the fundamentals of reachability analysis in Appendix A,

where we also give more details of Uppaal’s optimisations.
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Uppaal’s requirements language is limited to a subset of CTL that can be verified very effi-

ciently using reachability analysis, and which is expressive enough to characterise many useful

properties. Safety properties, for instance, can be decided by checking that every reachable

state is “correct” with respect to some state formula (or alternatively, that a “bad” state is un-

reachable). Bounded-response properties are usually of the form “whenever a φ-state is reached,

a ψ-state is reached in every possible execution thereafter, within n time units”. In Uppaal,

bounded-response can be verified via a leads-to formula, which involves nested reachability

checks, or alternatively as a safety property [22], or by test automata [2].

The following BNF describes the formulae that can be expressed in Uppaal’s requirements

language.

ϕ ::= E<>φ | A[]φ | E[]φ | A<> φ | φ1 --> φ2

φ ::= loc | cc | deadlock | not φ | φ1 and φ2 | φ1 or φ2 | φ1 => φ2

where ϕ is a top level Uppaal formula; φ, φ1, φ2 are state formulae; loc refers to a location in the

network and cc is an atomic constraint on clocks, clock differences or variables.

The semantics of the requirements language can be given in terms of the reachability graph.

State formulae characterise the symbolic states of interest. For example, the state formula

A.loc1 and (x<=1 or y>x)

is satisfiable by any symbolic state (l, Z) such that l = A.loc1 and Z satisfies either v(x) ≤ 1 or

v(y) > v(x). The formula deadlock is satisfiable in (l, Z) if there exists s = [l, v] ∈ (l, Z) where

no action is enabled. Top-level formulae, with E<>, A[], E[], A<> and -->, represent paths in

the reachability graph (i.e., executions of interest). Operators E and A refer to some path, or to

all paths in the graph, respectively. In turn, <> and [] refer to some state, or to all states in a

path (or all paths, depending on the preceding E/A operator).

• E<> φ holds if there exists a reachable state satisfying φ.

• A[] φ holds if every reachable state satisfies φ.

• E[] φ holds if there exists a path in the graph where every state satisfies φ.

• A<> φ holds if there exists a state, along every path in the graph, which satisfies φ.

• The leads-to formula, φ1-->φ2, is equivalent to A[](φ1 => A<>φ2). The formula φ1--> φ2

holds if, whenever a φ-state is reached, a ψ-state is reachable in every possible execution

thereafter (leads-to formulae are the only form of nested modalities expressible in Uppaal).

30



Note, that the semantics of E<> φ, A[] φ, E[] φ, A<> φ and φ1 -->φ2 correspond, respectively,

to that of CTL formulae EFφ, AGφ, EGφ, AFφ and AG(φ1 ⇒ AFφ2) [58]. Figure 2.7 illustrates

this interpretation (where black nodes represent states in the reachability graph that satisfy φ).

(iii) (iv)(i) (ii)

Figure 2.7: Semantics of E<> φ (i), A[] φ (ii), E[] φ (iii), and A<> φ (iv)

Example: A Safety Property for the Multimedia Stream. Section 2.1.3 (Figure 2.5)

described a timed automata specification for a multimedia stream, where the Channel was

represented by two automata Place1 and Place2. Then, if two automata suffice to correctly

implement the Channel, synchronisation between Source and either Place1 or Place2 should

always be possible. In other words, it should not be possible to reach state where Source must

send a packet but neither Place1 nor Place2 can accept it; this is expressed by the following

safety property.

A[] not ((t1==0 or t1==50) and Place1.State2 and Place2.State2)

2.2.3 Timed Automata with Urgent and Committed Locations

Section 2.2.1 explained the semantics of urgent and committed locations in Uppaal specifications.

Here, we show a simple extension of our basic timed automata model that considers urgent and

committed locations. We also show that, from a network of extended automata, we can obtain

an equivalent single automaton in the basic model (i.e., without urgent or committed locations).

The construction is syntactic and resembles that of the product automaton for the basic model

(see Section 2.1.1), but preserves the semantics of urgent and committed locations.

Extended Timed Automata. An extended timed automaton is a tupleA = (L, l0,TL, C, T, I),

where

• L is partitioned in three sets, L = NonUrg ∪Urg ∪Comm, with Urg ⊆ L and Comm ⊆ L

being the (possibly empty) sets of urgent and committed locations;

• I(l) , true, for all l ∈ Urg ∪ Comm; and

• the rest of the elements of A are defined as in our basic timed automata model (Sec-

tion 2.1.1).
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Interpreting Extended Automata in the Basic Model. We define below a process of

augmentation, which resets a new clock z every time an urgent or committed location is to be

entered. Let A = (NonUrg ∪Urg ∪Comm, l0,TL, C, T, I) be an extended timed automaton and

t , l
a,g,r
−−−→ l′ a transition in T . The transformation augment(t, z), for transition t and clock z,

is defined as follows.

augment(t, z) ,







l
a,g,r∪{z}
−−−−−−→ l′ if l′ ∈ Urg ∪ Comm

t otherwise

The extended automaton A can then be transformed into a basic automaton A′ = (NonUrg ∪

Urg ∪ Comm, l0,TL, C ∪ {z}, T ′, I ′) where

• z /∈ C;

• I ′(l) , z ≤ 0, for all l ∈ Urg ∪ Comm; and

• T ′ = { augment(t, z) | t ∈ T }.

Consider a network of extended timed automata |A = |〈A1, ... , An〉, where Ai = (NonUrg i ∪

Urg i ∪ Commi, li,0,TLi, Ci, Ti, Ii). Let |A′ = |〈A′
1, ... , A

′
n〉 be the network of basic automata

obtained from |A by the process of augmentation. We have, then, A′
i = (NonUrg i ∪ Urg i ∪

Commi, li,0,TLi, Ci ∪ {zi}, T
′
i , I

′
i). Let u and u′ denote location vectors in L1 × · · · × Ln (e.g.,

u = 〈u1, . . . , un〉). We use the substitutions u[l → j] and u[l → i, l′ → j] as explained in

Section 2.1.1.

From |A′, we can build a single basic automaton, Π, which is semantically equivalent to |A

(w.r.t. Uppaal’s semantics for urgent and committed locations). We define Π as follows.

Π = (L, l0,TL, C, T, I)

where

• L is the smallest set of location vectors which includes l0 and is closed under the transition

relation T ,

L = { l0 } ∪ {u
′ | ∃u ∈ L, a ∈ TL, g ∈ CCC , r ∈ P(C) . u a,g,r−−−−→u′ ∈ T }

• l0 is the initial location vector, l0 = 〈l1,0, . . . , ln,0〉;

• TL is the set of actions labelling transitions in T ,

TL = { a | ∃u, u′ ∈ L, g ∈ CCC , r ∈ P(C) . u a,g,r−−−−→u′ ∈ T }
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• C is the set of clocks, C =
n⋃

i=1

(Ci ∪ {zi});

• T is the transition relation defined by the following rules (1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n),

(PC1)
ui

a?,gi,ri−−−−−−→i l uj
a!,gj ,rj−−−−−→j l

′ (ui ∈ Commi ∨ uj ∈ Commj)

u
a,gi ∧ gj ,ri∪rj−−−−−−−−−−→u[l→ i, l′ → j]

(PC2)
ui

a,g,r−−−−→i l a ∈ CAct ui ∈ Commi

u a,g,r−−−−→u[l→ i]

(PC3)
ui

a?,gi,ri−−−−−−→i l uj
a!,gj ,rj−−−−−→j l

′ (∄ k. uk ∈ Commk)

u
a,gi ∧ gj ,ri∪rj−−−−−−−−−−→u[l→ i, l′ → j]

(PC4)
ui

a,g,r−−−−→i l a ∈ CAct (∄ k. uk ∈ Commk)

u a,g,r−−−−→u[l→ i]

• I is the function which associates invariants to location vectors,

I(〈u1, ..., un〉) =

n∧

i=1

I ′i(ui)

Rule (PC1) adds a completed action in Π for every possible synchronisation between compo-

nents, whenever at least one of the parties is in a committed location. Rule (PC2) denotes the

interleaving of completed actions from components in committed locations. Rule (PC3) adds a

completed action in Π for every possible synchronisation between components that are not in

committed locations, but only if there are no components in committed locations. Similarly,

rule (PC4) denotes the interleaving of completed actions from components that are not in com-

mitted locations, but only if there are no components in committed locations. The semantics

of urgent locations is obtained in the augmentation step; urgent locations are irrelevant in the

construction of Π because they do not affect interleaving.

By way of example, Figure 2.8 illustrates the syntactic transformation of specifications with

urgent and committed locations, into our basic timed automata model (||∗ denotes the prod-

uct automaton construction that preserves the semantics of urgent and committed locations).

Figure 2.8(i) shows two extended timed automata; the uppermost contains an urgent location.

In the same figure, you can see how this automaton is replaced by its semantically equivalent

counterpart, where the urgent location has been replaced by one with the invariant y ≤ 0 (y is

a new clock) and y has been added to the reset set of its ingoing transition (a!). In the resulting

basic automaton, transition b will be performed without delay since v(y) = 0 when location 2

is entered (and correspondingly, when locations 〈2, 5〉 and 〈2, 6〉 are entered in the automaton),
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Figure 2.8: The Semantics of Urgent and Committed Locations in Uppaal

but interleaving with transition d is still possible. Indeed, this interleaving causes the branching

with sequences b,d and d,b. Compare this with the network of Figure 2.8(ii), where the use

of a committed location (instead of an urgent location) restricts the interleaving of b and d :

transition b must be performed before d.

2.3 Related Work

Alur and Madhusudan [8] give a survey of known results (and open problems) for decidability

questions in timed automata theory.

Aceto et al. [2] present a temporal logic, L∀S , which characterises the set of properties

decidable by reachability analysis. For any property φ in L∀S , a test automaton Tφ can be

constructed with a distinguished rejecting location, l. Given a network |A, φ is satisfiable in |A

if and only if l is not reachable in |A ||Tφ. Importantly, test automata can be used to verify

certain properties that are not directly expressible in Uppaal’s requirements language (such as,

bounded response).

Tripakis [156] presents algorithms to verify timed automata with respect to TCTL and Timed

Büchi Automata (TBA), which are implemented in Kronos. As a result, Kronos is able to verify

properties that are not expressible in Uppaal. However, full TCTL formulae are verified with

a fixpoint algorithm [85], which is computationally demanding. For example, this algorithm

requires the product automaton to be constructed before-hand, it cannot provide an answer

until all the states satisfying the formula have been computed, and it can only provide limited

diagnostics (a symbolic representation of the states satisfying the formula). For reachability

and TBA properties, Kronos does better in terms of efficiency, because the reachability graph

is computed on-the-fly (although, the algorithms and representation of symbolic states used in
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Kronos lack the optimisations included in Uppaal). Another disadvantage of Kronos is that it

provides no graphical interface or simulation facilities.

Bouajjani et al. [36] present an on-the-fly model-checking algorithm for the logic TECTL∗
∃,

which is shown to be more expressive than TCTL.11 The paper shows a number of experiments

where this algorithm outperforms the fixpoint-based algorithm implemented in Kronos.

Recently, BDD-like data structures have been used in the verification of timed automata

based on fixpoint calculations (in the spirit of [85]). These BDD structures are used to represent

the transition relation in the reachability graph, and allow fixpoint calculations to be efficiently

implemented. Representatives of this technology are the model-checkers Red [164], Rabbit [23]

and NuSMVDP [154]. Experiments described in [164] and [23] show that Red and Rabbit

outperformed Uppaal in some specifications, such as Fisher’s mutual exclusion protocol and the

FDDI Token Ring protocol.12

Beyer and Noack [24] compare DBMs (as used by Uppaal and Kronos), CDDs (including

Clock Restriction Diagrams, a variation of CDDs used in Red) and BDDs (as used in Rabbit).

Experiments show that both DBMs and CRDs are, in contrast to BDDs, almost insensitive to

the values of constants in the specification, and that efficient use of BDDs and CRDs depends

upon finding good variable orderings (in this case, heuristics used in Rabbit make this tool more

scalable than Red).

Wang [164] points out that CRDs outperform DBMs when the number of clocks in the spec-

ification increases. On the other hand, fixpoint calculations on CRDs consume much time and

space in handling intermediate data structures, which need intensive use of garbage-collection.

Thomas, Pandya and Chakraborty [154] show that transition relations can be partitioned into

classes, where transitions correspond to the passage of time, synchronisations, or interleaving of

actions. Distributing the fixpoint operations over these classes is more efficient than applying

them directly over the transition relation (as a whole). Partition heuristics (including strategies

to distribute the fixpoint operations) are the main feature of NuSMVDP, and are not included

in Rabbit or Red.

Unlike Uppaal and Red, where networks represent only one level of components, Rabbit

deals with modular specifications, representing hierarchies of components (this facilitates the

specification of complex systems). Unlike Uppaal and Rabbit, Red is able to verify full TCTL

formulae with fairness assumptions [165]; in turn, the requirements language of both Rabbit

and NuSMVDP is restricted to reachability formulae; thus, it cannot express Uppaal’s leads-to

formulae. The support for data variables and clock constraints is more limited in Red, Rabbit

11A summary of these results are presented in Tripakis PhD thesis [156]; Tripakis refers to this logic as
ETCTL∗

∃.
12However, these experiments were performed using an old version of Uppaal (v 3.2.4), which lacked many of

the optimisations that are currently implemented in the tool.
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and NuSMVDP, than it is in Uppaal (e.g., neither Red nor Rabbit support arrays, or clock

difference constraints in guards).

2.4 Limitations of Timed Automata and Model-checkers

Timed automata may express behaviours that do not correspond to real executions; in this

sense, the notation can be considered “too expressive”. In addition, for certain systems, the

data objects may be difficult to represent in the specification language of model-checkers, which

restrict data support to bounded domains. In this sense, model-checkers may not be expressive

enough to reason about the original system. Similarly, certain requirements may not be easily

formalised in the model-checker’s logic.

In what follows, we explain how these issues affect the reliability of timed automata and

model-checkers (see also Chapter 1). This motivates our study of timelock detection methods in

the remainder of Part II, and the study of WS1S and MONA in real-time settings, in Part III.

2.4.1 Timelocks in Timed Automata

Timelocks are states where time cannot diverge, and Zeno runs denote arbitrarily fast execu-

tions. Both, timelocks and Zeno runs, are abnormal behaviours in the semantics of a timed

automaton: they cannot occur in real systems. Moreover, the verification of safety and liveness

properties may be meaningless if such abnormal behaviours occur in the model. States of in-

terest may become unreachable when time stops, and most model-checkers (including Uppaal)

cannot distinguish between divergent and non-divergent executions.

In what remains of Part II (Chapters 3, 4 and 5), we study timelocks and Zeno runs, and

address methods for timelock detection. In Part III (Chapter 8), we use WS1S and MONA

to develop a deductive framework (Discrete Timed Automata) where an important class of

timelocks can be prevented by construction.

2.4.2 Requirements in Branching-time Logics

Requirements languages for real-time model-checkers are based on branching-time logics, e.g.,

CTL (Uppaal) and TCTL (Kronos). Many properties can be expressed with branching-time

logics, but this is not always easy (see, e.g. [161, 14]).

For instance, requirements that refer to sequences of events (e.g., if e1 is followed by e2 in

less than n time units, then e3 should occur no later than m time units), iteration (e.g., e1

never occurs more than n times in less than m time units) or past computations (e.g., if e1

occurs, then e2 must have occurred no earlier than n time units before) do not have an intuitive

interpretation in Uppaal’s requirements language.
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Therefore, certain requirements will be difficult (or even impossible) to express in the model-

checker’s logic, and this undermines our confidence in verification: The model-checker may be

able to confirm that a formula holds, but such a formula may not represent the intended re-

quirement. In Chapter 7, we investigate PITL, a linear-time logic where sequences and iteration

of events, and past computations, can be naturally expressed. PITL is a powerful and intu-

itive notation; however, it has a non-elementary worst-case complexity. This has hampered the

development of efficient tool support.

Thanks to MONA, we show that the situation looks more promising now. In Chapter 7,

we develop a translation from PITL to WS1S, which allows us to use MONA as an efficient

decision procedure for PITL. We believe this is an important step towards the development of

PITL-based verification tools (e.g., PITL-based real-time model-checkers).

2.4.3 Data in Timed Automata

Among real-time model-checkers, Uppaal offers (to our knowledge) the most comprehensive

support for data variables. For instance, Uppaal handles integers, and arrays of clocks and

integers. However, data domains must be bounded to permit fully automatic verification.

For certain real-time systems, we may find bounded domains too restrictive. For instance,

when modelling communication protocols, we often need to represent unbounded buffers to

reason about messages in transit (or similarly, bounded buffers of unknown size). Therefore,

in order to use a model-checker, we usually have to fix the size of the buffer to some known

value (and this value must be small to avoid state explosion). As a result, the analysis sacrifices

generality in favour of automatic verification, which affects our confidence in the system at hand

(e.g., would the requirements hold for a different buffer size?).

In Chapter 8, we investigate Discrete Timed Automata, an infinite-state deductive frame-

work, where variables are not restricted to bounded domains. We use WS1S as the assertion

language, and MONA provides tool support to facilitate invariance proofs.
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Chapter 3

Timelocks and Zeno Runs

Abstract. Timelocks and Zeno runs are abnormal behaviours in the semantics of a timed

automaton, which compromise the verification of safety and liveness properties. This chapter,

together with Chapters 4 and 5, deal with the issue of timelocks in timed automata and model-

checkers. Here, we explain how timelocks and Zeno runs may arise in timed automata, and

how they challenge formal verification in different ways. We comment on known methods to

guarantee timelock-freedom and absence of Zeno runs, and analyse the support for timelock

detection that is provided by model-checkers (in particular, Uppaal and Kronos).

We reveal limitations in model-checkers which motivate our development of new methods in

Chapters 4 and 5. In addition, we explain that timelocks and Zeno runs cannot be prevented

by construction in Timed Automata, but show that this is possible in Timed Automata with

Deadlines [33, 39]. This notation offers a different interpretation of urgency and synchronisation,

which we later exploit in Chapter 8 to define Discrete Timed Automata, a deductive framework

that also prevents (a certain class of) timelocks by construction.

Organization. Section 3.1 introduces the problem of timelocks and Zeno runs in Timed Au-

tomata. We classify timelocks in Section 3.2. In Section 3.3 we discuss how timelocks and

Zeno runs affect verification. In Section 3.4 we discuss Timed Automata with Deadlines. In

Section 3.5 we review known methods to guarantee timelock-freedom and absence of Zeno runs.

We discuss related work in Section 3.6, and Section 3.7 gives a summary of this chapter.

3.1 Introduction

A timelock is a state where time cannot diverge. Timelocks may occur due to errors in the

specification of urgent behaviour. As we explained in Chapter 2, urgent actions are obtained

by disallowing the progress of time in certain states. A timelock occurs when time stops but
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no action is enabled, for example, when a component A may wish to synchronise urgently with

another component B, but B is not yet ready to do so. This is what we call a time-actionlock.

A timelock can also occur when a state is reached where there are enabled actions, which do not

lead to divergent runs (e.g., runs may be trapped in a loop of urgent actions). This is what we

call a Zeno-timelock. This classification of timelocks is explained in more detail in Section 3.2.

Specifications cannot be reliably verified when timelocks occur. For instance, a property

stating that a certain unwanted state is never reached (namely, a safety property) may hold in a

timelocked specification just because a timelock prevents time from passing up to a point where

such a state becomes reachable. However, because timelocks cannot be implemented, such an

unwanted state may still occur in some execution of the implemented system.

A related problem concerns the detection of Zeno runs, i.e., convergent runs where actions

occur infinitely often (see Section 2.1.2). Zeno runs, like timelocks, are counterintuitive: a

process cannot be infinitely fast. However, while timelocks always denote errors, Zeno runs

may occur in abstract specifications, and are not necessarily undesirable. Furthermore, Zeno

runs do not imply the occurrence of timelocks, and safety properties are not compromised in

(timelock-free) specifications with Zeno runs. However, liveness properties may be affected by

Zeno runs, and, in general, verification in real-time systems is well-defined only over divergent

runs (see Section 3.3). Therefore, we need methods to guarantee timelock-freedom and absence

of Zeno runs, and also methods that guarantee timelock-freedom with no concern for Zeno runs.

Timelocks and Zeno runs have been investigated by a number of researchers, including Hen-

zinger et al. [85], Bornot et al. [33], Tripakis [156, 157] and Bowman [38, 39]. Timed Automata

with Deadlines [33, 39] is a notation where time-actionlocks are ruled out by construction (Sec-

tion 3.4.1). However, Zeno-timelocks and Zeno-runs can still occur, and most model-checkers do

not support this notation (the interpretation of urgency and synchronisation is fundamentally

different).1 On the other hand, timelocks and Zeno runs cannot be prevented by construction

in timed automata, thus we must focus on detection methods instead.

Model-checkers require the specification to be timelock-free (and in some cases, in addition,

free from Zeno runs). However, few model-checkers support detection of timelocks and Zeno

runs, and the methods implemented suffer from a number of shortcomings (and are confined to

particular tools).

A liveness formula can be verified in Uppaal that denotes absence of timelocks and Zeno runs,

but the algorithm involves a demanding nested reachability analysis, and rules out timelock-free

specifications where Zeno runs occur. In the case of Kronos and Red, where the requirements

language is more expressive than Uppaal’s (TCTL), absence of timelocks can be characterised in

a more precise way, but verification requires fixpoint algorithms which can be computationally

1However, the tool IF [50] handles a similar notation (Section 3.6).
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expensive. Another limitation of Kronos is that absence of Zeno runs cannot be checked, and

the product automaton (in order to verify networks of automata) must be constructed before

timelock-freedom can be checked (more about timelock detection in Uppaal and Kronos can be

found in Section 3.5.1). In addition, let us mention that both Red [165] and Profounder [159]

are able to detect Zeno runs during verification, but these require demanding algorithms.

Tripakis introduced in [156] the strong non-Zenoness property, a static check based on the

structure of loops in the automaton, which guarantees absence of Zeno runs. This property

is compositional, holds in most specifications, and implies absence of Zeno-timelocks. Hence,

in specifications where strong non-Zenoness hold, timelock-freedom corresponds precisely to

deadlock-freedom. Therefore, and because deadlock-freedom is usually asserted before any

other verification takes place, in most cases, strong non-Zenoness suffices to guarantee timelock-

freedom (avoiding the demanding checks of liveness formulae in Uppaal or Kronos).

However, one problem with the definition of strong non-Zenoness is that non-simple loops

must be detected, which is computationally expensive (Section 2.1.1). Another problem is that

many useful specifications, which are free from timelocks and Zeno runs, cannot be recognised as

safe by the compositional application of strong non-Zenoness. In addition, strong non-Zenoness

is of no use if we want to guarantee timelock-freedom independently of absence of Zeno runs, and

has not been implemented in any model-checker (we study strong non-Zenoness in Section 3.5.2).

3.2 A Classification of Timelocks

Generally speaking, progress in timed automata executions can be prevented by deadlocks or

timelocks. A deadlock is a state where, for however long time is allowed to pass, no further

actions can be performed. Formally, given a timed automaton A = (L,TL, T, l0, C, I) with

timed transition system TSA = (S,Lab, TS , s0), a state s ∈ S is a deadlock if

∀ d ∈ R+0. (s+ d) ∈ S =⇒ ∄ a ∈ TL . (s+ d)
a

=⇒

where, if s = [l, v], then s+ d = [l, v + d]. On the other hand, a timelock is a state s ∈ S where

time is not able to pass beyond a certain bound.

∀ ρ ∈ Runs(s). delay(ρ) 6=∞

A timed automaton is deadlock-free (timelock-free) if none of its reachable states is a dead-

lock (timelock). Deadlocks and timelocks can be further classified as pure-actionlocks, time-

actionlocks or Zeno-timelocks.
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Pure-actionlock. A pure-actionlock is a state where the system cannot perform any actions,

but time is allowed to diverge. Formally, a state s is a pure-actionlock if

∀ d ∈ R+0 . (s+ d) ∈ S ∧ ∄ a ∈ TL . (s+ d)
a

=⇒

Time-actionlock. A time-actionlock is a state where neither actions can be performed nor

time can pass. Formally (recall that Lab = TL ∪ R+), s ∈ S is a time-actionlock if

∄ γ ∈ Lab . s
γ

=⇒

Zeno-timelock. A Zeno-timelock is a state where the system can still perform actions, but

time cannot diverge. This represents a situation where the system performs an infinite number

of actions in a finite period of time. Formally, s ∈ S is a Zeno-timelock if (a) there are no

divergent runs starting from s, and (b) all finite runs starting from s can be extended to Zeno

runs (i.e., convergent runs where actions occur infinitely often). ZRuns(s) denotes the set of

Zeno runs starting from s (see Section 2.1.2).

∀ ρ ∈ Runs(s). delay(ρ) 6=∞ ∧ ∀ ρ′ ∈ FiniteRuns(s).∃ ρ′′ ∈ ZRuns(s). ρ′ ⊆ ρ′′

21 3

a
x:=0

c!
x>1

x<=2

b
y:=0

y<=2

4 5 6

c?
y>1

1 2

x<=1 x<=1

(i) (ii)

a
x=1

b
x=1

||

Figure 3.1: Timelocks. (i) Time-actionlock. (ii) Zeno-timelock

Figure 3.1 illustrates the occurrence of time-actionlocks and Zeno-timelocks. Figure 3.1(i) shows

a network where a time-actionlock may occur. Suppose that b is initially performed, and a is

performed 2 time units later. At this point v(x) = 0 and v(y) = 2, and so the automata

must synchronise on c, but this is not possible because c! is not enabled. Therefore, a time-

actionlock arises (the invariant in location 5 prevents time from passing). The error was to force

synchronisation at a time when components may not be ready to do so(perhaps, the specifier

forgot to synchronise a and b first). Figure 3.1(ii) shows a timed automaton where a Zeno-

timelock occurs. The invariants prevent time from passing any further when v(x) = 1, but all

actions in the loop are enabled. Therefore, the only possible evolutions are characterised by

Zeno runs in a finite period of 1 time unit (perhaps, the specifier forgot to reset x).
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3.2.1 Example: A Multimedia Stream Model with Time-actionlocks

Consider the specification shown in Figure 3.2, where packets can be sent to the Sink by two

different sources, Source1 and Source2. The behaviour of Source2 is similar to that of Source1,

although Source2 can send the first packet at any time, and it sends the following packets faster

(1 packet every 25 ms). This configuration, however, causes time-actionlocks in the network.

State1

State2
t4<=90

State1
t1<=50

t1=50
sourceout !
t1:=0

State1

State2
t3<=90

State1

State2
t2<=5

play
t2=5

Place1

Place2

Sink

State0

State1
t5<=25

Source1

Source2

State0
t1=0

sourceOut !

sourceOut !
t5:=0

t5=25
sourceOut !
t5:=0

sourceOut ?
t3:=0

sourceOut ?
t4:=0

sinkIn ?
t2:=0

sinkIn !
t4>=80

sinkIn !
t3>=80

Figure 3.2: A Multimedia Stream with Two Sources and a Time-actionlock

For instance, the following scenario will conclude in a time-actionlock. Source1 sends its first

packet to Place1, at time t = 0. Later, say at t = 10, Source2 sends its first packet to Place2. By

the time that Source2 attempts to send the second packet (t = 35), neither Place1 nor Place2

can offer a matching sourceOut?, because the previous packets have not yet arrived to the Sink

(the transmission delay is at least 80 ms). At this point, a time-actionlock occurs: sourceOut!

in Source2 is urgent at t = 35, but no action is enabled. The time-actionlock occurs because

Source2 makes the sourceOut! action urgent even when it is not enabled, as synchronisation

with Place1 or Place2 is not possible.

We argue that it should only be possible to make an action urgent if it is enabled, i.e., as

Bowman pointed out in [39], “must requires may or, in other terms, you can only force what is

possible.”. Such an interpretation of urgency arises in timed automata with deadlines (which

we will discuss in Section 3.4.1). Unlike timed automata, timed automata with deadlines are

inherently free from time-actionlocks (by construction).
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3.2.2 Example: A Multimedia Stream Model with Zeno-timelocks

Figure 3.3 shows a multimedia stream similar to the one described in Section 3.4 (Figure 3.2),

but where a new component Source3 has been added. This automaton models an unreliable

source, which will attempt to send packets at a speed of 1 packet per 100 ms but, occasionally, a

failure may occur that forces the source to enter an Offline state. Source3 will remain in Offline

for an unspecified period of time, and then it will restart the sequence again.
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State1
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State1
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State0

Source3
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t6:=0
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t1=0

sourceOut !

t1=50
sourceOut !
t1:=0

sourceOut ?
t4:=0

t5=25
sourceOut !
t5:=0

sourceOut ?
t3:=0

t6=100
sourceOut !
t6:=0

sinkIn ?
t2:=0

sourceOut !
t5:=0

sinkIn !
t3>=80

sinkIn !
t4>=80

Figure 3.3: A Multimedia Stream with Three Sources and a Zeno-timelock

Consider, once more, the scenario that in Figure 3.2 caused a time-actionlock: Source1 sends at

t = 0 to Place1; Source2 sends at t = 10 to Place2 and attempts to send again at t = 35, but is

blocked because synchronisation with sourceOut? in either Place1 or Place2 is not possible. At

this point, v(t5 ) = 25, and so the invariant t5 ≤ 25 in Source2.State1 prevents time from passing

any further. However, unlike in the specification of Figure 3.2, a time-actionlock does not occur

because transition failure at Source3.State0 is enabled. Moreover, all infinite runs starting from

Source3.State0 converge, because the loop 〈failure, reset〉 can be visited infinitely often while

time is blocked by Source2. A Zeno-timelock occurs, then, at a state s = [l, v] where l is a location

vector denoting Source1.State1, Source2.State1, Source3. State0, Place1.State2, Place2.State2

and Sink.State1, and v is s.t. v(t) = 25 for t ∈ {t3 , t5} and v(t) = 35 for t ∈ {t1 , t2 , t4 , t6}.

3.3 The Nature of Timelocks and Zeno Runs

Timelocks are quite different from deadlocks. Firstly, unlike deadlocks, timelocks are counter-

intuitive: systems cannot “stop time”, but it is perfectly possible that a system reaches a state
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where it cannot perform further actions. Secondly, a timelock always prevents the whole system

from evolving any further (because automata synchronise on the passage of time), whereas a

(local) deadlock does not necessarily block other components in the system.

Time-actionlocks are different from Zeno-timelocks. A time-actionlock is usually caused

by mismatched synchronisation, while Zeno runs and Zeno-timelocks are typically caused by

under-specification of time constraints (see Sections 3.2.1 and 3.2.2).

A change in the semantics of urgency and synchronisation in timed automata would allow

us to prevent time-actionlocks by construction; in fact, Section 3.4.1 discusses Timed Automata

with Deadlines, where this is indeed the case. However, it seems impossible to prevent Zeno

runs and Zeno timelocks by construction, without disallowing abstract specifications.

Absence of Zeno runs implies absence of Zeno-timelocks (by definition of Zeno-timelock), but

not necessarily absence of time-actionlocks. In fact, in specifications where Zeno runs do not

occur, timelock-freedom is equivalent to deadlock-freedom. On the other hand, timelock-freedom

does not guarantee the absence of Zeno runs.

Timelocks have undesirable consequences on verification. Unless a specification is guaranteed

to be timelock-free, the results obtained during verification may be meaningless. Figure 3.4

shows a network where a timelock occurs in A1 when v(x) = 1. Consider the verification of

the safety property AG(¬A2 .Error), which states that location Error in A2 is never reachable.

This location can only be reached after transition b is performed, but this will never happen: b

is enabled only when v(x) > 2, but the timelock in A1 does not allow time to progress beyond

v(x) = 1. Reachability analysis would determine that the safety property is satisfiable; however,

the error-state (which is characterised by A2 reaching Error) may be reachable at some later

implementation stage.

1

x<=1

A1:
x=1 
a 2A2:

y>2   b
Error

Figure 3.4: Timelocks and Safety Properties (Location Error is Unreachable)

The effect of timelocks and Zeno runs on verification, however, is different. In a timelock-free

specification, there is always at least one divergent run, even from those states where Zeno runs

are possible. Firstly, Zeno runs do not prevent states from being reached by real executions,

because they do not stop time. Secondly, Zeno runs cannot “produce” states that are not already

reachable by real executions. Nonetheless, in general, verification of real-time systems should

only consider divergent runs. The following example shows that Zeno runs may invalidate the

verification of liveness properties, even when the specification is timelock-free.
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Figure 3.5: Zeno Runs and Response Properties (A Model for the Button-test)

Consider here an experiment to measure how fast a button can be pressed in a 10-second period

(Figure 3.5). A subject is asked to press the button as many times as she can: a variable count is

incremented every time the button is pressed. When the period expires, the button is disabled.

Note that the specifier did not assume anything about the speed of the subject; therefore no time

constraints were placed on the press! action. Obviously, the subject cannot press the button

infinitely fast, but the specification does not prevent such interaction. This is reflected by Zeno

runs where the press action (resulting from synchronising press? and press!) occurs arbitrarily

fast. Despite the occurrence of Zeno runs, the network is timelock-free: time can always pass in

location D, which in turn is always reachable from E.

Consider the requirement “from any state where the button is enabled, we can always even-

tually reach a state where the button is disabled”. In Uppaal, we could verify this requirement

using the leads-to formula,

Button.E --> Button.D

This formula is satisfiable if, from every state where the button is enabled, every run thereafter

reaches a state where the button is disabled (Section 2.2). However, this formula does not hold

in the specification of Figure 3.5, because Zeno runs occur when executions remain in E.

We conclude this section with the following observation. In the verification of real-time

systems, it is often the case that we are not interested in general response properties, but rather

in bounded response. Bounded-response properties are of the form “whenever P holds, Q must

eventually hold before n time units”. It is well-known that bounded-response can be expressed

as safety (see, e.g., [85]); thus Zeno runs will not affect the verification of bounded-response

properties if they are mapped to safety properties.2

2Behrmann et al. [22, p. 228]give a method to translate bounded-response to safety formulae in Uppaal.
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3.4 Prevention of Time-actionlocks by Construction

Time-actionlocks occur in timed automata because urgency is given an excessively strong inter-

pretation: actions may be urgent even though they are not enabled. We illustrated this issue

in the multimedia stream example of Figure 3.2. This section presents Timed Automata with

Deadlines [32, 33, 38, 39], where time-actionlocks are prevented by construction.

3.4.1 Timed Automata with Deadlines

Informally speaking, timed automata with deadlines (or TADs, for short) are very much like

timed automata, but they do not include invariants as time-progress conditions. Instead, ur-

gency is expressed by deadlines, which are clock constraints associated with transitions. Time

can pass in any location as long as the current valuation does not satisfy any outgoing deadline

(i.e., deadlines attached to outgoing transitions). In this sense, deadlines and invariants can be

regarded as dual; in timed automata, time can pass as long as the invariant holds, whereas in

TADs time can pass only until a deadline holds. The main differences between timed automata

and TADs are that deadlines hold only if the corresponding transitions are enabled, and synchro-

nisation is urgent only if both parties are enabled. This ensures that TADs are, by construction,

free from time-actionlocks (this is also known as time reactivity [32, 33]: from every reachable

state, either time may pass or some action may be performed).

Different variants of TADs have been proposed, which differ in the treatment of synchroni-

sation (although all of them preserve time reactivity), e.g., standard TADs, sparse TADs and

TADs with minimal priority escape transitions [39]. The presentation of TADs in this section

follows the model of sparse TADs.

Example. Figure 3.6(i) shows a network of two TADs3, and the corresponding product au-

tomaton to the right. Assuming all clocks are initially set to zero, transition b! is enabled in

the time interval [1,∞), and is urgent in [2,∞): the deadline (x ≥ 2) expresses that, during

[2,∞), synchronisation must happen as soon as possible. In the second automaton, b? is enabled

during [3,∞), and is urgent in [4,∞). What happens when v(x) = v(y) = 2? At this point in

execution, transition b! is enabled and enters its urgency interval, but b? is not yet enabled,

and so synchronisation cannot occur.

Deadlines on half actions enforce urgency only if synchronisation can be achieved. Equiva-

lently, synchronisation is urgent as soon as (a) one of the parties is urgent, and (b) both parties

can synchronise (i.e., when both half actions are enabled). As a result, b! “waits” for b? to be-

come enabled, and so synchronisation occurs when v(x) = v(y) = 3. Note that time passes until

3In our TAD figures, deadlines are shown in brackets; “,” denotes conjunction; and “|” denotes disjunction.
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Figure 3.6: Parallel Composition in TADs and TAs

synchronisation is possible, hence synchronisation mismatches cannot cause time-actionlocks.

This behaviour is evident from the structure of the product automaton; the guard of b results

from conjoining the component guards, and the deadline assigned to b is defined as the dis-

junction of the component deadlines, conjoined with the component guards. In this way, the

deadline of b implies its guard.

The network of timed automata in (ii), on the other hand, shows that invariants enforce

a stronger form of urgency than deadlines. The timed automata in (ii) “intend” to mimic the

TADs in (i); for example, the invariant x ≤ 2 (in location 1), makes b! urgent at v(x) = v(y) = 2.

However, the timed automata contain a time-actionlock at v(x) = v(y) = 2; synchronisation

cannot yet occur, but the invariant in location 1 (x ≤ 2) prevents time from passing any further.

Even though, in this example, half actions are not urgent until they are enabled (e.g., b! becomes

enabled at v(x) = 1, and is not urgent until v(x) = 2), invariants will enforce this “local” urgency

regardless of whether synchronisation is possible. This can be seen in the product automaton;

the invariant in 〈1, 3〉 prevents time from passing beyond v(x) = v(y) = 2, even though b is not

yet enabled.

Next, we comment on the basic elements of the theory, and refer the reader to [32, 33, 38, 39]

for a more comprehensive presentation. Unless stated otherwise, the notation respects the sets

and conventions defined for timed automata in Section 2.1.1.

Syntax. A timed automaton with deadlines is a tuple of the form A = (L, l0,TL, T, C), where

L is a finite set of locations; l0 ∈ L is the initial location; TL ⊆ Act is a set of labels; T is
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a transition relation and C is a set of clocks. Transitions in T are denoted l a,g,d,r−−−−−→ l′, where

l, l′ ∈ L are automata locations; a ∈ TL is the action labelling the transition; g ∈ CCC is a

guard; d ∈ CCC is a deadline; and r ∈ P(C) is a reset set. In addition, deadlines and guards

satisfy the following properties.

1. Deadlines imply guards,

(C1) l a,g,d,r−−−−−→ l′ =⇒ (d⇒ g)

2. If both a deadline and its corresponding guard denote the same solution set, then this set

must denote a left-closed time interval,

(C2) l a,g,d,r−−−−−→ l′ =⇒ ((d = g)⇒ ∃ v . (v |= g) ∧ ∀ v′ . (v′ |= g)⇒ v′ ≥ v)

Let us illustrate the necessity for condition (C2) with the following example. Transition a in

the TAD of Figure 3.7 has a guard g = x > 1 and a deadline d = x > 1. Notice that both g

and d denote the same solution set, which corresponds to the left-open interval v(x) ∈ (1,∞).

The deadline does not allow time to pass beyond v(x) = 1 (to see why, check the semantic rule

S2 below); therefore time stops but the action is not yet enabled, and a time-actionlock occurs

in location 1. This example shows that TADs that do not fulfill (C2) are not guaranteed to be

time reactive, even if deadlines imply guards (C1).

1 2

a
x>1
(x>1)

Figure 3.7: Left-open Intervals in TADs

Semantics. Let A = (L, l0,TL, T, C, I) be a TAD where all actions are completed (i.e., TL ⊆

CAct). The semantics of A are given by the TTS (S, s0,Lab, TS), where

• S ⊆ L × VC is the set of reachable states; i.e., the smallest set of states that includes s0

and is closed under the transition relation TS ,

S = { s0 } ∪ { s
′ | ∃ s ∈ S, γ ∈ Lab . s

γ
=⇒ s′ ∈ TS }

• s0 = [l0, v0] is the initial state;

• Lab = TL ∪ R+ is the set of labels for transitions in TS ; and
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• TS ⊆ S × Lab × S is the transition relation defined by the following rules,

(S1)
l a,g,d,r−−−−−→ l′ v |= g

[l, v]
a

=⇒ [l′, r(v)]

(S2)
∀ l′ , l a,g,d,r−−−−−→ l′ ⇒ ∀ δ′ < δ ∈ R+ , (v + δ′) 6|= d

[l, v]
δ

=⇒ [l, v + δ]

Parallel Composition Let |A = 〈A1, ... , An〉 be a network of TADs, whereAi = (Li, li,0,TLi, Ti, Ci).

Let u, u′, etc. denote location vectors. The product automaton is defined as

Π = (L, l0,TL, T, C)

where

• L is the smallest set of location vectors which includes l0 and is closed under the transition

relation T ,

L = { l0 } ∪ {u
′ | ∃u ∈ L, a ∈ TL, g, d ∈ CCC , r ∈ P(C) . u a,g,d,r−−−−−→u′ ∈ T }

• l0 is the initial location vector, l0 = 〈l1,0, . . . , ln,0〉;

• TL is the set of actions labelling the transitions in T ,

TL = { a | ∃u, u′ ∈ L, g, d ∈ CCC , r ∈ P(C) . u a,g,d,r−−−−−→u′ ∈ T }

• T is the transition relation defined by the following rules (1 ≤ i 6= j ≤ n),

(TAD1)
ui

a?,gi,di,ri−−−−−−−→i l uj
a!,gj ,dj ,rj−−−−−−−→j l

′

u
a,g′,d′,ri∪rj−−−−−−−−−→u[l→ i, l′ → j]

(TAD2)
ui

a,g,d,r−−−−−→i l a ∈ CAct

u a,g,d,r−−−−−→u[l→ i]

where g′ , gi ∧ gj and d′ , gi ∧ gj ∧ (di ∨ dj); and

• C is the set of clocks, C =
n⋃

i=1

Ci

Rule (TAD1) defines synchronisation in TADs. As in timed automata, guards and reset sets of

component transitions (matching half actions) are combined in the resulting transition in the

product automaton (completed actions). The disjunction of component deadlines ensures that
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synchronisation is made urgent if at least one of the half actions involved is urgent. Conjoining

the component guards ensures that deadlines in the product automaton’s transitions imply their

guards; in this way time reactivity is preserved. In other words, synchronisation is urgent only

if it can be performed. Finally, rule (TAD2) gives the standard interpretation for completed

actions in component TADs.

3.4.2 Example: A TAD Model For The Multimedia Stream

Figure 3.8 shows a TAD specification for the multimedia stream, which corresponds to the

network of timed automata shown in Figure 3.2. Transitions have been annotated with the

necessary deadlines (shown in brackets). For example, sourceOut? in Source1.State1 is made

urgent as soon as it is enabled (with a deadline t1 = 50). Let us revisit the scenario which

caused a time-actionlock in the timed automata specification of Figure 3.2. Source1 sends at

t = 0; Source2 sends at t = 10 and attempts to send the second packet at t = 35. At this

point, Source2 blocks because synchronisation with sourceOut? in either Place1 or Place2 is

not possible. However, unlike in the timed automata specification, time is not prevented from

passing and all other components can evolve normally; deadlines attached to half actions are

only enforced if synchronisation can be achieved (rule TAD1).

State1

State1

State1

Place1

Place2

Sink

State0

State0

State1 State2

State2

State2State1

Source1

Source2

sourceOut !
(t1=0)

sourceOut ?
t4:=0

sourceOut ?
t3:=0

sinkIn ?
t2:=0

sourceOut !
t5:=0

t1=50
sourceout !
(t1=50) t1:=0 play

t2=5
(t2=5)

t5=25
sourceOut !
(t5=25)
 t5:=0

sinkIn !
t3>=80
(t3=90)

sinkIn !
t4>=80
(t4=90)

Figure 3.8: A TAD Specification for the Multimedia Stream (with Two Sources)
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3.5 Detection of Timelocks and Zeno Runs

This section studies the support for timelock detection available in Uppaal and Kronos, which is

characterised by the verification of liveness properties, and also analyses the strong non-Zenoness

property [156], a static check that guarantees absence of Zeno runs.

3.5.1 Liveness Properties in Kronos and Uppaal

Detection of Timelocks in Kronos. In Kronos, timelock-freedom can be asserted by model-

checking the formula,

λK , init impl ab ed{=1} true

which corresponds to the TCTL formula ∀2∃3=1true. This formula denotes that 1 time unit

can pass from every reachable state; in other words, divergent runs are possible from every state.

The nature of λK . The formula λK is sufficient-and-necessary for timelock-freedom [85], thus

it cannot be used to conclude absence (or occurrence) of Zeno runs. λK is not compositional;

moreover, Kronos requires the product automaton to be constructed a priori.

Detection of Timelocks and Zeno Runs in Uppaal. Uppaal’s requirements language is

not expressive enough to characterise a formula equivalent to λK . However, Uppaal can verify a

CTL formula that guarantees both timelock-freedom and absence of Zeno runs. This is done via

a test automaton [2] and a leads-to formula [160]. Given a network of timed automata, a test

automaton is added as a new component as shown in Figure 3.9 (the test automaton consists of

a single location, T ). The network is free from timelocks and Zeno runs if the leads-to formula

λU holds, where

λU , t==0 --> t==1

λU if from every reachable state, every run allows a 1 time unit delay.

NETWORK ||

t<=1

t=1
t:=0 T

Figure 3.9: The Test Automaton Approach

The nature of λU . λU is a stronger property than λK , and is sufficient-only both for timelock-

freedom and absence of Zeno runs. Therefore, in specifications where λU does not hold, we

cannot determine whether timelocks or Zeno runs occur (or both). λU is not compositional;

however, model-checking λU is done on-the-fly (Uppaal does not build the product automaton).
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3.5.2 The Strong Non-Zenoness Property

The strong non-Zenoness property [156] is a condition on the guards and resets of a loop, which

guarantees that in every iteration of the loop time passes at least by d time units (d ∈ N, d ≥ 1).

Therefore, any run that covers (i.e., visits infinitely often) a strongly non-Zeno loop is necessarily

divergent. If every loop in the automaton is strongly non-Zeno, actions occur infinitely often

only in divergent runs. By definition, then, Zeno runs (and therefore, Zeno-timelocks) cannot

occur. We recall the definition of strong non-Zenoness below. The definition applies both to

simple and non-simple loops (both kinds are loops are considered “structural loops” in [156]).

Strong Non-Zenoness (SNZ). Let A be a timed automaton, and lp a loop in A. The (simple

or non-simple) loop lp is called strongly non-Zeno (or an SNZ-loop) if there exists a clock x and

two transitions t1 and t2 in the loop (not necessarily different) such that x is reset in t1 and

bounded from below in t2. If every loop in A is SNZ, then A is said to be SNZ. Figure 3.10

shows an SNZ-loop.

x:=0
1 2

x<=2

x<=2a  x>1

b  x:=0

Figure 3.10: A Strongly Non-Zeno Loop

The Nature of Strong Non-Zenoness. Strong non-Zenoness is a sufficient-only condition

to guarantee the absence of Zeno runs (Lemma 3.1 and Corollary 3.2). In addition, strong

non-Zenoness is compositional: if every component in a network is strongly non-Zeno, then the

network is free from Zeno runs (Lemma 3.3).

lemma 3.1. Any run that covers a SNZ-loop is necessarily divergent.

Proof. Let lp be a SNZ-loop. Let t1, t2 ∈ Trans(lp), s.t. v(x) = 0 immediately after t1 is

performed, and t2 requires v(x) ≥ c, (c ∈ N, c > 0) to be performed. Then, any run that covers

lp accumulates a delay of at least c time units in every iteration; i.e., it is a divergent run.

Hence, the lemma holds.

Corollary 3.2. Zeno runs cannot cover SNZ-loops.

lemma 3.3. Let A be a timed automaton. If A is SNZ, then A is free from Zeno runs (and

thus, free from Zeno-timelocks). Moreover, if all components in a network |A = |〈A1, . . . , An〉

are SNZ, then the network |A is free from Zeno runs (and thus, free from Zeno-timelocks).

Proof. See [156].
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Zeno runs cannot occur in specifications that are strongly non-Zeno. However, false checks can

be obtained for safe specifications. Figure 3.11(i) is an example of the sufficient-only nature of

strong non-Zenoness. The loop 〈a, b, c〉 is not SNZ (x is not reset anywhere in the loop), but it

does not contain Zeno runs or timelocks (after transition c is performed, transition b is disabled).

On the other hand, the automaton in 3.11(ii) is not SNZ (x is not bounded from below) and

contains Zeno runs, but is timelock-free.

1 2

3

x>1

x<2x>3

a

bc

d
4 1 2

x<=1 x<=1

x:=0

x:=0

(i) (ii)

Figure 3.11: Non-SNZ Timelock-free Automata

3.6 Related Work

Here we comment on related work done on timelocks in timed automata and process calculi.

We discuss later, in Chapter 8, studies on timelocks in deductive frameworks.

Timelocks in Timed Automata. Henzinger et al. [85] give a fixpoint algorithm to check

for timelock-freedom. This algorithm is implemented in Kronos [170] via the λK formula (Sec-

tion 3.5.1); Yovine [169] and Tripakis [156] present a number of case studies where λK is applied.

Kronos, however, cannot detect Zeno runs.

Bouajjani et al. [36] implements a prototype tool to model-check an extension of TCTL with

Timed Buchi Automata, where Zeno runs are detected during verification and avoided (i.e., they

obtain a model-checking algorithm that is faithful to the semantics of TCTL and Timed Büchi

Automata). This algorithm works on-the-fly over the simulation graph (similar to Uppaal’s

forward reachability graph). The authors refine these results in [159], and implement the tool

Profounder to check emptiness of Timed Büchi Automata (using the simulation graph).

The model-checker Red can assert timelock-freedom via a TCTL formula (equivalent to Kro-

nos’ formula λK). In addition, Red is able to detect (and avoid) Zeno runs during verification

[165]. However, unlike in [36, 159], Red implements fixpoint-based algorithms and verifies TCTL

formulas with fairness assumptions. Similar to Kronos and Red, the model-checker TMV [146]

asserts timelock-freedom (TCTL formula), but TMV cannot detect Zeno runs.

53



Tripakis [156, 157] gives an on-the-fly algorithm to detect timelocks that is based on nested

reachability analysis. This algorithm is defined over a single automaton that must be syntacti-

cally modified before the analysis takes place, and denotes a sufficient-and-necessary check for

timelock-freedom (it is similar to checking satisfiability of λK).

Braberman and Olivero [51] present I/O Timed Components, which are partitions of a timed

automaton’s actions as input, output or internal actions, such that composition is guaranteed

to preserve timelock-freedom. However, the timed automata (components of the network) are

assumed to be timelock-free, and no systematic way of deriving I/O Timed Components is given.

Bornot et al. [32, 33] introduce the concept of deadlines as progress conditions for timed au-

tomata. In addition, they discuss a number of composition strategies to preserve time reactivity.

Bowman et al. [43] report on time-actionlocks found in a timed automata specification of a

lip-synchronisation protocol. The analysis was performed in Uppaal, and time-actionlocks were

detected as deadlocks using the Uppaal formula A[]not deadlock. In [38], Bowman explains

the difficulty of defining timeouts without introducing timelocks in the specification. Bowman

[39] is the first in distinguishing between time-actionlocks and Zeno-timelocks, and gives new

composition strategies for timed automata with deadlines (which address limitations in [32, 33]).

Tsoronis [160] introduces the leads-to property λU (Section 3.5.1), and uses it to guarantee

timelock-freedom in a number of case studies in Uppaal. Time-actionlocks and Zeno-timelocks

are formalised later by Su in [150] (our classification of Section 3.2 follows from Bowman and

Su’s work, although we present a simpler formalisation for Zeno-timelocks). Su also implements

a strong non-Zenoness check over Uppaal specifications; however the prototype cannot handle

specifications with certain loop configurations.

IF [50] is a validation environment for real-time systems, which relies on an intermediate

representation language based on timed automata with deadlines, and supports front-ends for

high-level specification languages (such as UML) and validation tools (such as SPIN [88] and

CADP [68]). The intermediate language is asynchronous: Processes communicate by message

passing, senders never block (messages are kept in a queue), and receivers block until the message

is available. Time reactivity is achieved by enforcing urgency only over enabled actions (note,

a blocked receiver is not enabled until the input message is available). In addition, IF supports

dynamic process creation and destruction, and the use of dynamic priorities to restrict non-

determinism in execution. IF verifies safety properties expressed by “observers” (observers are

similar to test automata in Uppaal). However, the tool does implement checks for timelock-

freedom or absence of Zeno runs.
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Timelocks in Process Calculi. The problem of timelocks has been noted (and partially

resolved) in the early timed concurrency theory work, which focused on timed process calculi.

As a result, most timed process calculi only allow urgency to be applied to internal actions

(external -or observable- actions are never urgent), enforcing the as soon as possible (asap)

principle [138]. In process calculi with asap, internal actions are considered implicitly urgent

and will be performed as soon as they are enabled.

This interpretation of urgent internal behaviour, together with a hiding operator, can be

used to make synchronisation urgent without causing a time-actionlock. The hiding operator

turns observable into internal actions. Synchronisation results in an external action only when

it is successful; thus, this external action can be hidden and therefore made urgent. As a

result, mismatched synchronisation never blocks time. However, other form of timelocks may

still occur (including both time-actionlocks and Zeno-timelocks). For instance, Zeno runs and

Zeno-timelocks may be caused by unguarded recursion.

Bowman and Gomez [45] show how timelocks and Zeno runs may arise in a timed extension

of the LOTOS process algebra. Schneider [144] explores similar issues in Timed CSP, and gives

a static check to guarantee timelock-freedom and absence of Zeno runs.

3.7 Summary

We discussed the nature of different classes of timelocks in timed automata specifications, namely

time-actionlocks and Zeno-timelocks. We explained the problem of timelocks and Zeno runs for

verification: we cannot rely on verification unless the specification if timelock-free, and in some

cases, also free from Zeno runs.

Time-actionlocks can be prevented by construction in Timed Automata with Deadlines, but

Zeno-timelocks and Zeno-runs can still occur. Prevention of timelocks and Zeno runs in Timed

Automata, on the other hand, is not possible. Therefore, we focused on detection methods. We

studied the nature of liveness properties in Uppaal and Kronos, and the strong non-Zenoness

property [156].

A liveness formula can be verified in Uppaal that denotes absence of timelocks and Zeno runs,

but the algorithm involves a demanding nested reachability analysis, and rules out timelock-

free specifications where Zeno runs occur. In Kronos, a liveness formula can be checked that is

sufficient-and-necessary for timelock-freedom, but verification requires fixpoint algorithms which

can be computationally expensive, and the product automaton (in order to verify networks of

automata) must be constructed beforehand. Another limitation of Kronos is that absence of

Zeno runs cannot be checked.
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Strong non-Zenoness is compositional and holds in most specifications, and implies absence

of Zeno-timelocks. A consequence of this observation is that, if strong non-Zenoness hold,

timelock-freedom corresponds precisely to deadlock-freedom. This makes strong non-Zenoness a

very appealing property to check: Deadlock-freedom is usually asserted before any other property

is verified; thus, in most cases, strong non-Zenoness suffices to guarantee timelock-freedom (thus

avoiding the more demanding checks of Uppaal and Kronos).

However, one problem with the definition of strong non-Zenoness is that it implies the de-

tection of non-simple loops, which can be computationally expensive. Another limitation is

that many useful specifications, which are both free from timelocks and Zeno runs, cannot be

recognised as safe by the compositional application of strong non-Zenoness. In addition, strong

non-Zenoness is of no use if we want to guarantee timelock-freedom but disregarding, at the

same time, possible occurrences of Zeno runs. We point out, also, that strong non-Zenoness has

not been implemented in any model-checker.

The next two chapters (Chapters 4 and 5) show that we can improve on the limitations of

strong non-Zenoness, and obtain more efficient and comprehensive checks. This chapter also

serves as background for Chapter 8, where we present a deductive framework (Discrete Timed

Automata) that exploits the semantics of urgency and synchronisation of Timed Automata with

Deadlines, in order to prevent time-actionlocks by construction.
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Chapter 4

Zeno-timelocks: Static Checks

Abstract. We present static checks to guarantee the absence of Zeno runs and Zeno-timelocks

in timed automata. We refine the strong non-Zenoness property (Chapter 3), which results in a

more efficient and comprehensive analysis of networks of timed automata. These improvements

better exploit the relationship among simple loops, synchronisation and strong non-Zenoness.

In addition, we define new static checks based on the syntax of invariants in simple loops, which

guarantee absence of Zeno-timelocks regardless of the occurrence of Zeno runs.

This chapter follows from the analysis of Zeno-timelocks, Zeno runs, and the shortcomings

of strong non-Zenoness given in Chapter 3. In Chapter 5, we complement the static checks

discussed in this chapter with semantic checks based on reachability analysis, and comment on

a tool that we have implemented which performs these checks over Uppaal specifications.

Organization. In Section 4.1 we show how the application of strong non-Zenoness can be

improved. We introduce invariant-based checks in Section 4.2. In Section 4.3 we present con-

clusions and suggestions for further research.

4.1 Weakening Strong Non-Zenoness

According to Lemma 3.3 (Section 3.5.2), in order to ensure that a network is free from Zeno

runs, we have to check that every loop (i.e., in every component of the network) is strongly

non-Zeno (SNZ). Note that, as was originally stated, we have to consider both simple and non-

simple loops. Considering that the number of simple loops may be exponential in the worst case

(in a complete graph, the number of elementary circuits is exponential in the number of vertices

[89]), it is not difficult to see how searching for both, simple and non-simple loops, may easily

yield the method intractable.

57



Interestingly, it turns out that the premises of Lemma 3.3 can be weakened in two ways.

1. We just need to consider simple loops in the checks of strong non-Zenoness: a non-simple

loop is SNZ if and only if at least one of the constituent simple loops is SNZ.

2. Synchronisation preserves strong non-Zenoness, in the sense that it does not matter which

loop a SNZ-loop will actually synchronise with; in any case, the result will be a loop in

the product automaton which is SNZ. Hence, not every simple loop in a network must

necessarily be SNZ to guarantee that the network is free from Zeno runs.

<2,3><1,3>
1 2

x<=2 x<=2
3

a!

|| =>A: B:

a  
x>1

b 
x:=0

b
x:=0

a?
x>1

x<=2 x<=2

Figure 4.1: Composition Preserves Strong Non-Zenoness

Consider the network of Figure 4.1: the automaton A is SNZ, but B is not. According

to Lemma 3.3 (i.e., the compositional results of strong non-Zenoness as originally worked out

by Tripakis), this network cannot be considered safe (equivalently, the absence of Zeno runs

cannot be confirmed): B contains a loop that is not SNZ. However, Lemma 3.3 is not taking

into account that the behaviour of B is constrained (via synchronisation) by the behaviour of

A; in other words, B can perform infinitely fast only if A is willing to do so. Therefore, because

Zeno runs are not possible in A (A is SNZ), the network is free from Zeno runs. This can be

confirmed if we examine the product automaton (right): the synchronisation of any loop (e.g.,

〈a!〉 in B) with a SNZ-loop (e.g., 〈a?, b〉 in A), results only in SNZ-loops in the product (in this

case, 〈a, b〉). These results are formalised by Lemma 4.1 and Theorem 4.2 below.

lemma 4.1. Let A be a timed automaton. If every simple loop in A is SNZ, then A is free from

Zeno runs (and thus, A is free from Zeno-timelocks).

Proof. Suppose, by contradiction, that every simple loop in A is SNZ but A is not free from

Zeno runs. Let ρ be one such Zeno run. By definition, actions occur infinitely often in ρ, and

so by Lemma 2.1 ρ covers some simple loop lp in A. However, because lp is SNZ, ρ must be

divergent (by Lemma 3.1), which contradicts our assumption of ρ being a Zeno run. Hence, the

lemma holds.
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Now, we can argue that a network is free from Zeno runs if the product automaton is free from

Zeno runs (by construction, the product automaton is semantically equivalent to the original

network). By Lemma 4.1, the product automaton is free from Zeno runs if every simple loop in

it is SNZ. Interestingly, there is a nice structural dependency among simple loops in the product

and simple loops in the network, which we can exploit to weaken the premises of Lemma 3.3.

By construction (see Section 2.1.1) a simple loop lpπ in the product must satisfy at least one

of the following two conditions.

1. The loop lpπ contains the set of transitions of some completed simple loop in the network,

lpc (lpπ might, in addition, be composed of transitions which belong to other simple loops

in the network). In particular, if a clock x is reset and bounded from below in lpc, then

so is it in lpπ.

2. The loop lpπ contains the set of transitions that are derived from the synchronisation of

at least two matching simple loops in the network (lpπ might, in addition, be composed

of transitions which belong to other simple loops in the network). Let lph be any of these

matching half loops. If a clock x is reset and bounded from below in lph, then so is it in

lpπ (remember: synchronisation unions reset sets, and conjoins guards).

Assume that every completed loop in a network is SNZ, and that, for every pair of matching

loops in the network, at least one of these loops is SNZ. Necessarily, then, every loop in the

product automaton must be SNZ (even when some half loops may not be SNZ). Effectively, we

have weakened Lemma 3.3, but we can still guarantee the same result.

theorem 4.2. Let |A = |〈A1, . . . , An〉 be a network of timed automata. Let HL(|A) be the set

of matching half loops (simple loops), and CL(|A) the set of completed loops (simple loops) in

the network, where

HL(|A) = { (lp, lp′) | ∃ i, j (1 ≤ i 6= j ≤ n) . lp ∈ Loops(Ai) ∧ lp
′ ∈ Loops(Aj) ∧

∃ a? ∈ Act(lp). a! ∈ Act(lp′) }

CL(|A) = { lp | ∃ i (1 ≤ i ≤ n) . lp ∈ Loops(Ai) ∧ ∀ a ∈ Act(lp) . a ∈ CAct }

If at least one loop in every pair in HL(|A) is SNZ and every loop in CL(|A) is SNZ, then the

product automaton obtained from |A is free from Zeno runs. Equivalently, the network |A is free

from Zeno runs (and thus, free from Zeno-timelocks).

Proof. Assume that at least one loop in every pair in HL(|A) is SNZ and every loop in CL(|A) is

SNZ. Note that both sets, HL(|A) and CL(|A), contain only simple loops. Consider the structure

of a simple loop in the product automaton, lpπ: it is either derived from some completed simple

loop in the network, or from two or more matching simple loops in the network.
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Case 1. The loop lpπ contains the set of transitions of some completed simple loop in the

network, lpc. In particular, the following holds.

Resets(lpπ) ⊇ Resets(lpc)

Guards(lpπ) ⊇ Guards(lpc)

Let x be the clock that witnesses the strong non-Zenoness of lpc (every loop in CL(|A) is SNZ),

i.e., x is reset and bounded from below in lpc. It is not difficult to see that x is also reset and

bounded from below in lpπ. Then, lpπ is SNZ.

Case 2. The loop lpπ contains the set of transitions that are derived from the synchronisation

of at least two matching simple loops in the network. Let lp1, lp2 be two such matching loops,

such that lp1 is SNZ (at least one loop in every pair in HL(|A) is SNZ). In particular, the

following holds.

Resets(lpπ) ⊇ Resets(lp′) ∪ Resets(lp′′)

Guards(lpπ) ⊇ {g | l
a,g,r
−−−→ l′ ∈ Trans(lp′) ∪ Trans(lp′′)}∪

{gi ∧ gj | li
a?,gi,r
−−−−→ l′i ∈ Trans(lp′) ∧ lj

a!,gj ,r
−−−−→ l′j ∈ Trans(lp′′)}

Let x be a clock that is reset and bounded from below in lp1. Then, x is also reset and bounded

from below in lpπ. Hence, lpπ is SNZ. Then, every simple loop in the product is SNZ, and so

(by Lemma 4.1) the product is free from Zeno runs. Hence, the network is free from Zeno runs

(and thus, free from Zeno-timelocks).

Note that we have fundamentally enhanced the applicability of strong non-Zenoness. On the

one hand, we have shown that absence of Zeno runs can be guaranteed by considering only

simple loops, which drastically improves tractability. On the other hand, our (weakened) com-

positional application of strong non-Zenoness is able to recognise a broader and more useful

class of specifications than was previously possible with Lemma 3.3.

Many specifications, and in particular, those that result from constraint-oriented designs

[162, 30, 144], exhibit a design pattern similar to the one shown in Figure 4.1. Frequently,

non-SNZ components are abstract components that define an overall behavior (e.g., where the

main concern is the temporal ordering of events, rather than the exact timing of these events),

which can be constrained by other, more specific SNZ components through parallel composition

(synchronisation). Such specifications are common in the literature of real-time systems; for

instance, in the train-gate-controller model of [22], the lip-synch protocol of [43], and the gear-

box controller of [108].
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4.2 Invariant-based Properties

Sometimes, when we are interested in detecting Zeno-timelocks but the occurrences of Zeno runs

are irrelevant to verification, strong non-Zenoness may be too restrictive a property to check.

Consider the loop of Figure 4.2(i). This could represent a system that toggles between two

states: in location 1, it can perform action a at any time and switch to location 2, but it can

only remain there for at most 2 time units before switching back to location 1. This loop is not

SNZ, and indeed Zeno runs may occur (which toggle between location 1 and 2 infinitely fast).

However, this specification is timelock-free, and may be an acceptable abstraction of the system

(e.g., at this stage, the relative speed between a and b may not be relevant).

Consider, now, the loop of Figure 4.2(ii). Here the system is known to remain a maximum

of 3 time units in both locations, and no more than 2 time units in location 1, but the exact

time spent in each location varies in every iteration. Again, this loop is not SNZ; nonetheless,

we would argue that it is a natural specification for such behaviour. Note, in addition, the loop

contains Zeno runs but is timelock-free: x is reset in the loop, so time may always pass up to 2

time units before the next iteration (thus, time can always diverge).

(i) (ii) 

1 2

b

a
x:=0 a

1 22

b
x:=0

x<=2 x<=2 x<=3

Figure 4.2: Invariant-based Properties

We can go one step further, and derive syntactic properties that characterise specifications

such as those of Figure 4.2. If at least one location in the loop does not constrain time (e.g.,

location 1 in Figure 4.2(i)), or at least one invariant in the loop imposes upper bounds on clocks

that are reset in the loop (e.g., location 1 in Figure 4.2(ii)), then such a loop cannot prevent

time-divergence.1

Similarly, other properties can be derived that also consider location invariants. Note that

our timed automata model of Chapter 2 permits lower-bounded invariants (even if these, for

technical reasons, are not allowed in model-checkers such as Uppaal or Kronos). Consider the

model of Figure 4.3(i), where it is known that location 2 cannot be entered from anywhere unless

v(x) > 1; this can be conveniently modelled using a lower-bounded invariant. The loop 〈a, b〉 is

not SNZ, but it does not cause a Zeno-timelock (in fact, it does not cause Zeno runs): location

2 cannot be entered unless at least 1 time unit passes between consecutive iterations.

1Originally [47], we called these properties “location non-urgency” and “reset non-urgency”, respectively.
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A different scenario can be observed in Figure 4.3(ii). The loop can be performed any number

of times during the first 2 time units; however, at any time during the initial 3 time units the

execution may abandon the loop via location 2. This loop is not SNZ and contains Zeno runs, but

it does not cause Zeno-timelocks. Because of the difference between upper-bounds in locations

1 and 2, a valuation can be reached in location 2 that prevents b from being performed, i.e.,

a state can always be reached where no further loop iterations are possible. Note that, solely

from the structure of the loop, we cannot guarantee that a time-actionlock does not occur (e.g.,

location 2 may not have enabled outgoing transitions when v(x) = 3).

1 2

x<=2

a

b
x:=0

1 2

a

b

(i) (ii)

x<=2 x<=31<=x<=2

Figure 4.3: More Invariant-based Properties

As we did before for Figure 4.2, we can extract general properties from Figure 4.3. If there is

a clock that is reset in the loop, and bounded from below in some location of the loop, then that

loop does not cause Zeno runs (e.g., location 2 in Figure 4.3(i)). If there is at least one location

in the loop where all upper-bounds are strictly greater than the smallest upper bound for the

corresponding clocks (e.g., in Figure 4.3(ii), the invariant of location 2 imposes an upper-bound

of 3 to clock x, whose smallest upper bound is 2), then that loop does not cause Zeno-timelocks

(it may, though, cause time-actionlocks).

In a sense, the properties illustrated by Figures 4.2 and 4.3 are “weaker” than strong non-

Zenoness; they can guarantee the absence of Zeno-timelocks, but not the absence of Zeno runs.

On the other hand, these properties consider the syntax of loop invariants and are able to

recognise a class of safe specifications that are not SNZ.

We formally enunciate these invariant-based properties in Lemma 4.7; this is used later

to derive a syntactic method to prove the absence of Zeno-timelocks in a given automaton

(Theorem 4.8). We first introduce a number of auxiliary concepts and lemmas.

Informally, a loop that “causes” a Zeno-timelock determines the occurrence of covering Zeno-

timelocks; otherwise the loop is said to be inherently safe.

lemma 4.3. Every state reachable from a Zeno-timelock is also a Zeno-timelock.

Proof. This lemma follows from the definition of Zeno-timelocks (Section 3.2).
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lemma 4.4. Let l be a given automaton’s location with invariant I(l) ,
n∧

i=1

xi ≤ ci. The

following two conditions hold.

1. If l is reachable, then there exists a finite run ρ that remains in l while the invariant holds.

Moreover, the last state in ρ is s = [l, v], where v(xi) = ci, for some 1 ≤ i ≤ n.

2. Time can pass in l only if ci > 0, for all 1 ≤ i ≤ n.

Proof. This lemma is a consequence of the semantics of invariants in timed automata (see

Section 2.1.2).

Covering Zeno-timelocks. Let lp be a loop, and s a Zeno-timelock. We say that s covers

lp if every finite run starting from s can be extended to a run that covers lp. Formally, a

Zeno-timelock s covers lp if ∀ ρ ∈ FiniteRuns(s).∃ ρ′ ∈ CoveringRuns(s, lp). ρ ⊆ ρ′.

lemma 4.5. From any Zeno-timelock, another Zeno-timelock can be reached that covers some

simple loop.

Proof. Let s0 be a Zeno-timelock, and s1 be a Zeno-timelock reachable from s0 (by Lemma 4.3,

every state reachable from s0 is a Zeno-timelock). Let ρ1 be any Zeno run starting from s1. By

Lemma 2.1, ρ1 must cover some simple loop lp1 (i.e., ρ1 visits lp1 infinitely often). Suppose, by

contradiction, that the lemma does not hold. In other words, there is no state s′ reachable from

s1, and no simple loop lp′, such that s′ covers lp′. Then, after visiting lp1 a finite number of

times, ρ1 must reach a state s2, from which lp1 cannot be visited again.

Because there are only finitely many simple loops to visit, we can apply our previous reasoning

to postulate the existence of some state sn, from which no simple loop can ever be visited again.

This implies that no run starting from sn can be extended to a Zeno run (once sn is reached, no

action can occur infinitely often). By definition, sn cannot be a Zeno-timelock, which contradicts

Lemma 4.3. Hence, our initial contradiction cannot be justified, and the lemma holds.

Corollary 4.6. A Zeno-timelock occurs if and only if a Zeno-timelock occurs that covers a

simple loop.

Inherently Safe Loops. A (simple or non-simple) loop lp is inherently safe if there is no Zeno-

timelock that covers lp (note, by Lemma 3.1, that any run that covers a SNZ-loop is necessarily

divergent, and so SNZ-loops are inherently safe).
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lemma 4.7. Let lp be a (simple or non-simple) loop, such that

• (Prop. 1) there is an invariant in lp where no clock is bounded from above; or

• (Prop. 2) there is an invariant in lp, I(l) ,
n∧

i=1

xi ≤ ci, where xi ∈ Resets(lp) and ci > 0

for all 1 ≤ i ≤ n; or

• (Prop. 3) there is a clock that is reset in lp and bounded from below in some invariant of

lp; or

• (Prop. 4) there is an invariant in lp, I(l) ,
n∧

i=1

xi ≤ ci, where ci > cmin(xi, lp) for all

1 ≤ i ≤ n.

Then, lp is inherently safe.

Proof. Let lp be a loop that satisfies at least one of the properties stated by this lemma. Suppose,

by contradiction, that there exists a Zeno-timelock, s, which covers lp. Consider the possible

cases.

(Prop. 1) Let l ∈ Loc(lp), s.t. no clock in I(l) is bounded from above. Then, I(l) cannot prevent

time from passing. Hence, if l is reached, a divergent run (starting from l) is possible.

(Prop. 2) Let l ∈ Loc(lp) s.t. I(l) ,
n∧

i=1

xi ≤ ci, xi ∈ Resets(lp) and ci > 0, for all 1 ≤ i ≤ n.

By definition, every finite run starting from s can be extended to a run that covers lp. Let

ρ(s) be a run that covers lp, s.t. every time it reaches l, it remains there while the invariant

holds (Lemma 4.4). Every time that ρ iterates over lp, all the clocks in I(l) are reset before l is

reached. Because ρ remains in l while the invariant holds, every iteration has a delay of at least

d time units, where d = min(c1, c2, . . . , cn) (note that, d > 0 because ci > 0, for all 1 ≤ i ≤ n).

Hence, ρ must be a divergent run.

(Prop. 3) Let x ∈ Resets(lp), and l ∈ Loc(lp) s.t. x is bounded from below in I(l). Let t1 be the

transition in lp where x is reset, and t2 be the transition in lp that is ingoing to l. Every time a

run reaches l, it must be the case that v(x) ≥ c, (c ∈ N, c > 0). Note that, at least c time units

must pass between the execution of t1 and t2. Hence, any run that covers lp is divergent.

(Prop. 4) Let l ∈ Loc(lp) s.t. I(l) ,
n∧

i=1

xi ≤ ci, where ci > cmin(xi, lp) for all 1 ≤ i ≤ n. By

definition, every finite run starting from s can be extended to a run that covers lp. Let ρ(s)

be a run that covers lp, s.t. every time it reaches l, it remains there while the invariant holds

(Lemma 4.4). Let y be a clock occurring in I(l) (i.e., y = xi, for some 1 ≤ i ≤ n). Let l′ 6= l be
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a location in lp where y is bounded from above by its smallest upper bound (i.e., y ≤ cmin(y, lp)

is a term in I(l′)). We assumed that ρ covers lp, and that remains in l while the invariant holds.

In particular, every time ρ leaves l, the value of y is such that v(y) > cmin(y, lp). Then, y must

be reset before ρ reaches l′ again (otherwise, the invariant in l′ would prevent this location to

be entered). But if this is the case, then every iteration has a delay of at least d time units,

where d = min(c1, c2, . . . , cn) (again, note that d > 0 because ci > 0, for all 1 ≤ i ≤ n). Hence,

ρ must be a divergent run.

We proved that, if any of the four properties stated in the lemma are satisfied, and a Zeno-

timelock s occurs that covers lp, then a divergent run must exists that starts from s. This

contradicts the assumption that s is a Zeno-timelock. Hence, either s is not a Zeno-timelock, or

it is a Zeno-timelock that does not cover lp: by definition, lp is inherently safe.
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Figure 4.4: On the Nature of Property (4)

We have seen examples of loops that satisfy properties (1), (2), (3) and (4) in Figures 4.2(i)

and (ii), and Figures 4.3(i) and (ii), respectively. Figure 4.4 further illustrates the check of

property 4. The loop in Figure 4.4(i) does not satisfy property (4): every invariant imposes

the same (smallest) upper bound on y (cmin(y, lp) = 1). In particular, the state s = [1, v] is a

Zeno-timelock, where v(y) = 1 and v(x) = v(z) = 0.

On the other hand, the loop in Figure 4.4(ii) satisfies property (4) because all conjuncts in

the invariant of location 2 refer to constants that are greater than the smallest upper bound (for

every clock). Note that the difference between the upper bounds in locations 1 and 2 confirms

that time is allowed to pass by at least 1 time unit in location 2 (if so, we will end up with a

time-actionlock, but no Zeno-timelock can cover this loop).

Finally, the loop in Figure 4.4(iii) shows a slightly different arrangement of upper bounds, but

does not satisfy property (4). Note, that there is no invariant where every clock is greater than

its smallest upper bound. In fact, a Zeno-timelock occurs in s = [1, v], where v(x) = v(y) = 1.
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theorem 4.8. Let A be a timed automaton, where every simple loop in A either is SNZ or

satisfies Lemma 4.7. Then, A is free from Zeno-timelocks.

Proof. Assume that every simple loop in A either is SNZ, or it satisfies some condition enumer-

ated in Lemma 4.7. Then, by Lemmas 3.1 and 4.7, no simple loop in A can be covered by a

Zeno-timelock. By Corollary 4.6, A is free from Zeno-timelocks.

The Nature of Invariant-based Properties. The application of Theorem 4.8 is static (thus,

no model-checking is necessary), and only simple loops need to be considered. Invariant-based

properties complement strong non-Zenoness to detect a broader class of safe specifications (these

properties, invariant-based and strong non-Zenoness, do not imply each other).

The invariant-based properties (1), (2) and (4) guarantee the absence of Zeno-timelocks,

but not the absence of Zeno runs. These properties are not compositional. For example, both

automata in Figure 4.5(i) satisfy property (1), because locations 2 and 4 have true-invariants.

However, composition results in a product automaton with a single loop, where a Zeno-timelock

occurs at s = [〈1, 3〉, v] with v(x) = v(y) = 1. Similarly, the component automata of Fig-

ure 4.5(ii) can be considered safe according to Theorem 4.8, because the loops satisfy property

(4), but again a Zeno-timelock occurs at s = [〈1, 3〉, v] with v(x) = v(y) = 1.
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Figure 4.5: Noncompositional Syntactic Conditions

Property (3), on the other hand, does guarantee absence of Zeno runs (see proof of Lemma 4.7)

and is compositional (the proof of this, which we omit here, is similar to that of Theorem 4.2).

All invariant-based properties represent a sufficient-only condition for absence of Zeno-

timelocks (and so, by extension, Theorem 4.8 is also sufficient-only). For example, the au-

tomaton of Figure 4.6 is free from timelocks, but it does not satisfy Theorem 4.8: the loop does

not satisfy any of the invariant-based properties (nor is it a SNZ-loop). The key point here
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Figure 4.6: A Timelock-free Automaton (Theorem 4.8 is Sufficient-only)

is that even when Zeno runs do exist (e.g., the run starting in location 1 that remains there,

performing an infinite number of a-transitions in 1 time unit), there is no state in the model

that prevents divergent runs. Note that transition b is always enabled in location 1, and time is

always allowed to diverge in location 2.2

4.3 Conclusions

The strong non-Zenoness property [156] is a condition on guards and resets in loops, which

guarantees absence of Zeno runs in networks of timed automata. Strong non-Zenoness is static,

compositional, holds in most specifications, and suffices to guarantee timelock-freedom (if the

specification is deadlock-free). Thus, in most cases, a simple check for strong non-Zenoness

avoids the more demanding verification of liveness properties, which characterise the support

for timelock detection available in model-checkers (see Sections 3.5.1 and 3.5.2).

However, checking for strong non-Zenoness (according to the original definition) requires the

detection of non-simple loops, which may be computationally expensive. Another limitation is

that all loops, in every component of the network, are required to be SNZ to guarantee absence

of Zeno runs. We offered a number of solutions to these problems.

• We refined the application of strong non-Zenoness to derive a more efficient and com-

prehensive check. We proved that, in order to guarantee absence of Zeno runs, (a) it is

sufficient to check strong non-Zenoness just on simple loops (we proved that a non-simple

loop is SNZ if and only if any of its constituent simple loops is SNZ), and (b) not every loop

in the specification is required to be SNZ (we proved that synchronisation of a SNZ-loop

with any other loop is safe). With these improvements, a class of systems that are free

from Zeno runs, but where not every loop is SNZ, can now be positively analysed.

• We introduced new static checks to guarantee absence of Zeno-timelocks in a timed au-

tomaton, based on the syntax of invariants in simple loops. These checks are able to

recognise specifications that are free from Zeno-timelocks, but which may not be SNZ.

2This is related to the notion of escape transitions, which we exploit in Section 5.1 to define sufficient-and-
necessary checks.
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Therefore, together with strong non-Zenoness, invariant-based properties define a more

comprehensive check for absence of Zeno-timelocks.

These improvements suggest that strong non-Zenoness should be our first sanity check (i.e.,

to assert whether the specification is well-timed); if this check is inconclusive, then we can

verify the liveness properties λU (in Uppaal) and λK (in Kronos), if we are only interested

in guaranteeing timelock-freedom (Section 3.5.1). In addition, our strong non-Zenoness check

simplifies verification in Red [165] and Profounder [159], which must run demanding algorithms

to detect and avoid Zeno runs.

On the other hand, we may need to check timelock-freedom in specifications where Zeno runs

occur, but where such runs do not affect the verification of our requirements (e.g., safety proper-

ties). In such situations, checking strong non-Zenoness (or verifying the property λU in Uppaal)

will give inconclusive results. In response to these limitations of strong non-Zenoness and Up-

paal’s detection method, we proposed a number of invariant-based properties (Section 4.2),

which guarantee absence of Zeno-timelocks but are insensitive to Zeno runs.

Kronos can detect timelock-freedom with the liveness formula λK , which is equivalent to the

TCTL formula ∀2∃3=1 true. This embodies a sufficient-and-necessary condition for timelock-

freedom, and thus it is insensitive to the occurrences of Zeno runs. However, Kronos cannot

detect absence of Zeno runs (thus, it would benefit from our strong non-Zenoness check), and

TCTL is not available to most model-checkers (most tools can only perform reachability anal-

ysis). In contrast, our static checks are available to all timed automata specifications, and so

they can be implemented in all model-checkers.

Nonetheless, depending on the specification at hand, the checks available in Uppaal or Kronos

may be the best choice. For instance, the invariant-based conditions of Section4.2 require the

product automaton to be built a priori; checking for timelock-freedom in Uppaal may be more

efficient if a timelock is detected after exploring just a small part of the reachability graph

(Uppaal’s verification is on-the-fly).

Another advantage of Uppaal and Kronos is that verification is performed over richer spec-

ification languages. For instance, Uppaal’s automata may include variables and richer reset

conditions, while the strong non-Zenoness property has been defined over timed automata mod-

els where clocks are reset to zero and lower-bounds are constants.

Interestingly, the application of strong non-Zenoness could be further weakened, to account

for more complex synchronisation scenarios. For example, Figure 4.7 shows three synchronising

loops, where only one of them is SNZ. We can see (right) that synchronisation is safe. However,

we cannot determine this if we only check the set of loops pairwise, as Theorem 4.2 suggests

(Section 4.1). Instead, we could sacrifice some efficiency in favor of a more accurate check, which

gathers the component loops that are necessary to complete synchronisation.
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Figure 4.7: Exploiting Synchronisation in Strong Non-Zenoness

To conclude, we point out that the static checks presented in this chapter are sufficient-only, thus

they may be inconclusive for certain safe specifications. In the following chapter (Chapter 5),

we will present semantic checks based on reachability analysis, which denote sufficient-and-

necessary conditions. In addition, we will comment on a tool that we have implemented, which

performs our static and semantic checks over Uppaal specifications.
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Chapter 5

Zeno-timelocks: Semantic Checks

Abstract. We present sufficient-and-necessary checks for the absence of Zeno-timelocks and

Zeno runs in a timed automaton. These checks are based on reachability formulae that are

derived from the structure of loops, which characterise the occurrence of Zeno-timelocks and

Zeno runs in the loops. We propose a strategy to assert absence of Zeno runs and Zeno-

timelocks in networks of timed automata, which combines the static checks of Chapter 4 (strong

non-Zenoness and invariant-based properties) with the reachability-based properties discussed

in this chapter. We show that reachability analysis needs to be performed only for those loops

that static checks could not rule out as safe. Furthermore, we have implemented a tool that

performs these checks over Uppaal specifications.

Organization. We develop the theory behind our semantic checks in Section 5.1. In Section 5.2

we introduce a reachability-based property that characterises the occurrence of Zeno-timelocks

in a loop. Similarly, we characterise the occurrence of Zeno runs in Section 5.3. In Section 5.4,

we propose a layered strategy to combine static and semantic checks. Section 5.5 describes a

tool that we have implemented, which performs both static and semantic checks over Uppaal

specifications. In Section 5.6, we use the CSMA/CD protocol as a case study. We conclude this

chapter in Section 5.7, and comment on further research.

5.1 Preliminaries

Static checks, such as strong non-Zenoness and the invariant-based properties that we presented

in Chapter 4, made evident that the structure of loops allows us to infer the absence of Zeno runs

and Zeno-timelocks. However, specifications may be free from timelocks and Zeno runs even if

static checks do not hold; in other words, syntax alone does not suffice to infer that Zeno runs

or Zeno-timelocks will occur. We need to complement static checks (easier to implement, and
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more efficient) with semantic, sufficient-and-necessary checks (more conclusive). In particular,

we must address the following issues.

• Simple vs. Non-simple Loops. In general, properties that consider simple loops (e.g.,

strong non-Zenoness) check whether the structure of the loop prevents Zeno runs. However,

even if Zeno runs are possible, this does not necessarily mean that Zeno-timelocks will

occur. If we only consider simple loops, we cannot see what happens to Zeno runs when

(and if) they abandon a loop: Zeno runs may reach a state outside the loop where time

diverges (thus, a Zeno-timelock cannot occur), or they may remain “trapped” among

simple loops where all actions are urgent (i.e., a Zeno-timelock has occurred, but the Zeno

runs are confined to some non-simple loop). The interaction between Zeno-timelocks and

loops is characterised by the concept of locality, which we will formalise in this section.

• Time-divergence. Zeno-timelocks may occur in runs where time cannot diverge, but

where delays are always possible (e.g., time may pass by a series of decreasing delays

0.5 + 0.25 + 0.125 + . . .). To simplify our reachability-based properties, we assume that

whenever a Zeno-timelock occurs, a valuation is eventually reached that remains constant,

i.e., runs thereafter do not change the values of clocks. Hence, we restrict our analysis

to loops that contain only true- or right-closed invariants. Right-closed invariants are

represented by the following BNF,

I ::= x ≤ c | I ∧ I

where I is a right-closed invariant, x is a clock, and c ∈ N is a constant.1

• Synchronisation. It seems impossible to obtain sufficient-and-necessary checks that, in

addition, are compositional: unresolved synchronisation brings uncertainty to the analysis.

Therefore, we must restrict our analysis to timed automata that contain only completed

actions (thus, in order to analyse a network, the checks will be applied to the product

automaton).

The remainder of this section introduces concepts and lemmas that support the definition of

sufficient-and-necessary checks for Zeno-timelocks (Section 5.2) and Zeno runs (Section 5.3).

Throughout this chapter, A denotes a timed automaton that contains only completed actions,

and where all loops contain only true- or right-closed invariants.

1This is not a severe restriction: most specifications are given in terms of right-closed invariants only.
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Local Runs. Let lp be a loop and ρ a run. We say that ρ is local to lp if it only visits transitions

of lp. Formally, ρ is local to lp if Trans(ρ) ⊆ Trans(lp). We use LocalRuns(s, lp) to denote the

set of all runs starting from s that are local to lp.

Local Zeno-timelocks. Let lp be a loop, and s a Zeno-timelock that covers lp. We say that

s is local to lp if, once s is reached, only transitions in lp can be visited (note that, because s

covers lp, lp can be visited infinitely often from s). Formally, a Zeno-timelock s is local to lp if

Runs(s) = LocalRuns(s, lp).

By way of example, Figure 5.1 (i) shows that the state s = [1, v] (v(x) = 1) is a Zeno-timelock

local to the (non-simple) loop 〈a, b, d , c, d〉. Note that, if a Zeno-timelock is local to some loop

lp, then it also covers lp, but the converse is not always true.

For example, in (i), s = [1, v] (v(x) = 1) is a Zeno-timelock that covers the simple loop 〈c, d〉,

because every finite run starting from s can be extended to a run that visits c and d infinitely

often. However, s is not local to 〈c, d〉; there are runs starting from s that visit a and b, which

are not part of the loop. For the same reason, s is not local to the simple loop 〈a, b, d〉 either.

In some specifications, then, Zeno-timelocks may occur that are only local to non-simple loops.

In contrast, Figure 5.1 (ii) shows that s′ = [1, v′] (v′(x) = 2), is a Zeno-timelock local to the

simple loop 〈c, d〉; once s′ is reached, neither a nor b are enabled.
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Figure 5.1: Simple Loops, Non-simple Loops and Local Zeno-timelocks

lemma 5.1. From any Zeno-timelock, another Zeno-timelock can be reached that is local to some

(simple or non-simple) loop.

Proof. Let s be a Zeno-timelock (remember, by Lemma 4.3, that any state reachable from s is

also a Zeno-timelock). By Lemma 4.5, there exists a simple loop, lp1, and a Zeno-timelock, s1,

that covers lp1 and is reachable from s. By definition, every finite run starting from s1 can be

extended to a run that covers lp1. Given s1 and lp1, only two cases are possible. An analysis of

each case follows.

72



Case 1. There exists s′1 reachable from s1, s.t. runs starting from s′1 visit only transitions in

lp1 (i.e., every run starting from s′1 is local to lp1). By definition, s′1 is a Zeno-timelock local to

lp1. Hence, we have proved our claim.

Case 2. Case 1 is not true; i.e., from every state that is reachable from s1, some transition

outside lp1 can always be visited. In fact, because lp1 can be visited infinitely often, there must

exist s2 reachable from s1, and a set of transitions T2 ⊃ Trans(lp1), s.t. every transition in T2

can be visited infinitely often, from any state that is reachable from s2. Note that T2 represents

a non-simple loop lp2, s.t. Trans(lp2) = T2. Again, the same two cases are possible for s2 and

lp2, and we apply the same reasoning.

Note that, every time that Case 1 does not hold, a bigger non-simple loop can be built

(according to Case 2). But there are only finitely many transitions to try. Thus, our reasoning

can only be applied a finite number of times, and Case 1 must eventually hold for some state

sn and non-simple loop lpn, where

Trans(lpn) ⊃ Trans(lpn−1) ⊃ . . . ⊃ Trans(lp1)

This state sn is a Zeno-timelock local to lpn, and sn is reachable from s. Together, sn and lpn

justify the lemma.

Corollary 5.2. A Zeno-timelock occurs if and only if a Zeno-timelock occurs that is local to

a (simple or non-simple) loop.

Converged Zeno-timelocks and Maximal Valuations. Let s = [l, v] be a Zeno-timelock.

We say that s is a converged Zeno-timelock if no valuation, other than v, is reachable from s. For-

mally, a Zeno-timelock s = [l, v] is a converged Zeno-timelock if ∀ l′, v′. (s
∗

=⇒ [l′, v′]) ⇒ (v′ = v).

In addition, we say that v is maximal w.r.t. Runs(s).

Figure 5.1(i) serves to illustrate the concept of converged Zeno-timelocks. Every state that

is reachable in 〈a, b, d , c, d〉 is a Zeno-timelock, but only those where v(x) = 1 are converged

Zeno-timelocks (no clock can ever change its value after v(x) = 1).

lemma 5.3. From any Zeno-timelock, another Zeno-timelock is reachable from which no further

delay is possible.

Proof. Let s be a Zeno-timelock. Suppose, by contradiction, that every state that is reachable

from s allows some delay (although, time cannot diverge). By definition of Zeno-timelock, every

finite run starting from s can be extended to a Zeno run. In addition, all locations that are

reachable from s must have a right-closed invariant (true-invariants would imply the existence
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of divergent runs, by Lemma 4.7). Therefore, it is possible to build a Zeno run, ρ, that starts

in s and remains in every location it visits while the invariant holds (Lemma 4.4).

Since there are only finitely many locations to visit, there must exist a location l that is visited

infinitely often by ρ, s.t. that some delay is possible whenever l is entered. By Lemma 4.4, and

because ρ remains in l while the invariant holds, there is a term y ≤ c in I(l), s.t. v(y) = c

(c ∈ N, c > 0) every time that ρ leaves l. Note that once l is left, ρ must reset all clocks in

I(l) before it can visit l again (including the clock y). As ρ visits l infinitely often, it must

accumulate an infinite number of delays d > 0, d ∈ N; i.e., it is a divergent run (this contradicts

our assumption that ρ is a Zeno run).

We proved that if s is a Zeno-timelock, some state s′ must exist that is reachable from s,

where time cannot pass any further (by Lemma 4.3, s′ is itself a Zeno-timelock). Hence, the

lemma holds.

lemma 5.4. From any Zeno-timelock, a converged Zeno-timelock is reachable.

Proof. Let s be a Zeno-timelock. By Lemmas 5.1 and 5.3, there exists a Zeno-timelock s′

reachable from s, which is local to some loop lp, and where no further delay is possible. Consider

the set R ⊆ Resets(lp) of all clocks that are reset by any run starting from s′. Note that, R is

finite and a state s′′ must exist, which is reachable from s′, such that every clock in R has been

reset at least once before s′′ is reached.

In our timed automata model, a clock value can change only as a result of delays (the value

increases) or resets (the value is set to zero). This observation, and the fact that further time

passing is not possible from s′, has two consequences. First, once a clock has been reset after s′

is reached, its value becomes permanently zero. In particular, the following holds,

∀x ∈ R, l, v. ((s′′
∗

=⇒ [l, v])⇒ v(x) = 0)

Secondly, if a clock in the automaton is never reset after s′ is reached, then its value remains

constant (it maintains the value it had when s′ was reached). In particular, the following holds,

∀x /∈ R, l1, l2, v1, v2. ((s
′′ ∗

=⇒ [l1, v1]
∗

=⇒ [l2, v2])⇒ v1(x) = v2(x))

Hence, once s′′ is reached, the valuation remains constant. By definition, s′′ is a converged

Zeno-timelock, and the lemma holds.

Corollary 5.5. Any state reachable from a converged Zeno-timelock is also a converged Zeno-

timelock.
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Converged Zeno-timelocks denote valuations with some particular features, which makes

them easier to identify. For some loop in the automaton, we want to determine whether a con-

verged Zeno-timelock may occur, which is local to this loop. Let us refer to such loops as Zeno

loops.

Zeno Loops And Maximal Valuations. We say that a loop lp is a Zeno loop if there exists

a state s reachable in lp, s.t. once s is reached, lp can be covered by local runs, but none of

these runs can pass time. Formally, lp is a Zeno loop if there exists a reachable state s = [l, v],

where l ∈ Loc(lp), s.t. LocalRuns(s, lp) ∩ CoveringRuns(s, lp) 6= ∅, and v is maximal w.r.t.

LocalRuns(s, lp). We refer to such v as a maximal valuation of lp.2

The syntactic structure of Zeno loops plays a role in the reachability of maximal valuations.

Indeed, if lp is a Zeno loop and v is a maximal valuation of lp, the following conditions hold.

1. v satisfies all invariants and guards of lp (lp can be visited infinitely often).

2. v(x) = 0, for every clock x that is reset in lp (once v is reached, no clock can ever decrease).

3. v reaches at least one upper bound in every invariant of lp (once v is reached, no clock

can ever increase).

By way of example, Figure 5.2(i) shows a Zeno loop, 〈b, c〉 where a number of converged

Zeno-timelocks may occur. For instance, s = [2, v] (v(x) = v(y) = 1, v(z) = 0) is a converged

Zeno-timelock that is reached if transition a is performed as soon as possible.

On the other hand, the converged Zeno-timelock s′ = [2, v′] (v′(x) = 1, v′(y) = 2, v′(z) = 0)

is reached if a was performed as late as possible. Note that, in this loop, the possible maximal

valuations are represented by the set { v | v(x) = 1 ∧ 1 ≤ v(y) ≤ 2 ∧ v(z) = 0 }. In general,

many different maximal valuations may be reachable in a loop; hence different converged Zeno-

timelocks may be local to the same loop.
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Figure 5.2: Zeno loops, Converged Zeno-timelocks and Maximal Valuations

2Note that, if v is a maximal valuation of lp, then s′ = [l′, v] is reachable, for any l′ ∈ Loc(lp).
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lemma 5.6. Let lp be a Zeno loop; s = [l, v] a state reachable in lp; and v a maximal valuation

of lp. Every finite run in LocalRuns(s, lp) can be extended to an infinite run in LocalRuns(s, lp),

and every infinite run in LocalRuns(s, lp) is a Zeno run.

Proof. By definition of Zeno loop, there is a run in LocalRuns(s, lp) that covers lp. Because

v is maximal w.r.t. LocalRuns(s, lp), no such local run can ever reach other valuation than v.

Therefore, every finite run can be extended to a run that visits just the transitions of lp, infinitely

often (i.e., an infinite local run). Again, because v is maximal, no location in lp can ever pass

time (if reached from a transition in lp). Hence, every infinite run in LocalRuns(s, lp) is a Zeno

run.

Zeno loops are responsible for Zeno runs that cover the loop; these runs are possible once

a maximal valuation has been reached in the loop. Zeno-timelocks may occur only if maxi-

mal valuations are reachable, but the converse does not necessarily hold; for instance, maximal

valuations may enable divergent runs, or may denote time-actionlocks (in neither case a Zeno-

timelock would occur). However, if a maximal valuation does not represent a Zeno-timelock

local to the loop, then it must enable some transition outside the loop. This motivates the

definition of escape transitions.

Escape transitions. Let lp be a loop in A. We will say that a transition l
a,g,r
−−−→ l′ is an escape

transition of lp if l ∈ Loc(lp) and l
a,g,r
−−−→ l′ /∈ Trans(lp). We use Esc(lp) to denote the set of

escape transitions from lp.

Figure 5.2(ii) shows that 〈b, c〉 is a Zeno loop, with maximal valuations in {v | v(x) =

1 ∧ 1 ≤ v(y) ≤ 2 ∧ v(z) = 0}. Transition d is an escape transition that is enabled by any

maximal valuation of the loop. Zeno loops and maximal valuations do not necessarily determine

the existence of Zeno-timelocks: any run visiting the loop 〈b, c〉 can be extended to a divergent

run that visits e infinitely often.

If a maximal valuation is reached and escape transitions are not enabled at this point, a

Zeno-timelock occurs. On the other hand, Zeno-timelocks may occur even if escape transitions

are enabled by maximal valuations. Consider again Figure 5.1 (i), and the Zeno loop 〈c, d〉.

Transition a is an escape transition from this loop, which is enabled by any of its maximal

valuations (which satisfy v(x) = 1). Therefore, there is no Zeno-timelock that is local to the

loop 〈c, d〉. However, a Zeno-timelock occurs that is local to 〈a, b, d , c, d〉.

theorem 5.7. Let lp be a loop in A. There exists a converged Zeno-timelock s = [l, v], local

to lp, if and only if lp is a Zeno loop, v is a maximal valuation of lp, and there are no escape

transitions of lp that are enabled by v.
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Proof. (⇒) Assume that s = [l, v] is a converged Zeno-timelock, local to lp. By definition, no

run in Runs(s) can ever reach a valuation other than v; there exists at least one run in Runs(s)

that covers lp; and every run in Runs(s) visits only transitions of lp. Hence, lp is a Zeno loop;

v is a maximal valuation of lp; and no escape transition can be enabled by v.

(⇐) Assume that lp is a Zeno loop; v is a maximal valuation of lp; and there are no escape

transitions from lp that are enabled by v. By Lemma 5.6, every finite local run (starting from

s) can be extended to an infinite local run, and every such infinite run is a Zeno run. Because

escape transitions are not enabled by v, every run starting from s must be local to lp, and v is

the only valuation that can be reached. By definition, s is a converged Zeno-timelock, local to

lp. Hence, the lemma holds.

Corollary 5.8. A Zeno-timelock occurs in A if and only if there is a Zeno loop lp in A, s.t.

some maximal valuation of lp is reachable that does not enable any escape transition of lp.

Corollary 5.8 (and Theorem 5.7) represents a sufficient-and-necessary condition for the oc-

currence of Zeno-timelocks. However, this check depends on finding loops, maximal valuations,

and escape transitions. In order to derive a practical method, a feasible way to obtain maximal

valuations must be found. In what follows, we show that this can be done through reachability

analysis.

5.2 Zeno-timelocks and Reachability

The following results relate maximal valuations and escape transitions with reachability formulae

(incidentally, these formulae can be verified in Uppaal). As before, we assume a single automaton

(A) that contains only completed actions, and where all invariants in loops are either true-

invariants or right-closed invariants. In addition, in the definitions and results that follow, we

do not necessarily assume simple loops, but we assume that the loops under consideration cannot

be considered safe according to the static checks of Chapter 4 (i.e., the loops are not SNZ-loops

and do not satisfy any invariant-based property in Lemma 4.7).

Let lp be a loop, and Loc(lp) = {l1, . . . , ln}. Let
∏

= Clocks(l1) × . . . × Clocks(ln). The

formula Θ(x, l) (where x ∈ Clocks(lp) and l ∈ Loc(lp)) holds whenever x has reached its smallest

upper bound,3 and such a bound is enforced by the invariant of l.

Θ(x, l) ,







x = cmin(x, lp) if x ≤ cmin(x, lp) occurs in I(l)

false otherwise

3cmin(x, lp) is the smallest upper bound for x in any invariant of lp (this was formally defined in Section 2.1.1).
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Using Θ(x, l), the formula sub(lp) denotes a valuation that has reached at least one smallest

upper bound in every location of lp.4

sub(lp) ,
∨

(x1,...,xn)∈
∏

∧n
i=1 Θ(xi, li)

Using sub(lp), the formula α(lp) denotes a maximal valuation of lp,

α(lp) ,
∧

l∈Loc(lp) I(l)

∧
∧

g∈Guards(lp) g

∧
∧

y∈Resets(lp) y = 0

∧ sub(lp)

By way of example, we show below the values of Θ(X,L) and α(lp), for lp = 〈a, b, c, d〉 in

Figure 5.3(i).

Θ(X,L) =

clock X / location L 1 2 3 4

t Θ(t, 1) = false false false t = 0

x x = 1 false false false

y y = 2 false y = 2 false

z false z = 2 false false

w false false w = 1 false

α(lp) = (x ≤ 1 ∧ y ≤ 2) ∧ (z ≤ 2 ∧ y ≤ 3) ∧ (y ≤ 2 ∧ w ≤ 1) ∧ (t ≤ 0)

∧ (z > 1 ∧ y = 2)

∧ (t = 0 ∧ w = 0)

∧ ( (x = 1 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (x = 1 ∧ z = 2 ∧ w = 1 ∧ t = 0)∨

(y = 2 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (y = 2 ∧ z = 2 ∧ w = 1 ∧ t = 0) )

Note that once a valuation that satisfies α(lp) is reached, and provided the execution does

not leave the loop, every location can be visited (first conjunct), every transition can be per-

formed (second conjunct), and clock values cannot decrease (third conjunct), or increase (fourth

conjunct). Equivalently, α(lp) characterises the maximal valuations of lp. This is proved by the

following two lemmas.

4We have assumed that lp does not satisfy any of the invariant-based properties in Lemma 4.7; in particular,
it does not satisfy property (4). This ensures that in every location of lp, at least one clock must be compared
against its smallest upper bound, and so sub(lp) is well-defined.

78



lemma 5.9. Let lp be a loop, and v a valuation that satisfies sub(lp). For any location l ∈ Loc(lp)

s.t. s = [l, v] is reachable, time cannot pass any further in l.

Proof. Let Loc(lp) = {l1, . . . , ln} and
∏

= Clocks(l1) × . . . × Clocks(ln). By definition, if v

satisfies sub(lp), then v satisfies

∨

(x1,...,xn)∈
∏

∧n
i=1 Θ(xi, li)

In turn, v satisfies at least one disjunct,

∧n
i=1 Θ(xi, li)

for some (x1, . . . , xn) ∈
∏

. By definition of Θ(xi, li), this conjunction is satisfied if v has reached

at least one upper bound in every invariant of lp. Hence, for any l ∈ Loc(lp) s.t. s = [l, v] is

reachable, time cannot pass any further in l (by semantics of invariants).

Let A be a timed automaton, l a location in A, and φ a state formula. We say that the

formula EF(A.l ∧ φ) is satisfiable, if a state s = [l, v] is reachable in some execution of A, where

v |= φ (i.e, the standard interpretation of satisfiability for CTL formulae). We denote this,

s |= EF(A.l ∧ φ).

lemma 5.10. Let lp be a loop in A, and s = [l, v] be a reachable state (for some l ∈ Loc(lp)

and valuation v). Then, s |= EF(A.l ∧α(lp)) if and only if lp is a Zeno loop and v is a maximal

valuation of lp.

Proof. Assume that s = [l, v] |= EF(A.l ∧ α(lp)). Then, by definition of α(lp), v satisfies every

invariant and guard of lp, and v(y) = 0 for every y that is reset in lp. Therefore, once s is

reached, lp can be visited infinitely often. Because the effect of resets in lp has been considered

in v, clock values cannot decrease in local runs. Moreover, because v |= sub(lp), clock values

cannot increase in local runs (by Lemma 5.9). By definition, v is a maximal valuation of lp and

lp is a Zeno loop.

Now, for the converse, assume that lp is a Zeno loop, and that v is a maximal valuation of

lp. By definition, s = [l, v] is reachable, LocalRuns(s, lp) ∩ CoveringRuns(s, lp) 6= ∅, and v is

maximal w.r.t. LocalRuns(lp). Therefore, once s is reached, lp can be covered by local runs, and

v remains constant in all such runs. Necessarily, (a) v must satisfy every invariant and guard

of lp, (b) v(y) = 0 for every clock y that is reset in lp, and (c) clock values cannot increase in

local runs, and so v reaches at least one upper bound in every invariant of lp (i.e., for every
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l′ ∈ Loc(lp), v(x) = c, where x ≤ c is a term in I(l′)). Thus, in order to prove that v |= α(lp),

we just need to prove that this upper bound is the smallest upper bound for some clock in I(l)

(this will allow us to prove that v |= sub(lp)). We accomplish this as follows.

Suppose, by contradiction, that v(x) = c and x ≤ c is a term in I(l), where c > cmin(x, lp)

(for some l ∈ Loc(lp)). There is, of course, another location l′ ∈ Loc(lp), where x ≤ cmin(x, lp) is

a term in I(l′). We have assumed that local runs can cover lp, without changing the valuation.

However, l′ cannot be entered once v has been reached, because v(x) > cmin(x, lp). Therefore, v

must reach at least one smallest upper bound in every location of lp. By definition, v |= sub(lp),

and so we conclude that s = [l, v] |= EF(A.l ∧ α(lp)).

According to Lemma 5.10, the satisfiability of α(lp) determines that lp is a Zeno loop, and

that maximal valuations are reachable in lp. However, Zeno-timelocks cannot be guaranteed to

occur in lp unless we also check that escape transitions are not enabled by any of these maximal

valuations (Theorem 5.7).

Let t , l
a,g,r
−−−→ l′ denote an escape transition, and v a valuation. As we know, v enables t if

v |= g and r(v) |= I(l′) (i.e., the invariant in the target location holds from v, after resets have

been performed). By definition, r(v)(x) = v(x) if x /∈ r, and r(v)(x) = 0 if x ∈ r.

In our timed automata model, invariants do not impose lower bounds, thus resets cannot

invalidate invariants. We can safely claim that r(v) |= I(l′) if and only if v satisfies all conjuncts

in I(l′) that do not refer to clocks in r.

Correspondingly, we define the formula Target(l′, r) to extract those conjuncts in I(l′) that

do not refer to clocks in r. Then, with Target(l′, r) as an auxiliary formula, we define the formula

IsEnabled(g, r, l′) to check whether a transition is enabled (where g, r and l′ are the guard, reset

set, and target location, respectively).

Target(l′, r) , {x ≤ c |x ≤ c occurs in I(l′) and x /∈ r }

IsEnabled(g, r, l′) , g ∧
∧

conj ∈Target(l′,r)

conj

Let lp be a loop, and Esc(lp) = {l1
a1,g1,r1
−−−−−→ l′1, . . . , ln

an,gn,rn
−−−−−−→ l′n} be the set of escape transitions

of lp. We define β(lp), which checks whether the current valuation enables some t ∈ Esc(lp).

β(lp) ,
∧n
i=1 ¬ IsEnabled(gi, ri, l

′
i)

Now, with α(lp) and β(lp), we can use reachability analysis to characterise (precisely) the Zeno-

timelocks local to lp. This is formalised in Theorem 5.11.
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theorem 5.11. Let lp be a loop in A, and s = [l, v] be a reachable state (for some l ∈ Loc(lp)

and valuation v). Then, s |= EF(A.l∧α(lp)∧β(lp)) if and only if s is a converged Zeno-timelock

local to lp.

Proof. By definition, a valuation satisfies β(lp) if and only if it does not enable any escape

transition from lp. By Lemma 5.10, for any l ∈ Loc(lp), EF(A.l∧α(lp)) is satisfiable if and only

if the state s = [l, v] is reachable; lp is a Zeno loop; and v is a maximal valuation of lp. In

turn, by Theorem 5.7, this can only happen if and only if s is a converged Zeno-timelock local

to lp (by CTL semantics, EF(A.l ∧ α(lp) ∧ β(lp)) holds if and only if s = [l, v] is reachable, and

v |= α(lp) ∧ β(lp)). Hence, the lemma holds.

Corollary 5.12. Let A be a timed automaton. A Zeno-timelock occurs in A is there is some

loop lp s.t. EF(A.l ∧ α(lp) ∧ β(lp)) is satisfiable for any l ∈ Loc(lp).
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Figure 5.3: Zeno loops and Escape transitions

Consider the loop lp = 〈c, d〉 in Figure 5.3(ii). Formulae Esc(lp), α(lp) and β(lp) are shown

below (expressions have been simplified).

Esc(lp) = {1
a, y<1, {y}
−−−−−−−−→ 2, 3

e, y=1, {z}
−−−−−−−→ 4}

α(lp) = x = 2

β(lp) = ¬ (y < 1 ∧ x ≤ 2) ∧ ¬ (y = 1)

Depending on the reachable valuations, 〈c, d〉 may or may not contain a local Zeno-timelock.

For example, EF(A.1 ∧ α(lp) ∧ β(lp)) is satisfiable if any state in {[1, v] | v(y) > 1} is reachable.

If so, a converged Zeno-timelock occurs, s = [1, v], v(x) = 2, v(y) > 1, with

s |= EF(A.1 ∧ x = 2 ∧ ¬ (y < 1 ∧ x ≤ 2) ∧ ¬ (y = 1))

Note that, escape transitions a and e are not enabled (v(y) > 1).

81



On the other hand, 〈c, d〉 does not contain a (local) Zeno-timelock if any state in {[1, v] | v(x) >

1 ∧ v(y) = 0} is reachable. When v(x) = 2 is reached, v(y) < 1 necessarily holds, and a is en-

abled by any maximal valuation of the loop. In addition, any reachable state in {[1, v] | v(x) >

1 ∧ v(y) = 0} is a Zeno-timelock local to 〈a, b, d , c, d〉 (e is not enabled); and no state in

{[1, v] | v(x) > 1} is a Zeno-timelock local to 〈a, b, d〉 (c is enabled).

5.3 Zeno Runs and Reachability

Interestingly, a reachability formula can be derived that is sufficient-and-necessary to characterise

the occurrence of Zeno runs. Note that, for a Zeno run to cover a particular loop, a valuation

must be reached that (a) satisfies all invariants in the loop; (b) satisfies all the guards in the

loop; and (c) assigns zero to every clock that is reset in the loop. Such a valuation can be

represented by the formula γ(lp),

γ(lp) ,
∧

l∈Loc(lp) I(l)

∧
∧

g∈Guards(lp) g

∧
∧

y∈Resets(lp) y = 0

Unlike Zeno-timelocks, Zeno runs are not related to maximal valuations or escape transitions.

This is very convenient: we can derive a reachability-based property that is not restricted to

right-closed invariants, and which can be analysed exclusively on simple loops (by Lemma 2.1,

any Zeno run must cover some simple loop). This is formalised by Theorems 5.13 and 5.14.

theorem 5.13. Let lp be a loop in A. For any l ∈ Loc(lp), the reachability formula

EF(A.l ∧ γ(lp))

is satisfiable if and only if there exists a Zeno run that covers lp.

Proof. (⇒) Assume that EF(A.l∧ γ(lp)) is satisfiable. Then, a state s = [l, v] is reachable where

v |= γ(lp). By definition of γ(lp), v satisfies every invariant and guard of lp, and v(y) = 0 for

every y that is reset in lp. Therefore, once v is reached, there exists a run that covers lp without

ever changing v. By definition, such a run is a Zeno run (with 0-delay) that covers lp.

(⇐) Let ρ be a Zeno run that covers some loop lp. Note, that ρ must reach a state from

which it only visits locations and transitions of lp (and does so infinitely often). Every location

of lp can be visited infinitely often, and invariants only impose upper-bounds; hence, a valuation

v can be reached that satisfies all invariants of lp.

Now, let Y be the set of clocks (possibly empty) that are bounded from below in any guard

of lp. Necessarily, no clock in Y is reset in any transition of lp (otherwise, ρ would be a divergent

82



run). Therefore, and because every transition of lp can be visited infinitely often, we can choose

v so that (a) it satisfies all lower bounds imposed by guards of lp, and (b) v(x) = 0 whenever x

is reset or bounded from above in any guard of lp.

We proved that there exists a reachable valuation, v, which satisfies all invariants and guards

of lp, and which assigns zero to every clock that is reset in lp. In other words, EF(A.l ∧ γ(lp))

is satisfiable for any l ∈ Loc(lp).

theorem 5.14. Let A be a timed automaton. A Zeno run occurs in A if and only if there is a

simple loop lp that satisfies EF(A.l ∧ γ(lp)), for any l ∈ Loc(lp).

Proof. (⇒) By Lemma 2.1, if a Zeno run occurs, then this run covers some simple loop lp. By

Theorem 5.13, EF(A.l ∧ γ(lp)) is satisfiable for any l ∈ Loc(lp).

(⇐) This is a consequence of Theorem 5.13.

5.4 A Layered Strategy to Detect Zeno-timelocks

Here we show how our static checks (Chapter 4) and reachability-based properties can be effi-

ciently combined to detect Zeno-timelocks. This strategy should be applied only after the strong

non-Zenoness check (Section 4.1), and only if that check identifies unsafe loops.

We give an algorithm that receives a single automaton as input, A, and returns a set of loops

where local Zeno-timelocks occur, LS∪LNS (see steps 3 and 4). The automaton A is assumed to

contain only completed actions, and invariants in A are either true- or right-closed (in general,

A denotes the product automaton of the network at hand).

The algorithm consists of a number of steps, where each step discards the loops in A that

are guaranteed not to cause Zeno-timelocks. High-level operations such as set operations, loop

detection and reachability analysis, are assumed to be primitive. The algorithm is as follows.

1. L0 =SimpleLoops(A)\{ lp | lp ∈ SimpleLoops(A), and lp is SNZ or satisfies Lemma 4.7 }

2. L1 = L0 \ { lp | lp ∈ L0, and EF(A.l ∧ α(lp)) is not satisfiable }

3. LS = { lp | lp ∈ L1, and EF(A.l ∧ α(lp) ∧ β(lp)) is satisfiable }

4. LNS = findZTs(L1 \ LS , A)

The first step applies Theorem 4.8 to identify simple loops that do not contain a Zeno-timelock.

This results in a set of unsafe loops, L0. The second step removes simple loops in L0 where

maximal valuations cannot be reached (i.e., those loops that are not Zeno loops). This leaves

a set of simple loops L1. In this way, we may reduce the number of loops to consider in
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the following steps (which are more demanding). For example, we can avoid checking escape

transitions in loops that cannot even reach a maximal valuation.

The third step identifies simple loops in L1 that contain local Zeno-timelocks. These loops

may or may not participate in non-local Zeno-timelocks; however, they have already been iden-

tified as a source of Zeno-timelocks, so we do not need to consider them any further.

The final step identifies non-simple loops that contain Zeno-timelocks. These non-simple

loops result from simple loops in L1 \ LS . This is realised by findZTs(), shown in Figure 5.4.5

This function systematically looks for non-simple loops (which contain only simple loops in

L1 \ LS), and checks (using the reachability formula) for the occurrence of Zeno-timelocks.

The description of findZTs() assumes the following definitions. We define lp ∪ lp′ = lp′′,

where lp and lp′ are s.t. Loc(lp) ∩ Loc(lp′) 6= ∅; and lp′′ results from joining lp and lp′ through

their common locations. Equivalently, lp′′ is s.t. Loc(lp′′) = Loc(lp)∪Loc(lp′), and Trans(lp′′) =

Trans(lp)∪Trans(lp′). In addition, we used lp ⊆ lp′ to denote that lp = lp′ or ∃ lp′′. lp∪lp′′ = lp′.

Example. Figure 5.5 depicts a non-trivial automaton (which could represent a product au-

tomaton) that serves to illustrate how the algorithm works. We have identified six simple loops

(in boldface),

SimpleLoops(A) = { lp1, lp2, lp3, lp4, lp5, lp6 }

In the first step, lp5 is the only loop that is recognised to be inherently safe (in fact, lp5 is

SNZ). This loop does not need to be considered any further, and so,

L0 = { lp1, lp2, lp3, lp4, lp6 }

The second step finds that, of all loops in L0, lp6 is the only one that is not a Zeno loop:

location 9 is not even reachable (location 8 can only be reached if v(x) > 1), which in turn

disables transition p). As a result of the second step, we get:

L1 = { lp1, lp2, lp3, lp4 }

The third step confirms that none of these loops spawns a local Zeno-timelock: for each of these

loops, an escape transition is always enabled (once a maximal valuation has been reached). We

get, then, LS = ∅. Now, it is possible that Zeno-timelocks occur in non-simple loops. The last

5Parameters are passed by-value.
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Function findZTs(L,A)
begin

Z ← ∅;
while L 6= ∅ do

Choose lp ∈ L;
L← L \ {lp};
Z ← Z ∪ getZTsFrom(lp, L,A,Z);

end
return Z;

end.

Function getZTsFrom(lp, L,A,ZTLoops)
begin

Aux ← ∅;
while ∃ lp′ ∈ L. Loc(lp) ∩ Loc(lp′) 6= ∅ do
L← L \ {lp′};
lp′′ ← lp ∪ lp′;
if ∄ vlp ∈ ZTLoops. lp′′ ⊆ vlp then

Choose l ∈ Loc(lp′′);
if EF(A.l ∧ α(lp′′) ∧ β(lp′′)) then

Aux ← Aux ∪ {lp′′};
else

Aux ← Aux ∪ getZTsFrom(lp′′, L,A,ZTLoops);
end

end
end
return Aux ;

end.

Figure 5.4: Detecting Zeno-timelocks in Non-simple Loops

step confirms that Zeno-timelocks occur in the following non-simple loops.

nslp1 = lp1 ∪ lp2 ∪ lp3 (if a is performed)

nslp2 = lp1 ∪ lp2 ∪ lp4 (if c is performed)

Actually, the non-simple loop nslp3 = lp1∪lp2∪lp3∪lp4 also contains a Zeno-timelock (if b is

performed). However, the algorithm does not return this combination, because it includes non-

simple loops that are known to contain Zeno-timelocks. This can be confirmed by inspecting the

behaviour of function getZTsFrom(), which looks for bigger combinations (in terms of number of

simple loops) only if the current one does not contain a Zeno-timelock. In addition, combinations

such as lp2∪lp3 or lp2∪lp4 are not verified, as they are part of non-simple loops that contain

Zeno-timelocks (we use the variable ZTLoops in getZTsFrom(), to keep track of visited loops).
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Figure 5.5: Detecting Zeno-timelocks

Discussion: Complexity. The detection of loops and reachability analysis may bring expo-

nential complexity in worst-case scenarios;6 however, our algorithm works on simple loops as

much as possible and attempts to reduce, at every step, the set of loops to check.

Note, as well, that detection of non-simple loops does not occur as such, but rather non-simple

loops are “constructed” on demand in the last step of the algorithm, from a reduced set of loops.

In addition, model-checkers can usually perform reachability analysis very efficiently, even for

complex specifications. Moreover, we would expect that for many timelock-free specifications,

the static analysis performed in step 1 (i.e., checking for strong non-Zenoness and invariant-based

properties) will suffice, and reachability analysis will not be required.

5.5 A Tool to Detect Zeno-timelocks

We implemented a tool that performs our proposed static and semantic checks over a subset of

Uppaal specifications. The tool is implemented in Java, and accepts the XML format of Uppaal

networks (thus, the user can benefit from Uppaal’s GUI to construct the model). The tool is able

to analyse the subset of Uppaal specifications that corresponds to our timed automata model

augmented with urgent and committed locations (see Section 2.2.3). We have implemented

Tarjan’s algorithm [152] to partition graphs in strongly connected components, and the cycle

enumeration algorithm of Szwarcfiter and Lauer [151] for loop detection.

6The size of the product automaton can be exponential in the size of the network’s components (i.e., number
of locations and transitions). The number of loops in a given automaton can be exponential in the size of the
automaton [89]. The worst-case complexity of reachability analysis is linear in the size of the automaton, and
exponential in the number of clocks and the size of the constants in clock constraints [8].
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Initially, the tool performs a strong non-Zenoness check over the input network (Theorem 4.2

in Section 4.1). If this compositional analysis is inconclusive, the tool constructs the product

automaton and performs the analysis described in Section 5.4.

Every simple loop in the product automaton is then checked for strong non-Zenoness and

invariant-based properties (Lemma 4.7 and Theorem 4.8 in Section 4.2). For those loops that

are found unsafe according to these properties, the tool computes and checks (interfacing with

Uppaal’s verifier) the reachability-based property of Theorem 5.11 (Section 5.1).7

Finally, if after the previous steps the analysis is inconclusive for some loops, the tool con-

structs and checks non-simple loops. Non-simple loops are derived only from those simple loops

where no conclusive information could be obtained (Section 5.4).

We conclude this section with some remarks regarding urgent and committed locations. Note

that, locations are not taken into account in the check of strong non-Zenoness (Theorem 4.2),

because this property relies only on the syntax of guards and reset sets (Section 4.1). Therefore,

urgent and committed locations are irrelevant to this check, and the syntactic transformation

of Section 2.2.3 is not necessary. On the other hand, the transformation is necessary to check

invariant-based and reachability-based properties.

5.6 Case Study: Timelocks in a CSMA/CD Protocol

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection) protocol controls the

transmission of data between stations sharing a common medium, and is characteristic of Eth-

ernet networks (LANs). The following description mainly follows [149].

A station wishing to transmit a frame first listens to the medium to determine if another

transmission is in progress. If the medium is idle, the station begins to transmit; otherwise

the station continues to listen until the medium is idle, then it begins to transmit immediately.

It may happen that two or more stations begin to transmit at about the same time. If this

happens, there will be a collision and the data from both transmissions will be garbled and not

received successfully. If such a collision is detected during transmission, the station transmits

a brief jamming signal (to ensure that all stations know that there has been a collision) and

then it ceases transmission. After transmitting the jamming signal, the station waits a random

amount of time and then attempts to retransmit the frame.

Collisions can only occur when more than one station start transmitting within a short time

(the propagation delay). If a station attempts to transmit a frame, and there are no collisions

during the time it takes for the leading edge of the packet to propagate to the farthest station,

then there will be no collision because all other stations are aware of the transmission (i.e., the

7We plan to include the check for Zeno runs (Section 5.3) in the next version of the tool.
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Figure 5.6: An Uppaal Model For The CSMA/CD Protocol

medium will be found busy). Note, as well, that the time needed to detect a collision is no

greater than twice the propagation delay.

Figures 5.6(i) and (iii) show part of an Uppaal specification for the protocol. We have consid-

ered only two stations, Station1 (Figure 5.6(i)) and Station2 (similar to (i) modulo renaming).

The main role of Station1 is to model the transmission of frames, and the retransmission of

frames in the case of a collision. The automaton Medium (Figure 5.6 (iii)) models the state

of the medium; this includes collision detection and broadcasting of the jamming signal. Both

Station1 and Medium have temporal constraints derived from either the end-to-end propagation

delay (26 µs.), or the frame transmission-time (782 µs.). We have included the automaton Up-

perLayer1 (Figure 5.6 (ii)) to model a client layer that uses the protocol service in the station

(UpperLayer2 is similar). It simply provides frames to the protocol layer, and acknowledges

ongoing transmission and successful termination.
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Automaton Station1 starts in Idle, waiting for UpperLayer1 to send a new frame (send1?).

If this happens, Station1 moves to Send, which is an urgent location. The station may find

that either the medium is idle, and so the transmission of the new frame can start immediately

(begin1! ), or that the medium is busy, and so the station has to wait (busy1! ). Location Trans-

mitting denotes that a transmission has started. Transmission of a complete frame takes 782

µs. Immediately after ending a transmission (location Fin), a signal fin1! is sent to the upper

layer. Ongoing transmission is also signaled to the upper layer (trans1! ).

A collision with another station may occur in Transmitting, in which case the jamming signal

cd1? is detected. The guard x1 ≤ 26 denotes that no collision can occur after 26 µs. have passed

since a station started sending a frame. Location Retry denotes that a collision indeed occurred

and that the station is waiting to attempt a retransmission (begin1! ). The station remains in

Retry if a retransmission attempt finds a busy medium (note that, begin1? is not enabled in

such a situation, because v(x1 ) > 26).

The Medium starts in Idle, waiting for stations to begin their transmissions (begin1?/begin2?);

then it moves to Active and clock y is reset. Active denotes that a station is currently using

the medium. In Active, the value of y denotes the time elapsed since the station started its

transmission. Transitions busy1?/busy2? denote that stations can already acknowledge that the

medium is busy and thus, that new transmissions are not yet possible. The guard y > 26 in

busy1?/busy2? denotes that a second station can only acknowledge a busy medium after 26 µs.

have passed since the first station started its transmission (the propagation delay).

Collision denotes that a collision has happened, and that the jamming signal is about to reach

the stations. The Medium moves from Active to Collision through begin1?/begin2? happening

at v(y) ≤ 26, i.e., a second station has started transmitting a frame before it could acknowledge

that the medium is busy. In Collision, y denotes the time elapsed since a collision occurred;

note that y is reset when the second transmission begins while Medium is in Active (to simplify

matters, we have assumed that a collision occurs as soon as this second transmission begins). The

sequences cd1!-Next2-cd2! and cd2!-Next1-cd1! model the jamming signal reaching Station1 and

Station2, in any order. Moreover, the invariants y ≤ 26 in Collision and Next1/Next2 indicate

that the jamming signal reaches the stations not later than 26 µs. after the collision.

5.6.1 Checking Strong Non-Zenoness

Here we explain how the automata UpperLayer1 and UpperLayer2 disguise a time-actionlock in

the specification, making it undetectable to Uppaal. Interestingly, this hidden time-actionlock

results in a Zeno-timelock, which our tool helps to detect.

We begin by asserting deadlock-freedom using the formula A[]not deadlock, which Uppaal

finds satisfiable. We then use our tool (Section 5.5) to discover that a number of unsafe loops,
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which may cause Zeno-timelocks. These loops correspond to the interaction between Station1

and UpperLayer1 (Figure 5.6(iv)), between Station2 and UpperLayer2 (not shown), and between

Station1, Station2 and Medium (Figure 5.6(v)).

By way of example, we describe below the completed loops that result from synchronising

the unsafe loops of Figure 5.6(v). We use l1l2l3 to denote a location in the product automaton

where l1, l2 and l3 are respectively locations in Station1, Medium and Station2. We use R, I,

T, A, C, N1 and N2 to denote locations Retry, Idle, Transmitting, Active, Collision, Next1 and

Next2, respectively. Locations in UpperLayer1 and UpperLayer2 are omitted (these have true

invariants, so they are irrelevant to our analysis). Internal actions begin1, begin2, cd1 and cd2

result from synchronisation between the corresponding half actions.

lp1 = 〈 RIR, begin1 ,TAR, begin2 ,TCT , cd1 ,RN2T , cd2 ,RIR 〉

lp2 = 〈 RIR, begin2 ,RAT , begin1 ,TCT , cd1 ,RN2T , cd2 ,RIR 〉

lp3 = 〈 RIR, begin1 ,TAR, begin2 ,TCT , cd2 ,TN1R, cd1 ,RIR 〉

lp4 = 〈 RIR, begin2 ,RAT , begin1 ,TCT , cd2 ,TN1R, cd2 ,RIR 〉

These loops correspond to situations in which stations continue to retransmit their frames too

soon, therefore colliding again after every attempt. These loops are not SNZ (note in Fig-

ure 5.6(v) that clocks are reset in the component loops, but not bounded from below), and

Zeno runs occur that correspond to sequences of collisions and retransmissions. However, time

can always pass in location RIR because invariants in Retry and Idle are true. This location is

included in every loop lp1 to lp4, and so these loops are inherently safe (by Lemma 4.7).

Now we focus on the unsafe loop in Station1 (Figure 5.6(iv)). A Zeno-timelock occurs in

location Transmitting (Figure 5.6(i)) if trans1! is the only enabled transition when time stops.

If this Zeno-timelock occurs, a deadlock occurs if trans1! cannot longer induce Zeno runs.

Effectively, Uppaal detects a deadlock in the resulting specification, after we modify trans1! by

adding an arbitrary lower bound (we added a new local clock z1 to Station1, guarded trans1!

with z1 = 1, and added the reset z1 := 0; we did the same for Station2).

This deadlock is caused by an error in the guard of cd1? in Station1, v(x1 ) ≤ 26 (a similar

error is present in Station2).8 This guard denotes that collisions cannot occur after 26 µs. have

passed since Station1 started transmitting a frame; however, 26 µs. happens to be too small an

upper bound for collision detection, as the following scenario illustrates.

1. Station1 starts transmitting a frame and moves to location Transmitting; Medium moves

to Active.

2. Station2 starts transmitting a frame just before 26 µs have passed since Station1 started

8Yovine highlighted the same error in [169].
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transmitting. At this point, Station1 remains in Transmitting, Station2 has changed to

Transmitting, and Medium has changed to Collision. Note, also, that v(x1 ) ≤ 26 and

v(x2 ) = v(y) = 0.

3. Based on the previous observations, the values of y and x1 are such that v(y) ≤ 26 and

v(x1 ) ≤ 52, while the automaton remains in Collision. In particular, if 26 < v(x1 ) ≤ 52,

cd1! in Collision will not be able to synchronise with cd1? in Station1. Transition cd2! can

still be performed to reach Next1, but cd1! cannot be performed from Next1 either. Thus,

no action is enabled while Medium remains in Next1. Furthermore, the invariant y ≤ 26

in Next1 also prevents time from diverging, causing a time-actionlock when v(y) = 26.

This time-actionlock shows that the guard x1 ≤ 26 in cd1? (in Station1) should be modified

to account for a bigger delay, i.e., it should be x1 ≤ 52. After a transmission has started, the

jamming signal could be detected up to 52 µs later, that is, twice the propagation delay [149].

This (hidden) time-actionlock resulted in a Zeno-timelock in the original specification (i.e.,

before trans1! was modified). When Medium is in Collision and v(y) = 26, and Station1 and

Station2 are in Transmitting, trans1! (trans2!) will be performed infinitely often while time is

prevented from passing (synchronisation with UpperLayer1/UpperLayer2 is always possible).

If we correct the specifications of Station1 and Station2 (x1 ≤ 52 in cd1? and x2 ≤ 52

in cd2?), we can verify that the specification is free from actionlocks (and thus free from

time-actionlocks). In turn, because now a time-actionlock no longer arises, the loop trans1!

(Figure 5.6(i)) does not cause a Zeno-timelock. Time will not be prevented from passing in

Next1/Next2 (Figure 5.6(iii)), thus the system will evolve normally. After a collision occurs, the

stations move from Transmitting to Retry; i.e., trans1! in Transmitting is no longer enabled.

Summary. We started our analysis of the CSMA/CD protocol by asserting deadlock-freedom,

using the formula A[]not deadlock in Uppaal. The specification was found to be deadlock-free,

and thus, also free from time-actionlocks. We then checked strong non-Zenoness (composition-

ally) using our tool. The tool found a number of potentially unsafe loops (pairs of synchronising

loops where no loop was SNZ), which we examined by hand.

We found that Zeno-timelocks occurred in some of these loops. The Zeno loops (〈trans1! 〉

in Station1 and 〈trans2! 〉 in Station2) witnessed Zeno runs due to under-specification; we thus

added lower bounds to these loops and found that Zeno-timelocks were hiding time-actionlocks

(once the loops were modified, time-actionlocks could be detected in Uppaal as deadlocks, us-

ing the formula A[]not deadlock). Finally, the system was corrected to remove the time-

actionlocks (this also prevented Zeno-timelocks).
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5.6.2 Checking Invariant- and Reachability-based Properties

In the previous section we used our tool to check for strong non-Zenoness in the network. Strong

non-Zenoness was found unsatisfiable, and the tool revealed a number of potentially unsafe loops.

We examined these unsafe loops by hand, and concluded that some of them were indeed the

cause of Zeno-timelocks. This section shows that our tool can discover such Zeno-timelocks

automatically, at the expense of a more demanding analysis.

Specifically, the tool constructs the product automaton, and applies strong non-Zenoness,

invariant-based properties (see Lemma 4.7 and Theorem 4.8), and reachability-based properties

(see Theorem 5.11 and Corollary 5.12).

Figure 5.7 depicts the product automaton for the network of Figure 5.6. Location vectors are

given in the form l1l2l3l4l5, where l1 ∈ UpperLayer1, l2 ∈ Station1, l3 ∈ Medium, l4 ∈ Station2

and l5 ∈ UpperLayer2. Here, I, S, T, A, C, R, F, N1 and N2 denote, respectively, Idle, Send,

Transmitting, Active, Collision, Retry, Fin, Next1 and Next2.

Recall the analysis of the previous section: Zeno-timelocks (if any occur) may only be caused

by composition of the following half loops.

1. 〈trans1 !〉 in Transmitting (Station1) || 〈trans1?〉 in Transmitting (UpperLayer1)

2. 〈trans2 !〉 in Transmitting (Station2) || 〈trans2?〉 in Transmitting (UpperLayer2)

These half loops, in turn, result in the following set of completed loops in the product automaton

(Figure 5.7).

1. 〈trans1 〉 in TTAII, TTAST, TTART, TTCTT, TTN1RT and TTAFT.

2. 〈trans2 〉 in IIATT, TSATT, TRATT, TTCTT, TRN2TT and TFATT.

Effectively, our tool constructed the product automaton and found that these are the only loops

that do not satisfy Lemma 4.7 (i.e., none of them satisfies any invariant-based property). Next,

the tool derived and checked (via Uppaal) the reachability-based property for Zeno-timelocks

(Theorem 5.11). The α- and β-formulae are shown in Tables 5.1 and 5.2. Table 5.3 summarises

the analysis realised in Uppaal (formulae are given in Uppaal syntax; P is the name assigned to

the product automaton; only loops involving trans1 are shown). Satisfiability results show that

all loops are Zeno loops, i.e., they satisfy EF(P.l ∧ α(lp)). However, only 〈trans1 〉 in TTN1RT

and 〈trans2 〉 in TRN2TT cause Zeno-timelocks, because these are the only loops that satisfy

EF(P.l ∧ α(lp) ∧ β(lp))

This confirms the scenarios and static analysis of the previous section. Finally, by applying

the last step of the algorithm of Section 5.4, the tool found that none of these simple loops can

be combined into non-simple loops (i.e., non-simple loops in the product are safe). In addition,
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trans1 in l α(lp)

TTAII P.x1==782

TTAST P.x1==782 or P.u2==0

TTART P.x1==782

TTCTT P.x1==782 or P.x2==782 or P.y==26

TTN1RT P.x1==782 or P.y==26

TTAFT P.x1==782 or P.u2==0

Table 5.1: α-formulae

trans1 in l β(lp)

TTAII not P.x1==782 and not P.x1<=782

TTAST not P.x1==782 and

not (P.y<=26 and P.x1<=782) and

not (P.y>26 and P.x1<=782)

TTART not P.x1==782 and not P.y<=26

TTCTT not (P.x1<=26 and P.y<=26 and P.x2<=782) and

not (P.x2<=26 and P.y<=26 and P.x1<=782)

TTN1RT not P.x1<=26

TTAFT not (P.x1==782 and P.u2<=0 and P.u1<=0) and

not (P.x1<=782)

Table 5.2: β-formulae

we used the tool to check the corrected CSMA/CD protocol, and confirmed that is free from

deadlocks and Zeno-timelocks (and thus, timelock-free).

A Note on Uppaal’s Check: The Liveness Property λU . We also checked the property

λU (Section 3.5.1), but the results were inconclusive. There are several loops in the specification

that induce Zeno runs (e.g., lp1 of Section 5.6.1), which invalidate λU . However, these loops do

not cause Zeno-timelocks. In fact, the CSMA/CD specification contains Zeno runs even after

we remove the timelocks. Thus, if verification is not affected by Zeno runs (e.g., for safety

properties), checking λU in Uppaal cannot distinguish safe from unsafe specifications.

5.7 Conclusions

We presented semantic checks to guarantee the absence of Zeno-timelocks and Zeno-runs in

a timed automaton. As we have mentioned before, this is equivalent to timelock-freedom in

specifications that are deadlock-free.

The semantic checks are based on reachability formulae that are derived from the syn-

tax of unsafe loops (those loops in the automaton that do not satisfy strong non-Zenoness or
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trans1 in l EF(P.l ∧ α(lp)) EF(P.l ∧ α(lp) ∧ β(lp))

TTAII SAT. NOT SAT.
TTAST SAT. NOT SAT.
TTART SAT. NOT SAT.
TTCTT SAT. NOT SAT.
TTN1RT SAT. SAT.
TTAFT SAT. NOT SAT.

Table 5.3: α+β-analysis

the invariant-based properties of Chapter 4). We proved that these checks are sufficient-and-

necessary, provided the invariants in the loops of the automaton satisfy a syntactic constraint

(invariants must be true or right-closed). Thus, semantic checks for Zeno-timelocks can be con-

clusive in specifications where strong non-Zenoness, invariant-based properties, and the property

λU in Uppaal (Section 3.5.1) do not hold.

We exploit the complementary nature of static and semantic checks in a layered detection

strategy: static checks are applied first, and semantic checks are applied as required (i.e., if

the previous analysis has been inconclusive). We implemented a tool that realises this strategy,

which performs the static and semantic checks over Uppaal specifications. Furthermore, we have

used the tool to facilitate the analysis of timelocks in a specification of the CSMA/CD protocol

(a well-known benchmark for real-time formalisms).

Compared with timelock detection in model-checkers (Uppaal, Kronos and Red), which is

based on liveness properties, our semantic checks are based on simple reachability analysis, and

thus can be implemented in all model-checkers. Moreover, our checks for Zeno-timelocks are

insensitive to Zeno runs, which make Uppaal’s check inconclusive (Section 5.6).

Currently, our theory do not consider the effect of data variables in the occurrence of Zeno

runs and Zeno-timelocks. Thus, model-checkers are able to guarantee timelock-freedom for a

bigger class of specifications (e.g., Uppaal’s specification language permits integer and array

variables, and non-zero resets). In addition, Uppaal’s verification is on-the-fly, and so this may

be more efficient than our semantic checks if timelocks are found before the whole reachability

graph is explored (we need to construct the product automaton).

We plan to extend our static and semantic checks, in order to consider data variables, non-

zero resets, urgent channels and other modelling facilities available in Uppaal. Our initial

experience with the tool is encouraging, and more case studies will contribute to improve the

implementation.

This chapter concludes Part II, where we introduced the theory of Timed Automata and

explained some its limitations (Chapter 2), and where we offered solutions to the problem of

timelocks and Zeno runs. In Part III, we will use WS1S and MONA (Chapter 6) to explore
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solutions to other limitations of timed automata and model-checkers, regarding expressiveness

issues in branching-time requirements languages (Chapter 7) and data support (Chapter 8).

The reader will find timelocks revisited in Chapter 8, where a deductive framework is presented

that rules out time-actionlocks by construction.
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Figure 5.7: CSMA/CD (Product Automaton)

96



Part III

WS1S and MONA
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Chapter 6

WS1S and MONA

Abstract. The Weak Monadic Second-order Theory of One Successor (WS1S) is a decidable

logic with a semantics tied to arithmetic, which has the expressive power of regular languages on

finite words. MONA is an efficient implementation of a decision procedure for WS1S. Despite

the worst-case non-elementary complexity of WS1S, MONA has been successfully applied to

many nontrivial problems, e.g., hardware verification, controller synthesis and theorem proving.

This is the background chapter for Part III, where we explore the use of WS1S and MONA

in real-time settings. We are motivated by limitations in timed automata and model-checkers

(Chapter 2). Chapter 7 will show that MONA can be used as an efficient decision procedure

for PITL, an interval temporal logic where certain requirements are easier to express than

in Uppaal and other model-checkers. Chapter 8 will introduce Discrete Timed Automata, a

deductive framework where WS1S is used as the assertion language, and MONA serves as tool

support for invariance proofs. Discrete Timed Automata support unbounded data domains, and

specifications are time reactive by construction.

Organization. We give an overview of WS1S and MONA in Section 6.1. We present the syntax

and semantics of MONA specifications (as required in this thesis) in Section 6.2. In Section 6.3

we comment on the decision procedure implemented by MONA. We conclude with a summary

in Section 6.4.

6.1 Introduction

The Weak Monadic Second-order Theory of One Successor (WS1S) [54, 66, 155] is a decidable

logic with a semantics tied to arithmetic. WS1S has the expressive power of regular languages

on finite words, which makes decidability non-elementary [114]. Despite being a non-elementary
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logic, the tool MONA1 [96] demonstrated that WS1S could be used in practice. MONA is an

efficient implementation of a decision procedure for WS1S, which has been successfully applied in

a number of nontrivial problems, from hardware, protocol and software verification [12, 148, 65,

117], to computational linguistics, controller synthesis and theorem proving [118, 142, 131, 11].

MONA is also part of many verification tools [137, 130, 13, 134].

A specification in MONA represents a WS1S formula; MONA translates this formula into

an equivalent deterministic finite automaton: the models (counterexamples) of the formula are

represented by paths in the automaton leading to accepting (rejecting) states. MONA returns

the shortest model (or counterexample) in terms of the free variables of the formula.

By way of example, Figures 6.1 and 6.2 show a MONA specification that “calculates” the

multiples of 5 from 0 to 20, and the result of the analysis. MONA finds that the WS1S for-

mula is satisfiable, where M5={0,5,10,15,20} is the shortest model, and M5={} is the shortest

counterexample. The output also shows the string interpretation for M5 (we will discuss this

interpretation in Section 6.3).

% declaration section

const FROM = 0;

const TO = 20;

var2 M5;

pred cons(var2 Set, var1 s1,s2) =

s1 in Set & s2 in Set & s1<s2 &

∼ ex1 s’:s’ in Set & s1<s’ & s’<s2;

% formula section

FROM = min M5 & TO = max M5 & all1 m1,m2:cons(M5,m1,m2) => m1+5 = m2;

Figure 6.1: A MONA Specification

The automata-based decision procedure for WS1S dates back to [54, 66]; it is in the efficient

implementation of the translation to automata where MONA stands out. In MONA, the au-

tomaton’s transition relation is compactly encoded using Binary Decision Diagrams (BDDs)

[53, 52]; this, and other optimisations (e.g., the identification of isomorphisms in the source

formula) have proved to be the ingredients of MONA’s success [97].

MONA provides the user with different information about the translation process, such as

the size of the automata and BDDs, the time spent in the process, optimisations performed

and intermediate results (e.g., partial automata for subformulae). Additionally, MONA offers

libraries to directly manipulate automata and BDDs without interfacing with a WS1S formula.

1http://www.brics.dk/mona
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ANALYSIS

A counter-example of least length (0) is:

M5 X

M5 = {}

A satisfying example of least length (21) is:

M5 X 100001000010000100001

M5 = {0,5,10,15,20}

Total time: 00:00:00.02

Figure 6.2: Result of Analysis for the MONA specification of Figure 6.1

6.2 MONA – Syntax and Semantics

WS1S is a logic interpreted over natural numbers (N), and finite sets of natural numbers (F(N)).

The syntax of WS1S can be characterised by the following BNF.

φ ::= X(x) | succ(x, y) | ¬φ | φ ∧ ψ | ∃x. φ | ∃X. φ

where φ and ψ are WS1S formulae, x and y are first-order variables, and X is a second-order

variable. Given I an interpretation that maps first-order variables to natural numbers (I(x) ∈

N), and second-order variables to finite sets of natural numbers (I(X) ∈ F(N)), the semantics

of WS1S is defined as follows.

I |= X(x) iff I(x) ∈ I(X)

I |= succ(x, y) iff I(x) + 1 = I(y)

I |= ¬φ iff I 2 φ

I |= φ ∧ ψ iff I |= φ and I |= ψ

I |= ∃x. φ iff I[n/x] |= φ for some n ∈ N

I |= ∃X.φ iff I[N/X] |= φ for some N ∈ F(N)

where I[u/v] denotes substitution, i.e., I[u/v](v) = u and I[u/v](x) = I(x) for all x 6= v.

The language of MONA specifications augments WS1S with syntactic sugar.2 The follow-

ing BNF describes the fragment of MONA specifications which are relevant to this thesis. A

complete syntax, and other features available in MONA, can be found in [96].

2Actually, MONA also implements a decision procedure for WS2S [155], a generalisation of WS1S that is
interpreted over finite binary trees. In this thesis we are concerned just with WS1S, so the subset of MONA
specifications that we will use is expressively equivalent to WS1S.
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program ::= [ declaration ; ]? φ

declaration ::= const constname = k |

[ var0 | var1 | var2 ] [ varwhere ]⊕ |

pred predname [ ( [ par ]⊙ ) ] ? = φ

φ ::= true | false | b | ( φ ) | ∼ φ | φ1 [ & | | | => | <=> ] φ2 |

[ ex1 | ex2 | all1 | all2 ] [ varwhere ]⊕:φ |

t1 [ ∼= | = | < | > | <= | >= ] t2 |

T = T | T1 sub T2 | t [ in | notin ] T | empty (T) |

predname ( [ t |T |φ ]⊙ )

t ::= p | ( t ) | k | t [ + | - ] k | [ max | min ] T

T ::= P | ( T ) | { [ t ]⊙ } | empty | T [ + | - ] k | T1 [ union | inter | \ ] T2

par ::= [ var0 | var1 | var2 ] [ varwhere ]⊕

varwhere ::= v [ where φ ] ?

where φ, φ1 and φ2 are MONA formulae; constname is a constant identifier; k is a constant

integer expression; v is a variable identifier (Boolean, first-order or second-order variable); b, p

and P are identifiers of Boolean, first-order and second-order variables (resp.); predname is a

predicate identifier; t, t1 and t2 are first-order terms; and T , T1 and T2 are second-order terms.

The meta-operator [X|Y ] denotes either X or Y ; [X] + denotes one or more occurrences of X;

[X] ? denotes an optional occurrence of X; [X]⊕ denotes one or more occurrences of X separated

by commas; and [X]⊙ denotes zero or more occurrences of X separated by commas.

A MONA specification consists of a declaration section, in which free variables are introduced,

and a formula section, where the WS1S formula itself is defined (naturally, the declaration section

may be omitted if no free variables, constants or predicates, occur in the formula). Boolean

(var0), first-order (var1) and second-order (var2) variables can be declared, as well as integer

constants (const) and predicates (pred), which act as formula “templates”.3

Logic connectives include negation (∼), conjunction (&), disjunction (|) and implication (=>).

First-order terms can be combined using relational operators (e.g. t1>=t2), addition of constant

values (t+k) and quantification (ex1 t:ϕ, all1 t:ϕ).

3Other data types can be derived as well, such as enumerations, records and bounded arrays [148, 29].
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Second-order terms can be subject to operators that retrieve the minimum and maximum

element in the set (min T, max T), test for membership (t in T), set inclusion (T1 sub T2),

quantification (ex2 T:ϕ, all2 T:ϕ) and other typical operations such as intersection (inter),

difference (\) and union (union).

Restrictions can also be added to variables, e.g., the expression v where v in {0,1} con-

strains the value of the variable v to be in the set {0, 1} (this restriction is taken into account

when checking the satisfiability of formulae where v occurs). Note that, addition is possible but

is restricted to constants; on the other hand, general addition, multiplication and set comple-

mentation are not possible in WS1S (these will make the logic undecidable).

6.3 From MONA Specifications To Finite Automata

MONA implements a decision procedure for WS1S based on a translation from WS1S formulae to

deterministic finite automata [54, 66]. This can be explained in terms of the following simplified

WS1S syntax, which does not include first-order variables (although, this syntax is as expressive

as the original set of operators [155]).

φ ::= ∼ φ | φ & ψ | ex2P :φ | P sub Q | P =Q \R | P =Q+1

where φ denotes a WS1S formula, and P , Q and R denote second-order variables. A string

interpretation can be given to finite sets of natural numbers; to the finite set P corresponds any

string w = w0w1 . . . wn ∈ B∗, B = {0, 1}, such that P = { i |wi = 1 ∧ 0 ≤ i ≤ n}.

For example, the set P = {0, 1, 3} can be interpreted as the string w = 1101. Note that,

P = {0, 1, 3} can actually be interpreted as any string w′ ∈ 11010∗. The semantics are then

extended such that a formula with k variables is interpreted over strings w ∈ (Bk)∗. For example,

P = {0, 1, 2} and Q = {1, 2, 3} can be interpreted as the string w = (10)(11)(11)(01),

P -track

Q-track




1

0








1

1








1

1








0

1





0 1 2 3

Given a string w, the value of a second variable P is encoded as w(P ) = {i | the i-th bit in

the P -track of w is 1}. Satisfiability of WS1S formulae is therefore defined in terms of binary

strings, as follows.
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w |= ∼ φ iff w 2 φ

w |= φ & ψ iff w |= φ and w |= ψ

w |= ex2 P:φ iff exists w′ s.t. w′ ≈P w and w′ |= φ

w |= P sub Q iff w(P ) ⊆ w(Q)

w |= P = Q \R iff w(P ) = w(Q)\w(R)

w |= P = Q+1 iff w(P ) = { i+ 1 | i ∈ w(Q) }

where w′ ≈P w if w′ is the shortest string that interprets every variable in the formula as w

does, save possibly for P (i.e., w′(Q) = w(Q), for all Q 6= P ). Note that w′ may be longer

than w; in general, w′ = w.(0, . . . , 0, xP , 0, . . . , 0)∗, where xP denotes that the value of the bit

in the P -track is irrelevant. Given this interpretation, a WS1S formula φ defines a language of

satisfying strings L(φ) = {w | w |= φ}, which corresponds to its models.

A deterministic finite automaton Aφ, L(Aφ) = L(φ), can be constructed inductively on the

structure of φ. Basic automata are constructed to accept the models of each atomic subformula

(P sub Q, P = Q \R and P = Q+1). These automata are depicted in Figure 6.3.4
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Figure 6.3: Basic Automata for Atomic Formulae (Simplified WS1S)

Consider, for example, the automaton for P = Q \R in Figure 6.3(ii). The automaton accepts

the model P = {0, 2}, Q = {0, 1, 2} and R = {1}, which corresponds to a string w leading to an

accepting state (s1), where w is of the form:

4The initial state (double circle) is the only accepting state. To simplify the presentation, transitions are
labelled with multiple letters.
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Boolean operators correspond to well-known operations on automata. Negation (∼ φ) translates

to automata complementation (∁Aφ), and conjunction (φ & ψ) is implemented by the product

automaton (Aφ ×Aψ).

Quantification (ex2 P:φ) transforms the base automaton, Aφ, in a number of steps. First,

any state for which a path exists that leads to an accepting state via (0, . . . , 0, xP , 0, . . . , 0)∗, is

made accepting. This accounts for the fact that the strings satisfying ex2 P :φ may be shorter

than those satisfying φ. Then, for any state s and any pair of outgoing transitions from s which

only differ in the P -track, (s, l, s′) and (s, l, s′′), a pair of complementary transitions are added

to the automaton, (s, l, s′′) and (s, l, s′). This non-determinism represents the different values

of P which may satisfy φ.

Finally, the resulting automaton is determinised and minimised (quantification, then, may

cause an exponential increase in the automaton size due to determinisation).

MONA implements the conceptual translation discussed above, but a number of syntac-

tic transformations are first applied to the formula to reduce it to a simplified language (this

language is similar to the one we have presented here, although it contains more atomic sub-

formulae, e.g., P = Q union R). The implementation considers, as well, some technical issues

such as the interpretation of first-order variables as second-order variables, the interpretation

of Boolean variables, and checking satisfiability of formulae under restrictions. A discussion of

these problems (and the solutions implemented in MONA) is beyond the scope of this thesis;

we refer the reader to [95, 96].

Meyer [114] showed that the time and space for translating WS1S formulae to automata, in

the worst case, is non-elementary in the nesting of quantifiers and negation (state explosion may

occur as a result of automata determinisation). Because this complexity cannot be avoided in the

worst case (non-elementary complexity has been proved to be a lower-bound for the translation),

MONA focused instead on improving the performance of the translation algorithm in the general

case (under the hypothesis that the worst-case scenario would not arise frequently in practice).

Efficient data-structures, algorithms and different optimisations were included for this purpose

[97]. In the following section we elaborate on the use of BDDs in MONA to represent automata.

Other optimisations are explained in detail in [97].
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6.3.1 Encoding Deterministic Finite Automata with BDDs

BDDs are a well-known data structure to represent boolean functions [53, 52]. In particular,

MONA uses shared, multiterminal BDDs [81, 94] to efficiently encode the automata that result

from translating WS1S formulae.

BDDs in MONA encode just the automaton’s transition relation; states, instead, are mod-

elled explicitly. In a shared, multiterminal BDD, a vector represents the states of the automaton.

Every element in this vector points to a direct acyclic graph that encodes the outgoing transi-

tions of the corresponding state. Let V1, V2, . . ., Vk be an enumeration of the variables in the

formula. The graph is ordered in levels, such that nodes in level k are labelled with Vk, and

point to two other nodes (via 0- and 1-transitions) in some lower levels k′, k′′ > k. Leaf nodes (at

the bottom) point to elements in the state vector: these denote the “next state” of the encoded

automaton’s transitions. Figure 6.4 shows the BDD representation for the DFA corresponding

to P = Q \R (see the corresponding automaton in Figure 6.3(ii)).

s1 s2

s1 s2

0 1

1

10

0

1

10

0

P = Q \ R

P

Q Q

R R

Figure 6.4: A BDD Encoding of DFAs

By way of example, consider the transition (s1,110,s1) in the automaton of Figure 6.3(ii);

this corresponds to a letter that has a 1 in the P - and Q- tracks, and a 0 in the R-track. This

is represented in the BDD by the path,

s1−→P 1−→Q 1−→R 0−→ s1

In addition, note in the graph that s2 is linked directly to itself, without any reference to

internal (i.e., variable) nodes. Effectively, the automaton of Figure 6.3(ii) remains in s2 no

matter the current string; because values in the P -, Q- and R- tracks are irrelevant, references

to the internal nodes were removed (in BDD-terms, redundant tests were removed). The BDD
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shows, as well, that transitions (s1,110,s1) and (s1,111,s2) share a common subpath (in

BDD-terms, isomorphic subtrees were identified, and duplicates removed),

s1−→P 1−→Q 1−→R

By using BDDs, MONA is able to compactly encode the large alphabets arising in DFAs.

As we have illustrated previously, a WS1S formula with k variables is interpreted on strings

in Bk. There are, therefore, 2k different letters for the DFA to read, and so the size of the

DFA’s transition table is exponential on the number of variables in the source formula. A BDD

representation of transitions, on the other hand, is usually much more succinct.

Let us conclude this section by pointing out that BDDs are not exempt from exponential

blow-ups, if a bad variable ordering prevents compression. Unfortunately, the problem of finding

an optimal ordering is difficult (NP-complete). Some ordering heuristics have proved useful

in other BDD applications [141, 132, 3, 4], but their effect on WS1S formulae has not been

investigated yet. Currently, MONA does not include any ordering heuristics; the order chosen

is that in which variables are declared in the source file.

6.4 Summary

We presented WS1S, a decidable logic with the expressive power of regular language on finite

words. Despite the non-elementary complexity of this logic, MONA implements an efficient

decision procedure which has been successfully applied in many non-trivial problems.

MONA translates a WS1S formula into an equivalent finite automaton, where models are

represented by paths from the initial to an accepting state (rejecting state for counterexamples).

MONA optimises the translation in different ways (e.g., by identifying common sub-expressions),

and compactly represents the automaton using BDDs.

In the following chapters, we will see how WS1S and MONA help us to address limitations

of timed automata and model-checkers (Chapter 2). Chapter 7 will show that MONA can

be used as an efficient decision procedure for PITL, an interval temporal logic where certain

requirements are easier to express than in Uppaal and other model-checkers. Chapter 8 will

introduce Discrete Timed Automata, a deductive framework where WS1S is used as the assertion

language, and MONA serves as tool support for invariance proofs. Discrete Timed Automata

support unbounded data domains, and specifications are time reactive by construction.

Chapters 7 and 8 also reveal shortcomings that stem from the restricted arithmetic of WS1S

(limitations in expressive power), and the lack of variable-ordering heuristics in MONA (possible

state explosion).
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Chapter 7

MONA: A Decision Procedure

for Propositional ITL

Abstract. Propositional Interval Temporal Logic (PITL) is a linear-time logic with the expres-

sive power of regular languages on finite words. Time constraints, sequences and iteration of

events, and past computations, can be intuitively expressed in PITL. Thus, PITL overcomes

expressiveness limitations of branching-time requirements languages, as adopted by Uppaal and

other real-time model-checkers (Chapter 2). However, PITL’s decision procedure has a non-

elementary worst-case complexity, which has hampered the development of efficient tool support

and further application of PITL in practice.

In this chapter, we show that MONA (Chapter 6) can be used as an efficient decision pro-

cedure for PITL, despite the logic’s complexity. We develop a translation from PITL to WS1S

(and thus, to MONA specifications), and implement this translation in a tool, PITL2MONA,

which acts as a front-end to MONA. In this way, PITL2MONA+MONA can be considered an

efficient implementation of an automata-based decision procedure for PITL.

Organization. In Section 7.1 we give an overview of Interval Temporal Logic. We introduce

the logic PITL in Section 7.2. In Section 7.3, we present a WS1S semantics for PITL formulae,

which we use to obtain a translation from PITL to MONA (this translation is proven correct in

Appendix C). We introduce the tool PITL2MONA in Section 7.4, and evaluate its performance

on a number of examples. Section 7.5 evaluates PITL as a specification language for real-time

systems. Section 7.6 discuss related work. In Section 7.7 we draw conclusions and suggest

further research.
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7.1 Interval Temporal Logic

Interval Temporal Logic (ITL) [120, 122, 125, 128, 126]1 is a linear-time temporal logic that is

interpreted over finite state sequences (called intervals).2 ITL has been applied in different prob-

lems, such as specification and verification of hardware devices [78, 120, 121, 76], temporal logic

programming [122, 64, 99, 77] and refinement [56], specification of multimedia documents [41]

and human computer interaction [37, 42]. Infinite-time extensions to ITL have been proposed

in [124, 64, 128] (however, in this thesis, we restrict our analysis to finite-time ITL).

Our interest in ITL comes from its natural notation and expressiveness. Operators such as

chop (;), projection (proj ) and chop-star (∗) support sequential composition, repetitive behaviour

and refinement [122, 123, 124, 64]. High-level operators can be defined in ITL to denote iteration,

conditional tests and assignments, as used in imperative programming languages; thus, ITL lends

itself to execution [122, 99].

Furthermore, ITL can express quantitative time constraints; the operator len(n) holds in

intervals with n states, thus providing an abstraction to quantify discrete time (when moving

from one state in the interval to the next denotes time passing by 1 time unit). This allows ITL

to specify real-time systems; e.g., Bowman et al. [41] have exploited this feature of ITL in the

specification of multimedia documents and related requirements.

ITL can be seen as an alternative notation which overcomes certain expressiveness limitations

of conventional point-based temporal logics, such as CTL [58] and LTL [111]. One drawback of

branching-time logics (such as CTL or TCTL [6]) is that formulae do not represent requirements

in an intuitive manner, and are difficult to understand for non-logic experts [161, 14].

For instance, in model-checkers such as Uppaal [22] and Kronos [169] (whose requirements

languages are based on CTL and TCTL, respectively), it is difficult (and sometimes, impossible)

to express requirements that refer to sequences and iteration of events, or past computations

(Section 2.4). This affects our confidence in verification, e.g., we may assert the satisfiability of

formulae that do not represent the intended requirements.

On the other hand, linear-time logics (such as LTL with past operators) are more intuitive

than those based on branching-time, but sequences and iteration of events are difficult to express.

These limitations of point-based logics have motivated researchers to consider requirements

languages with the power of regular expressions and past operators [166, 136, 140, 161]. Al-

though, in general, past operators do not add expressive power, they facilitate requirements that

refer to past events; for instance, LTL formulae with past operators can be exponentially more

succinct than equivalent formulae with just future operators [113].

1See also www.cse.dmu.ac.uk/STRL/ITL//itlhomepage.html.
2This chapter refers to local ITL, in which propositional variables are satisfiable on a given interval if and

only if they are satisfiable at the initial state [120].
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In this chapter we consider a rich propositional subset of ITL over finite intervals, PITL,

which has the expressive power of regular languages over finite words [128]. PITL includes

the len operator, finite quantification (i.e., quantification over propositional variables), (future)

operators such as until, chop, chop-star (∗) and projection, and past operators such as previous

(©- ), chop in the past (
∼
; ) and since (since). These operators permit a natural representation of

sequence, iteration and past computations (we formally present PITL in Sections 7.2 and 7.2.2).

However, PITL’s decision procedure has a non-elementary worst-case complexity [120], which

has hampered the development of efficient tool support and further application of PITL in

practice. Here we use WS1S and MONA (Chapter 6) to address this problem.

We show that MONA can be used as an efficient decision procedure for PITL, despite its

complexity. We develop a translation from PITL to WS1S (and thus, to MONA specifications),

and implement this translation in a tool, PITL2MONA, which acts as a front-end for MONA

(Sections 7.3 and 7.4). In this way, PITL2MONA+MONA can be considered an efficient im-

plementation of an automata-based decision procedure for PITL. Furthermore, we show that

our implementation outperforms a tableau-based decision procedure for a similar propositional

subset of ITL (Section 7.4.3). In addition, we assess the strengths and weaknesses of PITL in

real-time settings (Section 7.5).

7.2 PITL – Syntax and Semantics

7.2.1 PITL+: Future Operators

This section presents syntax and semantics for the future subset of PITL (PITL+); past operators

will be considered in Section 7.2.2. The syntax of PITL+ is given by the following BNF,

P ::= v | false | ¬P | P ∨Q |∃ v. P | empty | ©P | P ; Q | P ∗ | P until Q | P proj Q

where P is a PITL+ formula and v ∈ V, where V is a set of propositional variables. Operators

(;), (∗) and (proj) are usually called, respectively, chop, chop-star and projection. PITL+ is

semantically interpreted over finite, non-empty state sequences, called intervals. Let I denote

the set of all intervals; an interval σ ∈ I has the form,

σ0σ1 . . . σ|σ|

where |σ| > 0 denotes the length of an interval and σi denotes the i-th state of σ. One-state

intervals are referred to as empty intervals; by convention, the length of an interval is the number

of states minus one, and so the length of empty intervals is zero.
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We use σi and iσ to denote the i-th prefix and suffix of σ, respectively.

σi , σ0 . . . σi

iσ , σi . . . σ|σ|

Intervals describe the behaviour of variables in time. Every state is mapped to a set of variables

in V, precisely the set of variables that are true at that state; we use v ∈ σi to denote that v ∈ V

is true at state σi. Given two intervals σ and σ′, and a variable v ∈ V, we use σ′ ≈v σ to denote

that the intervals are similar except maybe for the behaviour of v:

σ′ ≈v σ iff |σ′| = |σ| and for all v′ 6= v and 0 ≤ i ≤ |σ|, v′ ∈ σ′
i ⇔ v ∈ σi

The semantics of PITL+ is given by the following definitions,

σ |= v iff v ∈ σ0

σ 2 false

σ |= ¬P iff σ 2 P

σ |= P ∨Q iff σ |= P or σ |= Q

σ |= ∃ v. P iff exists σ′ s.t. σ′ ≈v σ and σ′ |= P

σ |= empty iff |σ| = 0

σ |= ©P iff |σ| > 0 and 1σ |= P

σ |= P ; Q iff exists k ∈ N s.t. σk |= P and kσ |= Q

σ |= P ∗ iff |σ| = 0 or exists a sequence k0, k1, . . . , km ∈ N s.t.

k0 < k1 < . . . < km, k0 = 0, km = |σ| and

for all 0 ≤ i < m, ki(σki+1) |= P

σ |= P until Q iff exists k ∈ N s.t. kσ |= Q and for all j ∈ N, j < k, jσ |= P

σ |= P proj Q iff |σ| = 0 or exists a sequence k0, k1, . . . , km ∈ N s.t.

k0 < k1 < . . . < km, k0 = 0, km = |σ|, and

for all 0 ≤ i < m, ki(σki+1) |= P and σk0σk1 . . . σkm
|= Q

where σ ∈ I is an interval; |= is the satisfiability relation (as usual, a PITL+ formula is valid if

it is satisfiable in every possible interval); v ∈ V is a propositional variable; and P,Q are PITL+

formulae.3

3Our definitions for chop-star and projection are slightly different from those of Moszkowski (see e.g., [122,
127]). It turns out that both semantics are equivalent; however, the translation to WS1S is simplified if we rule
out empty iterations. We prove this equivalence only for chop-star (see Theorem C.1 in appendix C); the proof
for projection can be derived in the same way.
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(v)

empty

(vi)

Figure 7.1: PITL+ operators

The semantics of PITL+ operators can be depicted as in Figure 7.1; below, we offer some

intuitive explanations.

(i) empty is true on any 1-state interval.

(ii) ©P is true on σ if P is true on the suffix 1σ. Note, the next operator © is given a strong

interpretation, in which ©P fails on empty intervals. A weak interpretation (satisfiable

in any empty interval) can be derived, which results in the weak-next operator ©wP ,

¬ © ¬P .

(iii) P ; Q is true on σ if σ can be split at some state σk, such that P is true on the prefix

σk, and Q is true on the suffix kσ. Note, chop is a “fusion” variant of the concatenation

operator for regular expressions: σk and kσ share a common state, σk.

(iv) P ∗ is true on σ if either σ is an empty interval, or a sequence of natural numbers 0 =

k0 < k1 < . . . < km = |σ| can be found that splits σ into a sequence of subintervals

ki(σki+1), 0 ≤ i < m, where P is true on each subinterval. By definition, P ∗ is satisfiable

on empty intervals, for any PITL+ formula P (even for P , false).

(v) P until Q is true on σ if σ can be split at some state σk, such that Q is true on the suffix

kσ, and P is true on every previous suffix jσ, j < k. Note, P until Q holds trivially in σ

if Q does, regardless of P .

(vi) P proj Q is true on σ if either σ is an empty interval, or a sequence of natural numbers
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0 = k0 < k1 < . . . < km = |σ| can be found that splits σ into a sequence of subin-

tervals ki(σki+1), 0 ≤ i < m, where P is true on each subinterval, and Q is true on

the interval formed by “glueing” together the subintervals’ end points, i.e., Q is true on

σ′ = σk0σk1 . . . σkm
.

A wealth of other useful operators can be derived from this set, as shown below.

true , ¬ false

P ∧Q , ¬ (¬P ∨ ¬Q)

P ⇒ Q , ¬P ∨Q

P ≡ Q , (P ⇒ Q) ∧ (Q⇒ P )

3 P , true ; P (true in some suffix)

2 P , ¬3¬P (true in all suffixes)

more , ¬ empty (non-empty interval)

skip , ©empty (two-state interval)

m2 P , 2(more⇒ P ) (true in all suffixes,

save perhaps at the last state)

a3 P , true ;P ; true (true in some subinterval)

a2 P , ¬ a3¬P (true in all subintervals)

fin(P ) , true ; (empty ∧ P ) (true at last state)

halt(P ) , ( m2¬P ) ; (empty ∧ P ) (only true at last state)

len(n) , ©©· · ·©
︸ ︷︷ ︸

n times

empty (interval of length n)

len≥(n) , len(n) ; true (interval of length ≥ n)

len>(n) , len(n) ;more (interval of length > n)

len≤(n) , ¬ len>(n) (interval of length ≤ n)

len<(n) , ¬ len≥(n) (interval of length < n)

Interestingly, chop can be used to describe sequential composition, and “for” and “while” loops

can be defined in terms of chop-star and projection.

while P do Q , (P ∧Q)∗ ∧ halt (¬P )

for n times do P , P proj len(n)
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where P,Q are arbitrary ITL formulae and n is a natural number. 4 Intuitively, the construct

while P do Q

holds in any interval that can be divided in any number of consecutive subintervals, where both

P and Q hold in each subinterval, and P does not hold in the last state of interval. Likewise,

the construct,

for n times do P

holds in any interval that can be divided in n consecutive subintervals, where P holds in each

subinterval. Note, as well, that chop-star and until can be defined in terms of projection and

quantification, respectively.

P ∗ , P proj true

P until Q , ∃ v. (2(v ≡ P ) ∧ ( m2v) ;Q)

Examples: Future Operators. Consider the following interval,

σ = a {a, b} a b = σ0 . . . σ3

where V = {a, b}, |σ| = 3 and σ0 = {a}, σ1 = {a, b}, σ2 = {a} and σ3 = {b}. The following

formulae (i)-(iii) are satisfiable over σ, while (iv)-(vi) are not.

(i) a ; b (ii) a∗ (iii) a proj m2a

(iv) (a ∧ empty) ; b (v) len(2)∗ (vi) a proj 2a

The formula (i) holds because a holds in σ1 and b holds in 1σ. In contrast, (iv) does not hold

because the conjunct is forcing the prefix to contain just the initial state, where b does not hold.

The formula (ii) holds because σ can be split into any number of consecutive subintervals,

say σ0σ1, σ1σ2 and σ2σ3, where each subinterval is a model for a (i.e., a is true in the first state

of every subinterval). Compare this with (v), which does not hold because there is no way to

split σ in any number of consecutive 3-state subintervals.

The formula (iii) holds because σ can be split into consecutive subintervals where a is true

in the first state, say σ0σ1 and σ1σ2σ3, and the interval resulting from glueing together the

subintervals’ boundaries, i.e., σ′ = σ0σ1σ3, satisfies m2a (note, in this case, σ′ = aab). Note

that projection (as is also the case with chop-star) does not force any particular way of splitting

the base interval; however, the resulting (projected) interval inherits the base interval’s first and

4In the “while” loop, P will typically denote a point formula, i.e., the satisfiability of P can be determined
totally by considering just the first state of the interval.
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last states. Therefore, every interval projected from σ will have a being false in the last state,

and so 2a cannot hold in any such interval. The difference between (iii) and (vi) is that m2a

(unlike 2a) does not require a to hold in the last state.

7.2.2 PITL: Extending PITL+ With Past Operators

The logic PITL extends PITL+ with three past operators, previous (©- ), since and chop in the

past (
∼
; ). These operators are based on those of Bowman et al. [41], adapted to the propositional

setting. The syntax of PITL is given by,

P ::= v | false | ¬P | P ∨Q | ∃ v. P

| empty | ©P | P ; Q | P ∗ | P until Q | P proj Q

| ©- P | P
∼
; Q | P since Q

To accommodate past operators, we will interpret PITL formulae over pairs of the form (σ, j),

where σ ∈ I and 0 ≤ j ≤ |σ|. The state σj is the current state, which splits σ into a history

prefix, σj−1 (if j > 0), and a future suffix, jσ. As in [41], the history prefix denotes the sequence

of past states, and we consider the current state to be part of the future suffix. The semantics

of past operators is as follows.

(σ, j) |= ©- P iff j > 0 and (σ, j − 1) |= P

(σ, j) |= P
∼
; Q iff exists k ∈ N, 0 ≤ k ≤ j s.t.

(σ, σk) |= P and (kσ, j − k) |= Q

(σ, j) |= P since Q iff exists k ∈ N, 0 ≤ k ≤ j s.t. (σ, k) |= Q and

for all r, k < r ≤ j, (σ, r) |= P

prev P P since QP chopp Q

(i) (ii) (iii)

P P Q

Q

. . .
P

P

Figure 7.2: Past operators: (i) previous, (ii) chop in the past, and (iii) since

The behaviour of past operators is illustrated in Figure 7.2 (the history prefix is delimited by

double arrows); next, we offer informal explanations.
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(i) ©- P holds in some interval σ if it holds in σ by moving one state into the past;

(ii) P
∼
; Q holds in some interval σ if P holds in some past suffix of σ, and Q holds in σ with

a truncated history, starting at P ’s current state. Note, chop in the past splits the history

of σ very much in the same way that chop splits the future.

(iii) P since Q holds in some interval σ if Q holds in σ, or Q holds in some past suffix of σ and

P holds in every past suffix of σ between Q and σ’s current states.

The semantics of future operators w.r.t. a pair (σ, j) is given below. This interpretation on pairs

is conservative w.r.t. the semantics on intervals given in Section 7.2 for future operators, in the

following sense: for any PITL formula P where past operators do not occur, and any pair (σ, j),

then (σ, j) |= P iff jσ |= P . This completes, together with that of past operators, the semantics

for PITL.

(σ, j) |= v iff v ∈ σj

(σ, j) 2 false

(σ, j) |= ¬P iff (σ, j) 2 P

(σ, j) |= P ∨Q iff (σ, j) |= P or (σ, j) |= Q

(σ, j) |= ∃ v. P iff exists σ′ s.t. σ′ ≈v σ and (σ′, j) |= P

(σ, j) |= empty iff j = |σ|

(σ, j) |= ©P iff j < |σ| and (σ, j + 1) |= P

(σ, j) |= P ; Q iff exists k ∈ N, j ≤ k ≤ |σ| s.t. (σk, j) |= P and (σ, k) |= Q

(σ, j) |= P ∗ iff j = |σ| or exists a sequence k0, k1, . . . , km ∈ N s.t.

k0 < k1 < . . . < km, k0 = j, km = |σ| and

for all 0 ≤ i < m, (σki+1 , ki) |= P

(σ, j) |= P until Q iff exists k ∈ N, j ≤ k ≤ |σ| s.t. (σ, k) |= Q and

for all r ∈ N, j ≤ r < k, (σ, r) |= P

(σ, j) |= P proj Q iff j = |σ| or exists a sequence k0, k1, . . . , km ∈ N s.t.

k0 < k1 < . . . < km, k0 = j, km = |σ|, and

for all 0 ≤ i < m, (σki+1 , ki) |= P and

(σ0 . . . σk0σk1 . . . σkm
, k0) |= Q

The behaviour of future operators (Figure 7.3) does not take into account the history prefix,

but the semantics of past operators must consider the possible expansion of this history. On

the one hand, past operators may occur under the scope of future operators; on the other hand,

when future operators are evaluated, the history prefix is extended to match the corresponding

current state.
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Q
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(i) (ii) (iii)

Figure 7.3: Future operators and history: (i) next, (ii) chop and (iii) chop-star

Examples: Past Operators. Consider a pair (σ, 3), where

σ = baa | abab = σ0 . . . σ6

The “|” symbol splits σ into a history prefix, σ2, and a future suffix, 3σ (which includes the

current state, σ3). The following formulae are satisfiable over σ.

(i) ©- a (ii) b
∼
; true (iii) a since b (iv) 2(b⇒ ©- a)

The formula (i) is true in (σ, 3) because it is true in σ by moving one state into the past: the

current state is σ3, thus, moving one state into the past yields the past suffix 2σ, which is a

model for a. The formula (ii) holds in (σ, 3) because b is true in a past suffix of σ. In this case,

the true-term has the purpose of splitting the history of σ in order to “find” b in the past. This

shows, then, how the operator -3 (eventually in the past) can be defined in terms of chop in

the past,

-3P , P
∼
; true

the formula (iii) holds in (σ, 3) because it holds in every past suffix of σ, after b and up to

the current state (σ3). The formula (iv) is an example of interaction between future and past

operators. The pair (σ, j) is a model for this formula, because every b-suffix in the future is

immediately preceded by an a-suffix. Note, in contrast, that a pair (σ, 0) would not be a model

for 2(b⇒ ©- a) because b is true in σ0 (the first state), and thus, ©- a is trivially false (although

a weak version of ©- could be derived).
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7.3 A WS1S Semantics for PITL Formulae

Our goal is to obtain a translation from any PITL formula P to a corresponding WS1S formula

P ′ with the same meaning, in the sense that P ′ is satisfiable w.r.t. WS1S semantics if and only

if P is satisfiable w.r.t. PITL semantics. This is accomplished by representing PITL intervals as

finite sets in N (i.e., the semantics of WS1S), and expressing the semantics of PITL operators

as WS1S formulae.

7.3.1 Intervals as Finite Sets of Natural Numbers

Intervals in PITL (w.r.t. a set of propositional variables V) are finite state-sequences, and every

state σi can be interpreted as a set of propositional variables: if a variable is included in the set,

v ∈ σi, then that variable is true in σi.

From a slightly different point of view, intervals can be thought of as mapping every variable

in V to a finite (possibly empty) set of natural numbers; every number corresponds to the index

of a state where that variable is true. For instance, if V is the set that encodes v in this way,

and v ∈ σi, then i ∈ V . Given that WS1S encodes finite sets of natural numbers as second-order

variables, we use second-order variables to encode PITL intervals in WS1S.

Formally, we define a mapping from PITL intervals and propositional variables to finite sets

of natural numbers, encoded as WS1S second-order variables. Let σ ∈ I be an interval w.r.t.

a finite set of propositional variables V; V2 a finite set of WS1S second order variables; and

h : V→ V2 a renaming bijection. We define a (total) mapping [[ ]]σ : V2 → F(N) that assigns a

valuation to second-order variables (a finite set of natural numbers), according to the behaviour

of propositional variables in σ. The mapping is defined as follows,

[[V ]]σ , {i | ∃ v ∈ V. V = h(v) ∧ v ∈ σi}

For example, if V = {a, b}, V2 = {A,B}, h = {(a,A), (b,B)}, and σ is such that,

σ = {a}0 {a, b}1 {a, b}2 {b}3 {b}4

then, [[ ]]σ = { (A, {0, 1, 2}), (B, {1, 2, 3, 4}) }.

7.3.2 Interpreting PITL in WS1S

We have shown that intervals can be represented in WS1S. If a WS1S semantics is possible for

PITL operators (Section 7.2.2), then WS1S must be expressive enough to characterise (a) subin-

tervals (b) the current state in a given interval (so history and future subintervals are properly
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distinguished), and (c) the creation of intervals out of nonconsecutive states (so projection can

be defined). In this section, we show that WS1S is expressive enough to model these concepts.

Consider the semantics of a PITL formula P w.r.t. a pair (σ, j). Depending on the operators

occurring in P , the satisfiability of P may depend on the satisfiability of some subformula Q

w.r.t. some (σ′, k), where σ′ is a subinterval of σ and 0 ≤ k ≤ |σ′|. Note that, if Q is under the

scope of a projection operator, then σ′ may not be a sequence of consecutive states.

For instance, let (σ, 0) and P be defined as follows.

σ = c a b a b a b a c = σ0 . . . σ8

P , a3( (a ∧ len(2)) proj (skip ;Q ; skip) )

With this setting, the satisfiability of P in (σ, 0) is ultimately determined by the satisfiability

of Q in (σ′′, 2), where σ′′ = σ0σ1σ3σ5 (thus, σ′′
2 = σ3 denotes the current state). We can justify

this claim as follows.

• By the semantics of a3, (σ, 0) |= a3P ′ implies that P ′ is satisfiable in some subinterval

of σ, where P ′ , (a ∧ len(2)) proj P ′′. Then, it must be the case that,

(σj , i) |= (a ∧ len(2)) proj P ′′

for some 0 ≤ i ≤ j ≤ 8.

• By the semantics of proj , if (σj , i) |= (a∧ len(2)) proj P ′′ holds, then iσj can be split into

consecutive models of (a ∧ len(2)). Now, these models must be 3-state subintervals of σ,

where a is true in the first state. From the structure of σ, then,

(σ7, 1) |= (a ∧ len(2)) proj P ′′

because 1σ7 = abababa. Moreover, P ′′ , (skip ;Q ; skip) must be satisfiable in the interval

that results from “glueing” together the end-points of models of (a ∧ len(2)). Thus,

(σ′, 1) |= (skip ;Q ; skip)

where σ′ = σ0σ1σ3σ5σ7 = caaaa.

• By the semantics of skip and chop, if P ′′ , skip ;Q ; skip is satisfiable in (σ′, 1), then

σ1σ3σ5σ7 can be split into three consecutive subintervals, where the first (σ1σ3) and last

(σ5σ7) subintervals are 2-state intervals; and the middle interval (σ3σ5) is a model for Q.
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We conclude that P is satisfiable in (σ, 0) if and only if (σ′′, 2) is a model for Q, where

σ′′ = σ0σ1σ3σ5.

The previous example shows that, in order to determine the satisfiability of a PITL formula w.r.t.

some interval σ, we need to refer to a sequence of states which are not necessarily consecutive

in σ, say,

σs0σs1 . . . σsm

for some set of indices S = {s0, s1, . . . , sm}. In the general case, we must be able to identify a

pair (σ′, j′) in this sequence, where

σ′ = σsk
σsk+1

. . . σsk+j′
. . . σsk+|σ′|

for some k ∈ N (0 ≤ k + |σ′| ≤ m). Let i, j, n ∈ S (i ≤ j ≤ n) s.t. i = sk, j = sk+j′ and

n = sk+|σ′|. Intuitively, σ′ is a subinterval constructed from those states in σ represented by

indices in S between i and n, and where j points to the current state (i.e., σ′
0 = σi, σ

′
j′ = σj

and σ′
|σ′| = σn). Correspondingly, We introduce the function subinterval(i, j, n, S, σ), defined

s.t. subinterval(i, j, n, S, σ) = (σ′, j′), where (σ′, j′) is as mentioned above.

Formally, we define a new satisfiability relation for PITL formulae, |=W , in terms of tuples

of the form (i, j, n, S,M), where S ⊆ N, i, j, n ∈ S (i ≤ j ≤ n) and M : V2 → F(N) maps

second-order variables to finite sets of natural numbers. This WS1S interpretation of PITL is

equivalent to the interval-based semantics, in the sense given by Lemma 7.1 and Theorem 7.2.

lemma 7.1. For any σ ∈ I, σ′ a subinterval of σ (not necessarily contiguous), 0 ≤ j′ ≤ |σ′|,

and PITL formula P , the following holds,

(σ′, j′) |= P iff (i, j, n, S,M) |=W P

where S ⊆ {0, 1, . . . , |σ|}, i, j, n ∈ S (i ≤ j ≤ n), subinterval(i, j, n, S, σ) = (σ′, j′) andM = [[ ]]σ.

Proof. See Appendix C.

theorem 7.2. For any σ ∈ I and PITL formula P , the following holds,

(σ, 0) |= P iff (i, j, n, S,M) |=W P

where i = j = 0, n = |σ|, S = {0, 1, . . . , |σ|} and M = [[ ]]σ.

Proof. Follows from Lemma 7.1.
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Before we give the formal definition of |=W , we define the predicate cons(Set, s1, s2), and the

notation M′ ≈V M. The predicate cons(Set, s1, s2) denote that s2 is the smallest element of

Set that is bigger than s1.

cons(Set, s1, s2) , s1, s2 ∈ Set ∧ s1 < s2 ∧ ∄ s′ ∈ Set. s1 < s′ < s2

We use M′ ≈V M to denote that the two mappings M′ and M are similar except maybe for

the second-order variable V . Formally, for second-order variables V and V ′,

M′(V ′) =







M(V ′) if V ′ 6= V

N ∈ F(N) if V ′ = V

The satisfiability relation is defined as follows (where v is a propositional variable, and h(v) the

corresponding second-order variable).

(i, j, n, S,M) |=W v iff j ∈M(h(v))

(i, j, n, S,M) 2W false

(i, j, n, S,M) |=W ¬P iff (i, j, n, S,M) 2W P

(i, j, n, S,M) |=W P ∨Q iff (i, j, n, S,M) |=W P or (i, j, n, S,M) |=W Q

(i, j, n, S,M) |=W ∃ v. P iff exists M′ s.t. M′ ≈h(v) M and (i, j, n, S,M′) |=W P

(i, j, n, S,M) |=W empty iff j = n

(i, j, n, S,M) |=W
©P iff j < n and exists k ∈ N s.t.

cons(S, j, k) and (i, k, n, S,M) |=W P

(i, j, n, S,M) |=W P ; Q iff exists k ∈ S, j ≤ k ≤ n s.t.

(i, j, k, S,M) |=W P and (i, k, n, S,M) |=W Q

(i, j, n, S,M) |=W P ∗ iff j = n or exists k0, k1, . . . , km ∈ S s.t.

k0 < k1 < . . . < km, k0 = j, km = n, and

for all r, 0 ≤ r < m, (i, kr, kr+1, S,M) |=W P

(i, j, n, S,M) |=W P until Q iff exists k ∈ S, j ≤ k ≤ n s.t.

(i, k, n, S,M) |=W Q and

for all r ∈ S, j ≤ r < k, (i, r, n, S,M) |=W P
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(i, j, n, S,M) |=W P proj Q iff j = n or exists S′ ⊆ S s.t.

S′ = {i, . . . , k0, k1, . . . , km} and

for all t, i ≤ t ≤ k0, t ∈ S ⇔ t ∈ S′ and

k0 < k1 < . . . < km, k0 = j, km = n, and

for all r, 0 ≤ r < m,

(i, kr, kr+1, S,M) |=W P and (i, j, n, S′,M) |=W Q

(i, j, n, S,M) |=W P
∼
; Q iff exists k ∈ S, i ≤ k ≤ j s.t.

(i, k, n, S,M) |=W P and (k, j, n, S,M) |=W Q

(i, j, n, S,M) |=W P since Q iff exists k ∈ S, i ≤ k ≤ j s.t.

(i, k, n, S,M) |=W Q and

for all r ∈ S, k < r ≤ j, (i, r, n, S,M) |=W P

(i, j, n, S,M) |=W
©- P iff i < j and exists k ∈ S s.t.

cons(S, k, j) and (i, k, n, S,M) |=W P

7.3.3 Translating PITL to MONA

The satisfiability relation, |=W (see Section 7.3.2), gives an interpretation for PITL formulae in

terms of natural numbers and finite sets of natural numbers; quantification over both numbers

and sets; relational operations (<,≤); and set operations, such as set inclusion and tests for

membership. All these can be expressed in WS1S; thus, the semantics of a PITL formula can

be translated to a MONA specification.

The translation follows the inductive definition of |=W on tuples (i, j, n, S,M), and can be

characterised by the function trans(i, j, n, S, P ) (see Table 7.1). The parameters, i, j and n, will

be instantiated with either natural numbers or first-order variables; S will be instantiated with

second-order variables; and P will represent the PITL formula to translate.

The function trans() returns a MONA formula, PM , such that PM is satisfiable (w.r.t. WS1S

semantics) if and only if P is satisfiable (w.r.t. PITL semantics). Moreover, the model found by

MONA for PM will be readily interpreted as a model for P (respectively, counterexample).

The final outcome of the translation algorithm is a MONA specification, PS , which includes

the necessary declarations to support the formula PM (PM = trans(0, 0, length, S, P )). This is

shown below, in Figure 7.4.
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P trans(i, j, n, S, P )

v j <= n & j in h(v)
false false

¬P ∼ trans(i, j, n, S, P )
∃ v. P ex2 h(v): trans(i, j, n, S, P )
©P j < n & ex1 k:cons(S,j,k) & trans(i, k, n, S, P )
P ∨Q trans(i, j, n, S, P ) | trans(i, j, n, S,Q)
empty j = n
P ;Q ex1 k:k in S & j <= k & k <= n &

trans(i, j, k, S, P ) & trans(i, k, n, S,Q)
P ∗ ex2 K:K sub S & min K = j & max K = n &

all1 k1,k2:cons(K,k1,k2) => trans(i, k1, k2, P )
P until Q ex1 k:k in S & j <= k & k <= n &

trans(i, k, n, S,Q) &

all1 k1:k1 >= i & k1 < k => trans(i, k1, n, S, P )
P proj Q ex2 K:K sub S & min K = j & max K = n &

all1 k1,k2:cons(K,k1,k2) => trans(i, k1, k2, S, P ) &

trans(i, j, n, K, Q)

P
∼
; Q ex1 k:k in S & k >= i & k <= j &

trans(i, k, n, S, P ) & trans(k, j, n, S,Q)
P since Q ex1 k:k in S & i <= k & k <= j &

trans(i, k, n, S,Q) &

all1 r:r in S & k < r & r <= j => trans(i, r, n, S, P )
©- P i < j & ex1 k:k in S & cons(S,k,j) & trans(i, k, n, S, P )

Table 7.1: A function to translate PITL to MONA formulae

var1 length;

var2 V1,V2,. . .,Vm;
pred cons(var2 Set, var1 s1,s2) =

s1 in Set & s2 in Set & s1<s2 &

∼ ex1 s’:s’ in Set & s1<s’ & s’<s2;

ex2 S: (all1 s: s<=length <=> s in S) & PM;

Figure 7.4: PS , the MONA specification for the PITL formula P

Let us comment on the declarations of PS .

• Let V denote the propositional variables (both free and quantified) occurring in P , and

assume that the sets of free and quantified variables are disjoint. Let V2 be a set of second-

order variables, and h : V → V2 the corresponding renaming bijection. Let Vf2 ⊆ V2,

Vf2 = {V1, V2, . . . , Vm}, denote the second-order variables corresponding to free variables

in P . Then, PS declares V2 ∪ {length} as free variables, where length is a first-order

variable encoding the length of the model/counterexample for PM (as found by MONA).

• The predicate cons(), as used in |=W , is translated directly into MONA, and declared as

part of PS . Also note that the mapping M will be represented implicitly by the models

of PM . Finding a model for PM (i.e., using MONA to check for satisfiability of PM ) can
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be thought of as a constraint solving problem, where MONA finds the minimum sets of

values for V2 ∪ {length} that satisfy the constraints expressed by PM .

• At the top level, the satisfiability of P is checked against the pair (σ, 0). Correspondingly,

the function trans(i, j, n, S, P ′) is instantiated with i = j = 0 (i.e., the current state is the

initial state); n = length (i.e., the final state is the last state of σ); S = {0, 1, . . . , length}

(i.e., the interval is σ itself, and S must contain all the states of σ); and P ′ = P . Note that,

PS represents S as a quantified variable S, which is constrained to include all elements

between 0 and length.

By way of example, Figures 7.5 and 7.6 show the translation of P , ©A ; ©B to a MONA

formula PM , and the final MONA specification PS , respectively.

→ trans(0, 0, length, S,©A ; ©B)
→ ex1 k:k in S & k>=0 & k<=length & trans(0, k,©A) & trans(k, length,©B)
→ ex1 k:k in S & k>=0 & k<=length &

0<k & ex1 k1:cons(S,0,k1) & trans(k1, k, A) &

k<length & ex1 k2:cons(S,k,k2) & trans(k2, length, B)

→ PM , ex1 k:k in S & k>=0 & k<=length &

0<k & ex1 k1:cons(S,0,k1) & k1<=k & k1 in A &

k<length & ex1 k2:cons(S,k,k2) & k2<=length & k2 in B

Figure 7.5: Translating P , ©A ; ©B to a MONA formula, PM

var1 length;

var2 A,B;

pred cons(var2 Set, var1 s1,s2) =

s1 in Set & s2 in Set & s1<s2 &

∼ ex1 s’:s’ in Set & s1<s’ & s’<s2;

ex2 S: (all1 s: s<=length <=> s in S) &

ex1 k:k in S & k>=0 & k<=length &

0<k & ex1 k1:cons(S,0,k1) & k1<=k & k1 in A &

k<length & ex1 k2:cons(S,k,k2) & k2<=length & k2 in B;

Figure 7.6: A MONA specification PS for P , ©A ; ©B

Discussion: Soundness and Model Generation. The translation just proposed is sound

in the sense that, for any PITL formula P , a semantically equivalent MONA specification PS

can be obtained. Therefore, we can check satisfiability of P by checking satisfiability of PM

(using MONA), the WS1S formula represented by PS . Models and counterexamples for P can

be derived directly from those obtained by MONA for PM . This is formalised by Theorem 7.3.

123



theorem 7.3. Let P be a PITL formula and PS the corresponding MONA specification. Then,

the following holds,

1. P is satisfiable w.r.t. PITL semantics (i.e., there exists a σ s.t. (σ, 0) |= P ) iff PM is

satisfiable w.r.t. WS1S semantics, where PM is the WS1S formula expressed by PS.

2. Let Vf be the set of free propositional variables occurring in P , and Vf2 the corresponding

(w.r.t. the renaming bijection) free second-order variables declared in PS. Let [[ ]]M :

Vf2 → F(N) denote the valuation for variables in Vf2 that MONA returns as a model

(resp. counterexample) for PM . Then, there exists an interval σ that is a model (resp.

counterexample) for P , s.t. [[V ]]σ = [[V ]]M , for all V ∈ Vf2 .

Proof. First, note that PM is satisfiable w.r.t. WS1S semantics if and only if there exists some

n and M s.t. (0, 0, n, {0, 1, . . . , n},M) |=W P is satisfiable w.r.t. WS1S semantics. This result

follows from the fact that PM is just expressing the semantic definition of

(0, 0, n, {0, 1, . . . , n},M) |=W P

in MONA (i.e., the difference is only in the syntax). By Theorem 7.2, for any PITL formula

P there exists n and M s.t. (0, 0, n, {0, 1, . . . , n},M) |=W P , if and only if there exists σ s.t.

(σ, 0) |= P , where |σ| = n and [[ ]]σ =M.

It follows, then, that PM is satisfiable w.r.t. WS1S semantics if and only if P is satisfi-

able w.r.t. PITL semantics. Following a similar reasoning, models (counterexamples) for PM

correspond to models (counterexamples) for P , where the behaviour of propositional variables

in the corresponding interval is represented as finite sets of natural numbers (as explained in

Section 7.3.1).5

7.3.4 A Simpler WS1S-semantics for Formulae without Projection

The WS1S semantics for PITL can be refined by taking into account sparse sets on demand.

Sparse sets represent intervals made of non-consecutive states; these are generated when for-

mulae with projection operators are translated to MONA. PITL formulae that do not contain

projection operators can be translated to simpler WS1S formulae, which contain less quantifiers

and set operations. This results, in turn, in a more efficient satisfiability analysis.6

5Although, models for PM are valuations for the free variables declared in it, which in turn correspond to the
free propositional variables occurring in P . Thus, models for PM are “incomplete”, in the sense that they do not
provide information about quantified variables in P .

6In fact, PITL2MONA performs the translation according to this simpler WS1S semantics (Section 7.4).
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So far, PITL formulae were expressed in WS1S according to the satisfiability relation,

(i, j, n, S,M) |=W P

where S denotes some (but maybe not all) states in a given interval σ, between σi and σn, and

including σj . This structure is necessary to deal with PITL formulae under projection. However,

if the formula in question is not under the scope of a projection operator, the resulting WS1S

formula is unnecessarily complicated. By way of example, consider the WS1S interpretation of

©Q, given below.

(i, j, n, S,M) |=W
©Q iff j < n and exists k ∈ N s.t.

cons(S, j, k) and (i, k, n, S,M) |=W Q

Consider the case when ©Q is a subformula of some top-level formula P , s.t. ©Q is not under

the scope of a projection operator. Thus the satisfiability of ©Q is determined by a contiguous

subinterval of σ,

(iσn, j − i) |= ©Q

Correspondingly, S includes all indices between i and n (i.e., s ∈ S for all i ≤ s ≤ n).7 Therefore

S becomes redundant, because a WS1S interpretation of ©Q can be given just in terms of the

indices i, j and n (and the mappingM).

The following satisfiability relation, |=s, gives a simpler WS1S semantics to PITL formu-

lae that are not under the scope of projection. We have omitted those cases where the WS1S

formulae obtained from |=s and |=W (the original relation, shown in Section 7.3.2) are the same.8

(i, j, n,M) |=s
©P iff j < n and (i, j + 1, n,M) |=s P

(i, j, n,M) |=s P ; Q iff exists k ∈ N, j ≤ k ≤ n s.t.

(i, j, k,M) |=s P and (i, k, n,M) |=s Q

(i, j, n,M) |=s P
∗ iff j = n or exists k0, k1, . . . , km ∈ N s.t.

k0 < k1 < . . . < km, k0 = j, km = n, and

for all r, 0 ≤ r < m, (i, kr, kr+1,M) |=s P

(i, j, n,M) |=s P until Q iff exists k ∈ N, j ≤ k ≤ n s.t.

(i, k, n,M) |=s Q and

for all r ∈ N, j ≤ r < k, (i, r, n,M) |=s P

7This is the case, for example, when P , ©Q is the top-level formula, and i = j = 0, n = |σ| and
S = {0, 1, . . . , n} are the initial settings.

8Note that, the semantics of P proj Q must necessarily be defined in terms of the relation |=W , because Q,
and all the subformulae of Q, are under the scope of a projection operator.
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(i, j, n,M) |=s P proj Q iff j = n or exists S s.t.

S = {i, . . . , k0, k1, . . . , km} and

for all t, i ≤ t ≤ k0, t ∈ S and

k0 < k1 < . . . < km, k0 = j, km = n, and

for all r, 0 ≤ r < m,

(i, kr, kr+1,M) |=s P and (i, j, n, S,M) |=W Q

(i, j, n,M) |=s P
∼
; Q iff exists k ∈ N, i ≤ k ≤ j s.t.

(i, k, n,M) |=s P and (k, j, n,M) |=s Q

(i, j, n,M) |=s P since Q iff exists k ∈ N, i ≤ k ≤ j s.t.

(i, k, n,M) |=s Q and

for all r ∈ N, k < r ≤ j, (i, r, n,M) |=s P

(i, j, n,M) |=s
©- P iff i < j and (i, j − 1, n,M) |=s P

P simple(i, j, n, P )
©P j < n & simple(i, j + 1, n, P )
P ;Q ex1 k:k >= j & k <= n &

simple(i, j, k, P ) & simple(i, k, n,Q)
P ∗ ex2 K:min K = j & max K = n &

all1 k1,k2:cons(K,k1,k2) => simple(i, k1, k2, P )
P until Q ex1 k:j <= k & k <= n &

simple(i, k, n,Q) &

all1 k1:k1 >= i & k1 < k => simple(i, k1, n, P )
P proj Q ex2 K:min K = j & max K = n &

all1 k1,k2:cons(K,k1,k2) => simple(i, k1, k2, P ) &

trans(i, j, n, K, Q)

P
∼
; Q ex1 k:i <= k & k <= j &

simple(i, k, n, P ) & simple(k, j, n,Q)
P since Q ex1 k:i <= k & k <= j &

simple(i, k, n,Q) &

all1 r:k < r & r <= j => simple(i, r, n, P )
©- P i < j & simple(i, j − 1, n, P )

Table 7.2: Translating PITL Formulae According to Simpler WS1S-semantics

Table 7.2 shows the MONA formulae obtained according to the simpler semantics (other PITL

operators are translated as in Table 7.1). The translation is given in terms of a function, simple().

The translation of P proj Q is given in terms of the general function, trans() (Table 7.1).

7.4 PITL2MONA

PITL2MONA implements the translation from PITL formulae to MONA specifications, accord-

ing to functions trans() and simple() (as explained in Sections 7.3.3 and 7.3.4). Given a source

PITL formula, P , the translation will produce the simpler WS1S formulae for every subformula
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P ′ that is not under projection (i.e., according to Table 7.2); otherwise, it will produce equiv-

alent WS1S formulae according to Table 7.1. It can be seen, from Tables 7.1 and 7.2, that

this translation produces a WS1S formula that is linear in the size of the source PITL formula.

PITL2MONA outputs a single MONA program, which is semantically equivalent to the source

PITL formula. In this way, PITL2MONA is a front-end to MONA, which is used as a decision

procedure for PITL.

PITL2MONA supports the full PITL language considered in this chapter, plus a wealth of

other (derived) operators. Input and output are simply handled as ASCII files. We used GNU

Flex 2.5.4 and GNU Bison 1.875 to automatically generate the lexical analyser and parser, re-

spectively. C code, which performs the syntactic translation from PITL to MONA, is embedded

in the Bison grammar rules.

This section shows two different PITL specifications for the well-known Dining-philosophers

problem, and a specification for the Symphony Problem (adapted from the Beethoven Problem

presented in [41]). Our intention is to exercise the expressiveness of PITL as a requirements and

specification language. Later, Section 7.4.3 benefits from these (and other) examples to compare

the performance of PITL2MONA to that of LITE [98, 99], the other known implementation of

a decision procedure for PITL.

7.4.1 The Dining Philosophers Problem

Consider the following PITL specification of the well-known Dining Philosophers problem. There

are n philosophers sitting at a circular table, sharing n chopsticks. Philosophers spend most of

the time thinking, but now and then, they become hungry and try to pick up the chopsticks and

eat. Intervals represent the sequence of states philosophers may go through (although, because

PITL is a finite time logic, only finite behaviour can be modelled).

For any i, 1 ≤ i ≤ n, the propositional variable Hungry i denotes that the i-th philosopher

is hungry and will attempt to eat (the i-th philosopher sits between the (i + 1)-th, at his left,

and the (i− 1)-th, at his right). The variables Left i and Right i denote that the i-th philosopher

is currently holding the left or right chopstick, respectively. The behaviour of philosophers is

given by the formula

Beh ,
7∧

j=1

Pj

where9

9Throughout this section, + and − operations on indices are interpreted modulo n.
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P1 ,
n∧

i=1

3Hungry i

P2 ,
n∧

i=1

2(Hungry i ⇒ (¬Left i ⇒ Right i+1) ∧ (¬Right i ⇒ Left i−1))

P3 ,
n∧

i=1

2(Pick i ⇒ Hungry i)

P4 ,
n∧

i=1

2¬ (Left i ∧ Right i+1)

P5 ,
n∧

i=1

m2((Left i ∧ ¬Right i ⇒ ©Left i) ∧ (Right i ∧ ¬Left i ⇒ ©Right i))

P6 ,
n∧

i=1

m2(Hungry i ∧ ¬Eating i ⇒ ©Hungry i)

P7 ,
n∧

i=1

2(Eating i ⇒ 3¬Hungry i)

and

Pick i , Left i ∨ Right i

Eating i , Left i ∧ Right i

The behaviour of philosophers follows a few simple rules. Eventually, philosophers become hun-

gry (P1). When they do, they will try to pick up the chopsticks (P2) and eat. Philosophers that

are not hungry will not attempt to pick up the chopsticks, though (P3). Obviously, chopsticks

cannot be picked up by more than one philosopher at a time (P4). Once a philosopher has picked

up a chopstick, he does not release it until he manages to eat (P5). Philosophers remain hungry

until they eat (P6). Philosophers that manage to eat become satiated at some point (P7).

We might be interested in verifying a number of correctness properties. For example, the

satisfiability of Prop1,

Prop1 , Beh ∧more ∧
n∧

i=1

3Eating i

determines whether the formalisation is sound, in the sense that it characterises at least one

behaviour in which all philosophers eventually eat. The conjunct more is added to evaluate

the correctness properties on intervals of a sufficiently “interesting” length (empty intervals are

trivial models for m2).
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Provided that Prop1 is satisfiable, it makes sense to ensure that, in every possible behaviour,

all philosophers get their chance to eat. This is done by checking the validity10 of Prop2,

Prop2 , Beh ⇒
n∧

i=1

3Eating i

PITL2MONA can be used to translate these formulae into equivalent MONA specifications.

Then, MONA can be used to analyse the corresponding specifications. Intervals denoting models

or counterexamples are returned as valuations of second-order variables. For the formulae Prop1

and Prop2, PITL2MONA produces a MONA specification that declares one first-order variable,

length (whose value denotes the length of the model found), plus one second-order variable for

every Hungry i, Left i and Right i propositional variables occurring in the source PITL formula.

Consider, for example, the satisfiability analysis of Prop1 for 2 philosophers. MONA returns

the model,

length = 2

Hungry1 = {1} Left1 = {1} Right1 = {1}

Hungry2 = {0} Left2 = {0} Right2 = {0}

This model describes a finite behaviour where the second philosopher becomes hungry in the

state 0 (i.e., Hungry2 = {0}) and picks up both chopsticks immediately (i.e., Left2 = {0} and

Right2 = {0}). He then eats, and gives the chopsticks to the other philosopher in state 1. The

first philosopher eats in state 1 and puts the chopsticks back on the table in state 2.

However, some models of Beh represent deadlocks, i.e. situations where every philosopher is

holding his left or right chopstick, but not both. Because philosophers never release a chopstick

until they eat (P5), a circular wait occurs that prevents every philosopher from eventually eating.

Consequently, Prop2 is satisfiable, but not valid.

Consider again a simple setting with 2 philosophers. When MONA checks the validity of

Prop2, it returns a deadlock as a counterexample:

length = 0

Hungry1 = {0} Left1 = {} Right1 = {0}

Hungry2 = {0} Left2 = {} Right2 = {0}

This interval represents a behaviour where both philosophers become hungry in state 0, and

then each one of them picks up its right chopstick. They cannot eat, because each philosopher

holds the chopstick the other one needs. None of them is willing to put the chopstick on the

table either; formula P5 has made them “selfish”, forcing the philosophers to hold onto their

chopsticks until they manage to eat.

10Checking Beh for satisfiability first ensures that the implication is not vacuously true due to an inconsistent
antecedent.
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One way to break this circular wait is to force an order among philosophers, such that the

i-th philosopher cannot pick his chopsticks if the (i+ 1)-th philosopher is currently holding any

of his. The following formula, Behfree , constrains the behaviour Beh appropriately to ensure

deadlock freedom. MONA confirms that is indeed the case, by checking that Prop3 is valid.

Behfree , Beh ∧
n∧

i=1

2(Pick i ⇒ ¬Pick i+1)

Prop3 , Behfree ⇒
n∧

i=1

3Eating i

Next, we give a different PITL specification for the Dining Philosophers problem, which benefits

from the chop operator.11 Again, we consider n philosophers and use the propositional variables

Left i and Right i to represent the state of the i-th philosopher, but this time we do not use an

explicit variable Hungry i. We also define:

Thinking i , ¬ (Left i ∨ Right i)

Pick i , Left i ∨ Right i

Eating i , Left i ∧ Right i

Put i , ¬ (Left i ∧ Right i)

In this specification, the behaviour of philosophers is described as cycles; philosophers think for

awhile, then become hungry, pick up the chopsticks and eat, and finally they put the chopsticks

back on the table and continue thinking. This behaviour is expressed by the PITL formula Beh ′,

Beh ′ , more ∧
n∧

i=1

Phil i
∗ ∧2¬ (Left i ∧ Right i+1)

where

Phil i , (more ∧ m2Thinking i) ; (more ∧ m2Pick i) ; (more ∧ m2Eating i) ;2Put i

The use of more prevents empty models for m2 (in Phil i) and chop-star (in Beh ′). Note that,

models of Phil i represent only situations where the i-th philosopher is able to eat. Correspond-

ingly, models of Beh ′ represent only finite behaviours where all philosophers eat. Indeed, MONA

confirms that Beh ′ is satisfiable, and that formula Prop4 is valid:

Prop4 , Beh ′ ⇒
n∧

i=1

3Eating i

11This is inspired by one of the test examples given by Kono for his tool LITE.
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This is in contrast with the previous specification of the problem, Beh, where soundness (i.e.,

that there is at least a model for Beh where all philosophers eat) had to be established explicitly

by the formula Prop1. On the other hand, the formula Beh’ cannot represent the deadlocks

that are implicit in Beh. Frequently, the dining philosopher problem is used to reason about

situations where processes compete for some shared resources, and where circular waits may

occur. Then, a specification such as Beh’ would not be desirable, because it cannot represent

certain behaviours of interest.

7.4.2 The Symphony Problem

Consider the synchronous presentation of an audio and a video stream. The audio stream com-

prises n movements of a given symphony, and the video stream shows the title (a still image) of

every movement when this is played. Each movement Mi (1 ≤ i ≤ n) has a particular length, li.

The movements are played in sequence, with a gap of gm time units between consecutive move-

ments. Each title Ti is repeatedly displayed throughout the corresponding movement, for st time

units, with a gap of gt time units between each repetition. The overall presentation results from

composing the audio and video streams in parallel. The problem is to determine whether slowing

down each stream before composition is equivalent to slowing down the composite stream.

In the following specification we use propositional variables Mi and Ti to denote that the

i-th movement is being played and the i-th title is being shown, respectively. The multimedia

stream can be expressed by the PITL formula MMS,

MMS , Synch1 ; Gap1 ; Synch2 ; . . . ; Gapn−1 ; Synchn ∧ FrameM ∧ FrameT

where (1 ≤ i ≤ n, 1 ≤ j < n)

PlayM i , (2Mi) ∧ len(li)

ShowT i , (2Ti) ∧ len(st)

Max i , empty ∨ (len<(gt) ∧©2¬Ti) ∨ (len(gt) ∧© m2¬Ti) ; ((2Ti) ∧ len<(st))

RepeatT i , ShowT i ; ((len(gt) ∧© m2¬Ti) ; ShowT i)
∗ ;Max i

Synchi , PlayM i ∧ RepeatT i

Gapj , len(gm) ∧© m2¬ (Mj ∧Mj+1)

FrameM , (2M1 ; ©2¬M1) ∧

(halt(M2) ;2M2 ; ©2¬M2) ∧ . . . ∧ (halt(Mn) ;2Mn)

FrameT ,
n∧

i=1

2(Ti ⇒Mi)
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The formulae PlayM i and ShowT i define the duration of movements and titles, respectively.

RepeatTi represents the repetitive display of a title, with a gap of gt time units between consec-

utive repetitions. Max i forces a maximal number of iterations for chop-star in RepeatTi, so that

titles are repeatedly displayed during the movement, for as long as possible. This is achieved by

making the interval for RepeatTi finish either with an exact number of title iterations, or with a

gap less than gt, in which case there is no time for a new iteration, or with a gap of gt time units

followed by a short period (less than st time units), where the title is displayed until the end.

After a maximum number of iterations, the length of the remaining interval must necessarily be

less than gt + st time units.

The synchronisation between titles and movements is modelled by Synchi. The formula Gapj

models the gap between consecutive movements, Synchj and Synchj+1. FrameM guarantees

that movements are played only once during the stream. Similarly, FrameT ensures that titles

are shown only during the corresponding movement. We represent the slowing down of the

presentation by placing delays between consecutive states in the original model. Figure 7.7

illustrates the concept and its natural PITL interpretation using the projection operator.

presentation

slowed presentation

P

delay= k time units

len(k) proj P

len(k)

Figure 7.7: Slowing Down a Media Item

PITL2MONA and MONA were used to prove the following equivalence,

Prop5 , MMS ′ ≡ MMS ′′

where MMS ′ denotes the multimedia stream resulting from composing the slower audio and

video streams, and MMS ′′ denotes the stream resulting from slowing down both streams after

they are synchronised. These PITL formulae are defined as follows (k ∈ N is the delay factor).

MMS ′ , Synch ′
1 ; Gap1 ; Synch ′

2 ; . . . ; Gapn−1 ; Synch ′
n ∧ FrameM ∧ FrameT

MMS ′′ , Synch ′′
1 ; Gap1 ; Synch ′′

2 ; . . . ; Gapn−1 ; Synch ′′
n ∧ FrameM ∧ FrameT

Synch ′
i , (len(k) proj PlayM i) ∧ (len(k) proj RepeatT i)

Synch ′′
i , len(k) proj (PlayM i ∧ RepeatT i)
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7.4.3 PITL2MONA vs. LITE

This section compares PITL2MONA with LITE [98, 99]. LITE is an implementation of a

tableau-based decision procedure for a propositional subset of ITL. Tableau generation is based

on PITL normal forms, and works along the lines of that of Bowman and Thompson [49].

LITE supports chop, chop-star, projection, quantification over propositional variables and

a number of high-level, imperative-like iteration operators. Neither until or past operators

are supported. LITE also accepts PITL formulae where terms are expressed as finite state

automata, and returns PITL models/counterexamples in the form of automata. Compared

with an automata-based decision procedure such as MONA, tableau-based implementations are

likely to suffer from the overhead associated with expansion rules and the generation of normal

forms.12 Moreover, MONA includes a number of optimisations that allow most formulae to be

decided with reasonable time and memory requirements [97].

Table 7.3 shows the performance of both tools for a number of parameterised problems.13

Table 7.4 shows a characterisation of the complexity of the PITL specifications, with respect to

the following parameters.

1. Maximum amount of memory consumed by MONA to analyse the formula (in MB). This

memory requirement corresponds to the biggest automaton generated by MONA during

the analysis of the source formula.

2. Number of free variables. Free variables in the PITL formula result in a similar number

of free variables in the corresponding MONA formula (plus the length variable, which

encodes the models length), which in turn determines the size of the automaton alphabet

and its transition function.

3. Maximum nesting depth of quantifiers of the same kind (q-depth), and maximum nesting

depth of alternating quantifiers (∃∀-depth). The occurrence of quantifiers in the formula

(and particularly, the nesting of existential and universal quantifiers [114]) is likely to bring

the worst-case complexity, as the translation to automata requires determinisation, which

may result in an exponential number of states.

The n-Dining philosophers (1) and (2) correspond to formulae Prop3 and Beh ′, respectively. The

n-movement Symphony problem corresponds to formula Prop5, with the following parameters:

movement length = 10 (li), title length = 2 (st), movement gap = 3 (gm), title gap = 3 (gt),

and delay factor = 2 (for projection). The n-floor Lift controller problem is parameterised by

12Although, LITE uses Binary Subterm Trees [98] to compactly store normal forms.
13The symbol “-” denotes that the analysis ran out of memory, or could not finish in a reasonable time. Only

execution time is shown, because LITE does not output memory consumption figures.
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the number of floors the lift serves; the PITL specification is adapted from that proposed by

Pandya for his tool DCVALID. We run these examples on a Sun v480 station, with 2x900MHZ

US3 processors, and 4GB RAM (SICStus Prolog v. 3.10.1. was used for LITE).

Table 7.3 suggests that PITL2MONA is much more efficient than LITE. PITL2MONA could

efficiently deal with problems that LITE could not verify, either because the analysis exhausted

the available memory or required unreasonable amounts of time (e.g., 7-Dining philosophers (1)

and (2), 7- and 10-movement Symphony, and 5- and 10-Lift controller).

Example n PITL2MONA LITE
n-Dining philosophers (1) 5 1.13 sec 2 hours

7 28.62 sec -
10 (BDD too large) -

n-Dining philosophers (2) 5 0.17 sec 7 min
7 2.07 sec -
10 (BDD too large) -

n-movement Symphony 7 7.07 sec -
10 1 min, 10 sec -

n-floor Lift controller 5 3 -
10 1 min, 50 sec -

Table 7.3: PITL2MONA and LITE: Comparing Execution Times

Of all specifications tested, 10-Dining philosophers (1) and (2) could not be verified by

PITL2MONA (BDDs grew too large for MONA to handle them). Although we have not experi-

mented with different variable orderings, we suspect that the resulting MONA specifications for

the Dining philosophers problem are suffering from a bad ordering.

For example, MONA required much more time and memory to solve 7-Dining philosophers

(1) than 7-movement Symphony (28.62 against 7.07 sec, and 28 against 4MB, respectively),

although the latter specification contains a deeper nesting of quantifiers and alternating quan-

tifiers, as shown in Table 7.4 (quantifier alternation brings non-elementary complexity in WS1S

formulae). Note that, the MONA specification for 7-Dining philosophers (1) contains more

variables than that of 7-movement Symphony (22 against 15 variables, respectively).

We can also conclude that the number of variables, on its own, cannot be used as an indicator

of performance. For example, the MONA specification of 10-Lift controller contains almost twice

as many variables than that of 10-Dining philosophers (1). However, MONA was able to solve

the former in less than 2 min, while the latter could not be solved at all due to state explosion.
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Example n Max. Mem. (MB) Free Var. q-depth ∃∀-depth
n-Dining philosophers (1) 5 1 16 1 0

7 28 22 1 0
10 (BDD too large) 31 1 0

n-Dining philosophers (2) 5 1 11 6 4
7 3 15 6 4
10 (BDD too large) 21 6 4

n-movement Symphony 7 1 15 24 4
10 4 21 29 4

n-floor Lift controller 5 1 28 4 3
10 87 53 4 3

Table 7.4: The Complexity of MONA Specifications (From PITL Formulae)

Discussion: An analysis of the translation from PITL to WS1S formulae (Section 7.3) reveals

those PITL formulae that may exhibit the logic’s non-elementary complexity. In fact, these

formulae must include a combination of operators that eventually result in WS1S formulae with

alternating quantifiers. The following are some examples of such combinations; (a) alternated

nesting of chop (chop in the past) and negation, (b) nesting of chop-star (until, since, projection)

and (c) alternated nesting of next (previous) and negation under the scope of projection.

7.5 Discussion: Modelling Real-time Systems with PITL

Consider the formula RepeatT i in the specification of the Symphony Problem (Section 7.4.2).

This formula uses chop, chop-star and variants of the len operator to express sequence, iteration

and quantitative time constraints. This shows that PITL can naturally (and succinctly) repre-

sent complex specifications: titles must be played for as long as possible, and RepeatT i achieves

this behaviour independently of the movement’s duration.

In addition, RepeatT i is a good example of how PITL facilitates a constraint-oriented style

of specification. The simple addition of Max i (as the last element of the sequence) reduces the

non-determinism inherent to chop-star. Without Max i, we obtain a more abstract specification

where titles are displayed at the right time, but where we do not constrain how often the titles

will be displayed.

Similarly, in Synch ′
i and Synch ′′

i , len and projection describe (quite intuitively) the slowing

down of the presentation (also see [76] for other uses of projection). The equivalence of two

seemingly different specifications (a complex requirement to check) was simply represented by

Prop5. This is one benefit of describing specifications and requirements in the same notation.

These examples should convince the reader of some of the advantages of PITL with respect

to timed automata and model-checkers; e.g., it would be arduous (to say the least) to address

the specification and verification of the Symphony Problem in Uppaal or Kronos. On the other

135



hand, the Symphony Problem also reveals limitations of PITL as a specification language. The

framing of variables is one these limitations: in PITL, the values of variables are not preserved

from one state to the next, and this must be modelled explicitly [64]. For instance, although the

intention is to represent a sequence of movements that occur only once, the formula FrameM

must use chop to express sequence, but also halt and negation to enforce single occurrences.

Other limitations of PITL stem from the time model, which is discrete and finite. In this

sense, PITL is less expressive than Timed Automata and model-checkers, and the application

of PITL to reactive systems is not straightforward (e.g., consider the representation of ongoing

behaviour, such as liveness properties). For instance, this limitation is evident in the Dining

Philosophers Problem (Section 7.4.1), where we had to bound the length of behaviours. PITL

with infinite-time would solve some of these problems, but a translation to WS1S (and mecha-

nisation with MONA) does not seem possible: WS1S deals only with finite subsets. Similarly,

discrete time is inherent to the semantics of intervals in PITL (whether we consider a finite or

an infinite-time interpretation).

7.6 Related Work

Duan presents a projection operator in [64], which he uses to reason about different time gran-

ularities and synchronisation of parallel processes (in the context of temporal logic program-

ming). Duan’s projection and chop in the past behave differently from our operators (proj) and

(
∼
; ); nonetheless, Bowman et al. show that Duan’s operators can be derived from (proj) and (

∼
; )

[40]. Bowman et al. [40, 41, 37, 42] use projection to describe the slowing down of multimedia

presentations (Section 7.4 illustrates such application), and for describing goals for cognitive

behaviour in the domain of multi-modal human computer interaction. Hale [76] uses projection

(e.g., to model behaviour at different time scales, and exception-handling) in the specification

of a lift controller.

The usefulness of past operators has already been demonstrated in the context of LTL [105].

Some specifications can be more naturally modelled in terms of past operators [106], thus mak-

ing the logic a more natural notation. Moreover, translating a formula with past operators,

to one without them, may result in an exponential blow-up [113]. Past operators facilitate, as

well, compositional verification, where it is convenient to reason about previous computations

[10, 136]. The benefits of past operators can also be observed on PITL specifications. For ex-

ample, Duan [64] used past operators to semantically characterise assignment in temporal logic

programs with framed variables, and Bowman et al. [41] used past operators to facilitate the

description of multimedia documents.
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There has been substantial research on decision procedures for ITL (and subsets) [48, 49,

128, 127, 126]. Bowman and Thompson [49] present a tableau-based decision procedure and a

complete axiomatisation for propositional ITL, which includes projection. The tableau is based

on normal forms for ITL formulae [122, 99, 64] and a graph-traversal algorithm to decide satisfi-

ability. Bowman and Thompson [49] also present substitutivity results for chop and projection,

which facilitate compositional reasoning.

Moszkowski [123] gives an axiomatisation for finite-time ITL (propositional and first order),

which is suitable for compositional reasoning. This work is extended to consider projection and

infinite time in [124], and further investigated in [125]. Based on the assumption/commitment

approach to compositional proofs, Moszkowski shows how proofs of ITL specifications (including

safety and liveness properties, and equivalence of specifications) can be decomposed into simpler

tasks. A key aspect of this approach is to restrict the assumptions and commitments to certain

ITL fixpoints.

In [127, 128], Moszkowski presents a complete axiomatisation for a subset of ITL with vari-

ables in finite domains and quantification, both in finite and infinite time frameworks, based

on automata. Recently, Moszkowski [126] presents another axiomatisation for a propositional

subset of ITL, without quantification or projection. In this work, a proof of completeness is

given in terms of Fusion Logic (FL) and Propositional LTL (PLTL) for finite time (FL is a

propositional subset of ITL where the use of chop, and negation under the scope of chop, are

restricted).

Moszkowski [119] describes a BDD-based decision procedure for finite time FL. The decision

procedure is implemented in Lisp and uses PerlDD, a Perl interface to CUDD14 (a popular

BDD-package). The decision procedure is inspired by new interval-based techniques devised

by Moszkowski to analyse PLTL. The current implementation does not include quantification,

projection or past operators.

We have compared the performance of Moszkowski’s tool with PITL2MONA, in a number

of examples. As expected, specifications are easier to obtain and understand in PITL. However,

Moszkowski’s tool was able to deal with bigger specifications (in the number of free variables).

Regarding execution time, neither tool seems to (consistently) outperform the other. Although

we have not investigated this issue in depth, we think Moszkowski’s tool benefits from ordering

heuristics featured by CUDD. As we discussed in Chapter 6, the efficiency of BDDs is highly

dependent on good variable orderings. In contrast, MONA does not provide any heuristics to

control this ordering, and so the performance of PITL2MONA depends on the order in which

propositional variables occur in the PITL formula.

14http://vlsi.colorado.edu/ fabio
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Moszkowski [122], Hale [75], Kono [98, 99] and Duan [64] describe interpreters for ITL. Cau

and Moszkowski developed an embedding of ITL in PVS [55].

Pandya’s tool DCVALID [135, 134] implements a decision procedure for QDDC, a quantified

discrete-time subset of Duration Calculus [172]. Duration Calculus can be considered an exten-

sion of ITL to model hybrid systems [171, 74]. DCVALID is implemented as a front-end that

translates QDDC formulae to MONA specifications. QDDC is closely related to PITL; DC-

VALID supports forms of the chop and chop-star operators. It also implements quantification

over propositional variables, and a duration operator that counts the number of times a given

proposition is true in the interval (note, this operator is a distinctive feature of QDDC).

However, DCVALID does not currently support any form of temporal projection, and only a

limited form of the past operator previous (it can be applied only over propositional variables).15

DCVALID assists model checking of SMV, Verilog and Esterel designs w.r.t. CTL[DC], an

extension of QDDC with CTL operators.

Pandya [133], and Chakravorty and Pandya [57], investigate the use of MONA-based decision

procedures for (a decidable subset of) Interval Duration Logic (IDL), a dense-time subset of

Duration Calculus. Sharma, Pandya and Chakravorty [147] compare different methods to check

validity of IDL formulae. Li and Hung [104], and Thai and Hung [153], present algorithms to

check a class of Duration Calculus formulae over timed automata.

A recent survey on interval temporal logics can be found in [74]. Industry is showing increas-

ing interest in interval temporal logics. Verisity’s e language,16 a property specification language

used in model checking tools, was influenced by ITL concepts [87]. IBM’s model-checker Rule-

Base17 also includes regular expression operators in its requirements language (PSL/Sugar) [14].

7.7 Conclusions

We used MONA to implement a decision procedure for PITL, a rich propositional subset of ITL.

We developed a WS1S semantics for PITL formulae, and implemented this translation in our

tool PITL2MONA. PITL2MONA translates PITL formulae to equivalent MONA specifications,

such that models (and counterexamples) found by MONA correspond directly to those of the

PITL formulae.

PITL2MONA+MONA can be considered the first efficient automata-based decision proce-

dure for PITL (despite the logic’s non-elementary complexity). We compared our implementa-

tion with LITE [99], a tableau-based decision procedure for a (similar) propositional subset of

15Pandya’s work on QDDC, and our work on PITL described in this chapter, share a number of similarities.
These theories were developed independently.

16www.cadence.com/verisity
17www.haifa.il.ibm.com/projects/verification/Formal Methods-Home/index.html
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ITL. Our implementation is considerably faster, and is able to deal with more complex specifi-

cations than LITE (e.g., LITE does not handle past operators).

Operators in PITL (such as len, chop, chop-star, projection, previous, since, etc.) facili-

tate the modelling of requirements that refer to sequences and iteration of events, and past

computations. This makes PITL a more intuitive (and thus, reliable) notation than the require-

ments language of Uppaal and other real-time model-checkers (Chapter 2). In addition, we have

discussed the strengths and weaknesses of PITL as a specification language (Section 7.5).

The translation from PITL formulae to automata (via MONA) can be considered a first

step towards the development of model-checkers that use PITL as part of their requirements

languages (similar to Pandya’s extension of CTL with QDDC formulae [135]).

Our work may also contribute to the development of proof assistants for ITL; for instance,

proofs that can be reduced to PITL formulae could be solved automatically by MONA. Work

in this direction may benefit from Cau and Moszkowski’s embedding of ITL in PVS [55], and

from the integration of MONA with theorem provers [131, 11].

From another perspective, this chapter informs on the use of MONA and WS1S in real-time

settings. WS1S proved to be a flexible and expressive notation, which allowed an intuitive

encoding of PITL. MONA, with its many optimisations, proved to be an efficient decision

procedure for PITL, despite the non-elementary complexity of this logic.

However, WS1S and MONA also present limitations. WS1S cannot represent infinite sets;

thus, an encoding of PITL with infinite-time does not seem possible. Regarding MONA, perfor-

mance may suffer from bad variable orderings, for which MONA does not implement heuristics.

Although a non-elementary complexity cannot be avoided in the worst-case (this is inherent to

PITL), ordering heuristics would improve the average performance. In addition, it would be

interesting to develop a decision procedure for PITL based on other efficient BDD-packages,

such as CUDD (where some heuristics are already implemented), and compare the performance

with MONA.

We will conclude our study of WS1S and MONA in real-time settings in Chapter 8. Chapter 8

will present Discrete Timed Automata, a deductive framework for real-time systems that uses

WS1S as the assertion language, and MONA as tool support for invariance proofs. Discrete

Timed Automata address limitations of timed automata and model-checkers (which concern the

support for unbounded data domains and prevention of timelocks), and presents advantages

over PITL as a specification language (the notation adopts an infinite-time model, and is not

affected by framing).
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Chapter 8

Discrete Timed Automata

Abstract. We present Discrete Timed Automata, a deductive framework for infinite-state,

discrete real-time systems. Discrete Timed Automata uses WS1S as the underlying assertion

language, which allows MONA to assist invariance proofs. Another distinctive feature is the use

of deadlines [33, 39] to express urgent actions, and the adoption of a semantics of urgency and

synchronisation that guarantees time reactivity (absence of time-actionlocks) by construction.

This chapter concludes Part III, and our study of WS1S and MONA to address reliability

issues of timed automata and model-checkers (Chapter 2). We show that WS1S and MONA fa-

cilitate the representation and verification of unbounded data structures, and so certain systems

can be more faithfully specified than in Uppaal and other model-checkers. Furthermore, time

reactivity makes well-timed specifications easier to obtain in Discrete Timed Automata than in

most other notations for real-time systems (including Timed Automata). To complete our eval-

uation, we compare Discrete Timed Automata to PITL when used as a specification language

(Chapter 7), and also point out certain limitations in the use of Discrete Timed Automata that

arise due to the restrictive arithmetic of WS1S.

Organization. We introduce Discrete Timed Automata in Section 8.1, and give the formal

syntax and semantics in Section 8.2. In Section 8.3 we discuss Basic Transition Systems and

invariance proofs; this serves as background to explain the verification of Discrete Timed Au-

tomata specifications in Section 8.4. In Section 8.5 we discuss strengths and limitations of

Discrete Timed Automata. We comment on related work in Section 8.6. In Section 8.7 we draw

conclusions and suggest further research.
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8.1 Introduction

Discrete Timed Automata is an infinite-state, discrete-time deductive framework for real-time

systems. A discrete timed automaton (DTA) consists of a finite set of typed variables, whose

valuations describe the state space, and a finite set of actions to describe state changes. DTAs

use WS1S as the underlying assertion language; booleans, natural numbers and finite sets of

natural numbers are all types supported in WS1S, and actions are defined by a number of

WS1S formulae over the automata variables (we define Discrete Timed Automata formally in

Section 8.2).

Actions have a precondition formula to denote the set of states where the action is enabled;

a deadline formula to denote the set of states where the action is urgent, and an effect formula

to denote a set of next states; the result of performing an action may yield a number of different

states, in which case execution proceeds by choosing (non-deterministically) one of such states.

Actions are assumed to occur instantaneously, and the current (discrete) time is represented by

a special variable, T ∈ N, which automata can read but not modify; T increments (implicitly)

with the passage of time.

Deadlines in DTAs represent time progress conditions: for any action a with deadline d,

time cannot pass in any state where d holds, until a is performed. In order to avoid reachable

states (timelocks) where the deadline holds but no action is enabled, we expect specifications

where deadlines imply preconditions. In this way, we encourage specifiers to write safer models

(i.e., one where time-actionlocks cannot occur): actions should not be made urgent unless they

are enabled. Nonetheless, in the spirit of Timed Automata with Deadlines (Section 3.4.1), we

provide a semantics for deadlines that guarantees time reactivity, even in those specifications

where deadlines may not imply preconditions (in which case, the deadline will be ignored).

Systems can be represented by a network of DTAs executing in parallel, where communication

may take place via binary synchronisation and shared variables. Synchronisation is realised

by tagging certain actions as either input or output actions, which can only be executed in

matching pairs; all other actions (completed actions) are performed autonomously. Furthermore,

composition preserves time reactivity: input and output actions may be considered urgent only

if synchronisation is possible. Concurrency is achieved by interleaving; at any state in the

execution of the network, either a completed action is performed, or synchronisation between

components takes place, or time passes by some quantity (a delay).

We provide a mapping from DTAs to Basic Transition Systems (BTSs) [111], which will allow

us to prove LTL safety properties [112]. Basic Transition Systems are a well-known computa-

tional model for untimed systems, with a notation similar to Discrete Timed Automata: a finite

set of transitions (equivalently, actions) and variables, where transitions are described through

preconditions and postconditions, and variables determine the state space. The invariance rule
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[112] is used to assert the validity of a safety property 2 p, where p is a state formula (in our

case, a WS1S assertion), provided p holds at the initial state and is preserved by every transition

in the system (we introduce Basic Transition Systems and the invariance rule in Section 8.3).

For any DTA, we obtain a semantically equivalent BTS, where actions (preconditions and

effects) and variables in the DTA are directly translated into transitions and variables of BTS.

The passage of time (implicit in DTAs) is represented in the BTS by a transition tick (which

increments the variable T ), and deadlines are mapped to preconditions for the tick action. In

this way, we obtain an untimed semantics for DTAs in terms of BTSs; moreover, because WS1S

is the assertion language of both DTAs and BTSs, MONA can be used to validate the proof

obligations generated by the invariance rule (Section 8.4 defines the mapping between BTSs and

DTAs, and gives examples of invariance proofs).

Discrete Timed Automata address some limitations of timed automata and model-checkers,

concerning data support (Section 2.4) and prevention of timelocks (Chapter 3). We will see that

certain unbounded data structures can be naturally represented in WS1S, and that MONA is

able to validate the complex assertions that usually arise when reasoning about such structures

(e.g., assertions that involve quantification and set operations). In addition, Discrete Timed

Automata are time reactive, hence well-timed specifications are easier to obtain than in most

other notations for real-time systems. Discrete Timed Automata also overcomes some of the

limitations of PITL as a specification language (Chapter 7). We elaborate on these and other

strengths of Discrete Timed Automata in Section 8.5; and we also discuss limitations that arise

due to the restrictive arithmetic of WS1S.

8.2 Discrete Timed Automata – Syntax and Semantics

This section introduces discrete timed automata formally. Before we discuss syntax and seman-

tics, we illustrate the main elements of the theory with the following example.

Example: A DTA Specification of an Alarm Clock. Figure 8.1 shows a DTA specification

of a simple alarm clock. The network is composed of two automata, Clock and Alarm. For every

component, VL is the set of local variables, ΘL is the initialisation formula for variables in VL,

TL is the set of action labels, and A is the set of actions; true-preconditions, false-deadlines and

effects which do not change the current valuation are omitted. Note the use of the time variable

T ; components can read T , but they cannot change its value (T is assumed to model the current

global time of the system, and is therefore implicitly incremented by the passage of time). In

this example there are no shared variables.
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Network: |〈Clock, Alarm〉
VS : ∅
ΘS : true

DTA: Clock

VL : { s, m, h ∈ N }
ΘL : s = 0 ∧ m = 0 ∧ h = 0
TL : { tick , minute, reset , hour , sound alarm! }
A : minute

prec : T = s + 60 ∧ m < 60
deadline : prec

eff : m′ = m + 1 ∧ s′ = T

hour

prec : m = 60 ∧ h < 24
deadline : prec

eff : h′ = h + 1 ∧ m′ = 0
reset

prec : h = 24
deadline : prec

eff : h′ = 0
sound alarm!

prec : h = 5 ∧ m = 30
deadline : prec

DTA: Alarm

VL : { d ∈ N, on ∈ B }
ΘL : d = 0 ∧ ¬ on

TL : { sound alarm?, stop }
A : sound alarm?

eff : on ′ ∧ d′ = T

stop

prec : on ∧ T = d + 15
deadline : prec

eff : ¬ on ′ ∧ d′ = 0

Figure 8.1: A Simple Alarm Clock

The Clock component models a 24-hour clock, where the alarm is set to 5:30 am. The

variable s denotes the number of seconds elapsed so far, while m and h denote, respectively,

the current minute and hour (we assume a time granularity of 1 second). Actions minute and

hour calculate the current minute and hour; actions hour and reset keep the values of m and

h between 0 and 60, and 0 and 24, respectively (the value of a variable, say v, after an action

has been performed, is denoted by its primed version, v′). To keep the specification simple, the

value of s is allowed to increment without bound. All these actions are completed actions and

can be performed autonomously; on the other hand, sound alarm! is an output action, which

synchronises with the input action sound alarm? in Alarm. Once synchronisation happens, the

alarm will ring for 15 seconds and then stop.

Note that all actions, save for sound alarm?, are made urgent as soon as they are enabled:

the set of states denoted by deadlines and preconditions are the same.1 Local variables such

as s and d, which we refer to as time capture variables, are used to represent time constraints.

The value of a time capture variable denotes the last time an event of interest occurred. For

example, in action minute, the term T = s + 60 in the precondition, and the term s′ = T in

the effect, represent a time span of 60 seconds counting from the last occurrence of minute. In

other words, and because minute is urgent as soon as it is enabled, minute is performed once

every 60 seconds.

1We use the term prec in deadlines to denote the action’s precondition formulae.
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8.2.1 Syntax

Discrete Timed Automata. A discrete timed automaton is defined here as a (and possibly the

only) component of a given network. Variables are assumed to be of any type supported in WS1S,

and actions are defined in terms of WS1S formulae (therefore, they are expressible in MONA).

We assume a set FW of WS1S formulae, and (as for Timed Automata in Section 2.1.1) the sets

of action labels CAct (for completed actions), HAct (for half actions), and Act = CAct ∪HAct .

A single DTA, A, is a tuple,

A = (VL,ΘL,TL,A, VS ,ΘS)

where

• VL is a finite set of local variables;

• ΘL(VL) is a formula representing the initial valuation for variables in VL;

• TL ⊆ Act is a finite set of action labels;

• A is a finite set of actions (the structure of these actions will become clear shortly);

• VS is a finite set of shared variables; and

• ΘS(VS) is a formula representing the initial valuation for variables in VS .

Let us complete the definition of a component DTA. A variable (local or shared) is rigid if

its value remains constant throughout executions, and flexible otherwise. Both VS and ΘS

are declared (globally) in the network where A is placed. A can read and write variables in

V = VL∪VS , and can also read (but not write) the time variable T ∈ N. We use V T = V ∪{T},

and V ′ = {v′ | v ∈ V } to denote the primed version of variables in V . As is customary in

assertional notations, we use primed variables to denote the valuations obtained after actions

have been performed.

Actions in A are tuples (a, p, d, e), where a ∈ TL is the action’s label, and p(V T ), d(V T )

and e(V T ∪ V ′) (p, d, e ∈ FW ) are WS1S formulae denoting the action’s precondition (the set

of states where the action may be performed), deadline (the set of states where the action must

be performed urgently) and effect (the set of states that result when the action is performed),

respectively. We use W (e) ⊆ V to denote the set of all variables which are written by e (i.e.,

any variable v ∈ V such that v′ occurs free in e). Variables in U(e) = V T \W (e) are assumed

unchanged after the action is performed. As in timed automata with deadlines (Section 3.4.1),

the deadline of every action must imply its precondition. Note that, left-closed intervals are

naturally obtained in DTAs due to discrete time (e.g., T > 1 is equivalent to T ≥ 2).
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The set A is partitioned into three sets; completed (COMP(A)), input (IN (A)) and output

actions (OUT (A)); i.e., A = COMP(A) ∪ IN (A) ∪ OUT (A). We allow actions in the same

partition to share labels: this may facilitate the description of actions whose effects depend on

the current state. As usual, we use labels in { a? | a? ∈ HAct } to denote input actions, and labels

in { a! | a! ∈ HAct } to denote output actions. Two actions in different components, respectively

labelled with a? and a! (for some a ∈ CAct), are referred to as matching actions.

Network of DTAs. A network of DTAs is a tuple |A = (|〈A1, . . . , An〉, VS ,ΘS), where Ai =

(V iL,Θ
i
L,TLi,Ai, VS ,ΘS) is a DTA (1 ≤ i ≤ n). We assume the network is well-formed in the

following sense: names of local variables and labels of completed actions are local to components,

and the conjunction of effects of any two matching input/output actions must yield a consistent

WS1S formula (e.g., to prevent inconsistent updates to shared variables).

Product Automaton. Let |A = (|〈A1, ... , An〉, VS ,ΘS) be a network of DTAs, where Ai =

(V iL,Θ
i
L,TLi,Ai, VS ,ΘS), for 1 ≤ i ≤ n. The product automaton of |A is a DTA, Π,

Π = (VL,ΘL,TL,A, ∅, true)

where

• VL = VS ∪
n⋃

i=1

V iL

• ΘL , ΘS ∧
n∧

i=1

Θi
L

• TL = { a | ∃ p, d, e ∈ FW . (a, p, d, e) ∈ COMP(A) }

• COMP(A) =
n⋃

i=1

COMP(Ai) ∪

{(a, p, d, e) | ∃ i, j (1 ≤ i 6= j ≤ n) .∃ pi, pj , di, dj , ei, ej ∈ FW .

(a?, pi, di, ei) ∈ IN (Ai) ∧ (a!, pj , dj , ej) ∈ OUT (Aj) ∧

(p , pi ∧ pj) ∧ (d , di ∨ dj) ∧ (e , ei ∧ ej) }

• IN (A) = OUT (A) = ∅

Note that, the shared variables in the network are made local to the product, and that all

actions in the product automaton are completed: synchronisation yields one completed action

from every two matching input/output actions in the components. In addition, we point out

that the disjunction (di ∨ dj) makes the synchronisation urgent as soon as one of the parties
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is urgent; as we shall see in Section 8.2.2, the semantics of deadlines is such that urgency is

enforced only if this synchronisation is possible (i.e., if both parties are enabled).

8.2.2 Semantics

We give here a discrete time, operational semantics for DTAs. This explains the behaviour of a

single automaton, equivalently, the behaviour of a network with just one single component. The

behaviour of a network with multiple components corresponds to that of the product automaton.

By construction (and well-formedness of the network), the product automaton only contains

completed actions and local variables. In what follows, we use N+ to denote the positive natural

numbers, and |= to denote satisfiability under WS1S semantics.

Let A = (VL,ΘL,TL,A, ∅, true) be a DTA where all actions are completed (i.e., A =

COMP(A)), and all variables are local to A (V = VL). The semantics of A are given in

terms of a (discrete) timed transition system TSA = (S, s0,Lab, TS), where,

• S is the set of states, which denotes all possible valuations of V T . Then, s ∈ S maps any

variable v ∈ V T to a type-consistent value s(v). Given s ∈ S, primed(s) is the valuation

that renames every variable in V T to its primed version; i.e., primed(s) is the valuation

for {v′ | v ∈ V T } such that primed(s)(v′) = s(v) for all v ∈ V T . For any δ ∈ N+, the

state s+ δ is defined such that (s+ δ)(T ) = s(T ) + δ and (s+ δ)(v) = s(v) for all v ∈ V .

The set of reachable states in the execution of A, Sreach ⊆ S, is the smallest set of states

which includes the initial state s0 and is closed under the transition relation TS ,

Sreach = {s0} ∪ {s
′ | ∃ γ ∈ Lab, s ∈ Sreach . s

γ
=⇒ s′ ∈ TS }

• s0 is the initial state, s.t. s0 |= (ΘL ∧ T = 0).

• Lab = TL ∪ N+ is the set of labels for transitions in TS .

• TS ⊆ S×Lab×S is the set of labelled transitions. Transitions can be of one of two types:

action transitions (actions), e.g. (s, a, s′), where a ∈ Act , or time transitions (delays), e.g.

(s, δ, s′), where δ ∈ N+, denoting the passage of δ time units. Transitions are denoted,

s
γ

=⇒ s′, where γ ∈ Lab. The transition relation is defined by the following inference rules,

(D1)
(a, p, d, e) ∈ A s1 ∪ primed(s2) |= (p ∧ e ∧

∧

u∈U(e) u
′ = u)

s1
a

=⇒ s2

(D2)
δ ∈ N+ ∀δ′ ∈ N (δ′ < δ).∄ (a, p, d, e) ∈ A . (s+ δ′) |= (p ∧ d)

s
δ

=⇒ (s+ δ)
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We say that an action (a, p, d, e) is enabled in s if s |= p. Note that, rule (D2) only enforces

urgency for enabled actions, and only allows a δ-delay if no enabled action becomes urgent any-

time sooner (i.e., if no deadline is reached after any δ′-delay, with δ′ < δ). As we have mentioned

before, adopting such a semantics for urgent behaviour makes DTAs time reactive: from every

reachable state, either time may pass or some action may be performed. Furthermore, time

reactivity is preserved by synchronisation: by definition of product automaton, synchronisation

yields a completed action where the preconditions of half actions are conjoined, and the dead-

lines are disjoined. Therefore, as the product automaton is also interpreted by rule (D2), time

will stop as soon as either half action is urgent, but only if both half actions are enabled (i.e.,

only if synchronisation is possible at the current state).

DTA: ZenoRuns

VL : { state ∈ {0, 1}, x ∈ N}
ΘL : state = 0 ∧ x = 0
TL : { a, b }
A : a

prec : state = 0
deadline : state = 0 ∧ T = 2
eff : x′ = x + 1

b

prec : state = 0
eff : state ′ = 1

DTA: ZenoTimelocks

VL : { state ∈ {0, 1}, x ∈ N}
ΘL : state = 0 ∧ x = 0
TL : { a, b }
A : a

prec : state = 0
deadline : state = 0 ∧ T = 2
eff : x′ = x + 1

b

prec : state = 0 ∧ T ≥ 3
eff : state ′ = 1

Figure 8.2: Zeno Runs and Zeno-timelocks in DTAs

Runs and Timelocks. The definition of runs (including divergent, convergent and Zeno runs)

and timelocks (time-actionlocks and Zeno-timelocks) given in Chapters 2 and 3 are also valid in

DTAs, modulo discrete delays and a (slightly) different structure for states. Therefore, we will

not repeat these definitions here.

We have shown that DTAs are time reactive, and so is the composition of DTAs. How-

ever, Zeno runs and Zeno-timelocks may occur. By way of example, Figure 8.2(left) shows an

automaton with two states and two actions, a and b, that are only enabled when state = 0.

Action a increments the value of x by 1 every time it is executed, and it is urgent when T = 2.

The automaton engages in Zeno runs whenever a is performed infinitely often; this is possi-

ble because action a may be performed arbitrarily fast. However, the automaton is free from

timelocks, because action b can be executed at any time, leading to state = 1, where time can

diverge. Note that a Zeno-timelock would occur if, for instance, we add a lower bound T ≥ 3

to the precondition of b (see Figure 8.2, right). We will not study detection of Zeno runs and

Zeno-timelocks (for DTAs) in this chapter, but we will offer some hints as to how this may be

accomplished, later in Section 8.7.
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8.2.3 Example: A DTA Model for the Multimedia Stream

Figure 8.3 shows a DTA specification for a discrete-time version of the multimedia stream

example (see Section 2.1.3). Here, in addition, we consider a lossy channel and a throughput

monitor (a similar example was analysed with Uppaal in [44]).

The Source automaton declares a variable SourceState ∈ {0, 1} to represent the current

control state of the automaton, and a time capture variable t1 to keep track of the time elapsed

between two consecutive transmissions. Control states denote that the automaton is ready to

transmit the first packet, when SourceState = 0, or that it is ready to transmit the next packet in

the sequence, when SourceState = 1. Transmissions are represented by two sourceOut! actions,

one for the first packet, and the other one for any subsequent packet. Deadlines ensure that the

first packet is transmitted urgently when T = 0, and that every subsequent packet is transmitted

50 ms after the previous one. This is achieved by setting t1 ′ = T when a packet is sent (i.e.,

resetting the value of t1 to the current time), and sending the next packet when the difference

between t1 and the current time is 50 ms (as expressed by the deadline T = t1 + 50).

A similar analysis explains the behaviour of the other components. For example, the action

sinkIn! in Place1 is enabled when at least 80 ms have passed since a packet was received (i.e.,

since sourceOut? was performed), and must be performed before 90 ms have passed since then

(note that the deadline in sinkIn! does not allow time to pass beyond T = t4 + 90, if sinkIn! is

still enabled).

A Monitor component checks that the system’s throughput does not fall below a threshold

of 14 packets per second, and signals the outcome of such check in the (shared) boolean variable

error. The (shared) variable x is used to count the number of packets received by the Sink

in the current second. In this specification, we have adopted the following simple policy: the

error signal persists for a period of 1 second, until is updated by the next check. In addition,

we have assumed that execution continues even if the throughput falls below the threshold (a

different policy could be, for instance, to specify exception-handling in the Monitor once the

error occurs).

The channel is implemented by automata Place1 and Place2, and may lose up to 4 packets per

second. This is modelled using a shared variable l ∈ {0, . . . , 4} to count the number of packets

lost in the current second, and an action loss in Place1 (and Place2) that nondeterministically

prevents Place1 from delivering the current packet to the Sink. Note, l is reset by action check

in Monitor, at the beginning of the current second (T = tm + 1000).
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Network: |〈Source, Place1, Place2, Sink, Monitor〉
VS : {x ∈ N, l ∈ {0, . . . , 4}, error ∈ B }
ΘS : x = 0 ∧ l = 0 ∧ ¬ error

DTA: Source

VL : {SourceState ∈ {0, 1}, t1 ∈ N }
ΘL : SourceState = 0 ∧ t1 = 0
TL : {SourceOut ! }
A : sourceOut!

prec : SourceState = 0∧
T = 0

deadline : prec

eff : SourceState ′ = 1
sourceOut!

prec : SourceState = 1 ∧
T = t1 + 50

deadline : prec

eff : t1 ′ = T

DTA: Sink

VL : {SinkState ∈ {1, 2}, t2 ∈ N }
ΘL : SinkState = 1 ∧ t2 = 0
TL : { sinkIn?, play }
A : sinkIn?

prec : SinkState = 1
eff : SinkState ′ = 2 ∧

t2 ′ = T ∧ x′ = x + 1
play

prec : SinkState = 2 ∧
T = t2 + 5

deadline : prec

eff : SinkState ′ = 1

DTA: Place1

VL : {Place1State ∈ {1, 2}, t4 ∈ N }
ΘL : Place1State = 1 ∧ t4 = 0
TL : { sourceOut?, sinkIn! }
A : sourceOut?

prec : Place1State = 1
eff : Place1State ′ = 2 ∧

t4 ′ = T

sinkIn!

prec : Place1State = 2 ∧
T > t4 + 80

deadline : Place1State = 2 ∧
T ≥ t4 + 90

eff : Place1State ′ = 1
loss

prec : Place1State = 2 ∧
l < 4

deadline : prec ∧
T ≥ t4 + 90

eff : l′ = l + 1 ∧
Place1State ′ = 1

DTA: Place2

VL : {Place2State ∈ {1, 2}, t3 ∈ N }
ΘL : Place2State = 1 ∧ t3 = 0
TL : { sourceOut?, sinkIn! }
A : sourceOut?

prec : Place21State = 1
eff : Place2State ′ = 2 ∧

t3 ′ = T

sinkIn!

prec : Place2State = 2 ∧
T > t3 + 80

deadline : Place2State = 2 ∧
T ≥ t3 + 90

eff : Place2State ′ = 1
loss

prec : Place2State = 2 ∧
l < 4

deadline : prec ∧
T ≥ t3 + 90

eff : l′ = l + 1 ∧
Place2State ′ = 1

DTA: Monitor

VL : { tm ∈ N }
ΘL : tm = 0
TL : { check }
A : check

prec : T = tm + 1000
deadline : prec

eff : t′m = T ∧ x′ = 0 ∧
l′ = 0 ∧ error ′ = x < 14

Figure 8.3: Multimedia Stream with Lossy Channel and Throughput Monitor
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Figure 8.4 shows the product automaton for the network of Figure 8.3. The product automa-

ton includes four completed actions sourceOut, each one representing a possible synchronisation

between a sourceOut! in Source and a sourceOut? in either Place1 or Place2, and two completed

actions sinkIn that correspond to the synchronisation between Place1 or Place2 and the Sink.

8.3 Basic Transition Systems and Invariance Proofs

Basic Transition Systems (BTSs) are a well-known computational model for (untimed) infinite-

state systems [111]. Basic transition systems, as originally defined, assume an underlying first-

order language; in this thesis we use WS1S as the assertion language, instead. We use |= to

denote satisfiability under WS1S semantics.

8.3.1 Basic Transition Systems

A basic transition system is a tuple B = (V,Σ, T ,Θ), where,

• V is a finite set of typed variables (boolean, first-order and second-order variables), which

is partitioned into a set of rigid variables and flexible variables.

• Σ is the set of states which corresponds to all valuations of V. We use s(v) to denote the

value of v ∈ V in s ∈ Σ.

• T is a finite set of transitions, which denote state changes. A transition τ ∈ T is charac-

terised by an assertion (usually called the transition relation),

ρτ (V ∪ V
′) , Pτ (V) ∧ Eτ (V

′)

where V ′ = {v′ | v ∈ V} denotes the primed versions of variables in V; Pτ is the precondition

of τ , which describes the set of states where τ can be performed; and Eτ is the effect of

τ , which describes the possible states (through primed variables) which result when τ is

performed. We use W(τ) ⊆ V to denote the set of variables that are written by τ (i.e.,

any v ∈ V s.t. v′ occurs free in Eτ ). All other variables are assumed to remain unchanged

after τ is performed, and are denoted by the set U(τ) = V \ W(τ). T is also assumed to

include the idling transition, which does not change the current state:

ρidle ,
∧

v∈V

v′ = v

All other transitions in T are referred to as diligent transitions.2

2The term diligent here denotes useful computation, rather than urgent behaviour.
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DTA: Π
VL : { t1 , t2 , t3 , t4 , tm, x ∈ N, l ∈ {0, . . . , 4}, error ∈ B,

SourceState ∈ {0, 1}, Place1State,Place2State,SinkState ∈ {1, 2} }
ΘL : t1 = 0 ∧ t2 = 0 ∧ t3 = 0 ∧ t4 = 0 ∧ tm = 0 ∧ x = 0 ∧ l = 0 ∧ ¬ error ∧

SourceState = 0 ∧ Place1State = 1 ∧ Place2State = 1 ∧ SinkState = 1
TL : { sourceOut , sinkIn, loss, play , check }
A : sourceOut

prec : SourceState = 0 ∧ T = 0 ∧ Place1State = 1
deadline : prec

eff : SourceState ′ = 1 ∧ Place1State ′ = 2 ∧ t4 ′ = T

sourceOut

prec : SourceState = 0 ∧ T = 0 ∧ Place2State = 1
deadline : prec

eff : SourceState ′ = 1 ∧ Place2State ′ = 2 ∧ t3 ′ = T

sourceOut

prec : SourceState = 1 ∧ T = t1 + 50 ∧ Place1State = 1
deadline : prec

eff : Place1State ′ = 2 ∧ t1 ′ = T ∧ t4 ′ = T

sourceOut

prec : SourceState = 1 ∧ T = t1 + 50 ∧ Place2State = 1
deadline : prec

eff : Place2State ′ = 2 ∧ t1 ′ = T ∧ t3 ′ = T

sinkIn

prec : Place1State = 2 ∧ T > t4 + 80 ∧ SinkState = 1
deadline : Place1State = 2 ∧ T ≥ t4 + 90 ∧ SinkState = 1
eff : Place1State ′ = 1 ∧ t2 ′ = T ∧ SinkState ′ = 2 ∧ x′ = x + 1

sinkIn

prec : Place2State = 2 ∧ T > t3 + 80 ∧ SinkState = 1
deadline : Place2State = 2 ∧ T ≥ t3 + 90 ∧ SinkState = 1
eff : Place2State ′ = 1 ∧ t2 ′ = T ∧ SinkState ′ = 2 ∧ x′ = x + 1

loss

prec : Place1State = 2 ∧ l < 4
deadline : prec ∧ T ≥ t4 + 90
eff : l′ = l + 1 ∧ Place1State ′ = 1

loss

prec : Place2State = 2 ∧ l < 4
deadline : prec ∧ T ≥ t3 + 90
eff : l′ = l + 1 ∧ Place2State ′ = 1

play

prec: SinkState = 2 ∧ T = t2 + 5
deadline: prec

eff: SinkState ′ = 1

check

prec : tm + 1000 = T

deadline : prec

eff : t′m = T ∧ x′ = 0 ∧ l′ = 0 ∧ error ′ = x < 14

Figure 8.4: Product Automaton (DTA) for the Multimedia Stream
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• Θ(V) (the initial condition) is an assertion representing a set of initial states.

For s ∈ S, let primed(s) be the valuation that renames every variable in s by its primed version

(as defined in Section 8.2.2). Given a state s1, the set of possible next states after τ is performed3

is given by:

τ(s1) , { s2 | s1 ∪ primed(s2) |= (ρτ ∧
∧

u∈U(τ)

u′ = u) }

A computation is an infinite sequence of states and transitions,

s0
τ0−−→ s1

τ1−−→ s2
τ2−−→ . . .

such that s0 |= Θ, si+1 ∈ τi(si) (i ≥ 0), and the sequence contains either infinitely many

diligent steps (i.e., the result of executing a diligent transition) or a terminal state, i.e., a

state where the only enabled transition is the idling transition (note that if this is the case,

then the computation contains an infinite suffix of terminal states). A state is reachable if

it belongs to some computation. We use s τ−−→ s′ ∈ B to denote a τ -step from s in some

computation of B. We also extend this notation to finite subsequences of computations in B,

e.g., s τ0−−→ s1
τ1−−→ . . . τn−−→ sn+1 ∈ B.

8.3.2 Invariance Proofs: Deductive Verification of Safety Properties

Intuitively, a safety property characterises a certain assertion that must hold for all reachable

states in any system execution. We have seen in Chapter 2 how safety properties are expressed

in CTL, as this suits the branching-time semantics of timed automata (timed transition systems

/ computation trees).

Basic transition systems, on the other hand, are given a linear-time semantics in terms of

computations. In this context, a safety property can be naturally expressed in LTL [111], by the

formula 2φ, where φ is an LTL past formula. In this thesis, we are concerned just with simple

safety properties, where φ, called an invariant, is a WS1S assertion (which we will also refer to

as a state formula). Formally, if σ denotes a computation, then the following states when 2φ

holds in σ (denoted, σ |= 2φ).

σ |= 2φ iff ∀i, i ≥ 0. si |= φ

where si (i ≥ 0) is a state in σ. In addition, we say that 2φ holds in a BTS if 2φ holds in all

3Transition relations are defined in [111] so that the next state is unique (if it exists). We adopt here the
more general form, which simplifies some of the DTA specifications presented in this chapter.
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its computations (see [111] for further details on the semantics of LTL). Safety properties can

be asserted with invariance proofs, which are characterised by the rule inv shown in Figure 8.5

[112].4

P1 ϕ→ φ
P2 Θ→ ϕ
P3 ∀ τ ∈ T . (ρτ ∧ ϕ)→ ϕ′

2φ

Figure 8.5: The Invariance Rule inv

This rule guarantees the invariance of φ, provided there exists a (usually stronger) invariant ϕ

such that (P1) ϕ implies φ, (P2) ϕ holds in every starting state and (P3) ϕ is preserved by all

transitions in T , i.e., if ϕ holds whenever τ is enabled, then it also holds after τ is performed (ϕ

is called an inductive assertion). The formula ϕ′ can be obtained by replacing, in ϕ, all variables

v by their primed version v′, where v is a modifiable variable in ρτ . Manna and Pnueli [112]

proved soundness and completeness of this rule w.r.t. assertions in first-order language. It is not

difficult to see that the rule is also sound for assertions in WS1S.

One of the limitations of this rule is that, for any assertion ϕ, premises may be found to be

unsatisfiable for some valuations, even in those cases when ϕ is, indeed, an invariant (i.e., when

ϕ is not inductive). The following discussion explains this issue in more detail.

Without loss of generality, let us assume that ϕ , φ is a good guess to start our deductive

proof. Suppose that a valuation is found that invalidates the premise P3 for some transition τ ,

i.e., there exists a state s that satisfies ϕ such that, if τ would be performed in s, ϕ would not

hold in (at least one of) the resulting next states. If s is a reachable state, then φ is guaranteed

not to be an invariant. On the other hand, if s is unreachable, then nothing can be concluded

about φ: τ has been found not to preserve φ, but for all we know, this may be just a consequence

of applying a τ -step at an unreachable state (i.e., a τ -step that is not part of any computation).

This issue is inherent in the nature of transition relations; transition relations represent a set of

states where the transition is enabled, but not every state in this set is necessarily reachable.

One way to approach this problem is to assume ϕ , φ initially, and then to strengthen it

with auxiliary invariants to rule out unreachable states. This process results in a formula ϕ for

which the deductive rule provides a definite answer; ϕ will typically have the form:

ϕ , φ ∧
n∧

i=1

αi

4For the sake of consistency with [111, 112], in this chapter we will use → to denote implication, ↔ to denote
equivalence, and ⇒ to denote entailment: Given a computation σ, p → q holds over σ iff it holds on the first
state of σ, while p ⇒ q holds over σ iff p → q holds on every state of σ.
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where αi, for all 1 ≤ i ≤ n, is an auxiliary invariant describing some known relationship between

the variables in V. Ingenuity is needed to propose (and prove) convenient auxiliary invariants,

thus proving safety properties often requires several applications of the deductive rule. Many

heuristics have been proposed in the literature to guide the invariant strengthening process, and

automatic invariant generation is in itself an active research topic [59, 112, 27, 26, 143].

A Note on Completeness. Manna and Pnueli [112, p. 220] proved the completeness of the

invariance rule assuming a first-order language. For any valid safety property 2φ (where φ is

a state formula), they proved the existence of an inductive assertion accφ, s.t. accφ → φ (in

other words, accφ satisfies the premises of rule inv).5 However, expressing accφ requires general

(integer) addition and multiplication, which are not expressible in WS1S. This suggest that the

invariance rule may be incomplete for WS1S: given some valid safety property 2φ, there may

not exist an inductive assertion ϕ s.t. ϕ → φ. In other words, we may not be able to prove

valid safety properties using the invariance rule. Proving completeness (or incompleteness) of

the invariance rule for WS1S is still an open problem, and one objective of our future research.

8.4 Proving Safety Properties of DTAs

This section provides a mapping from DTAs to BTSs, so that the invariance rule can be applied

to prove safety properties of DTA specifications (Section 8.4.1). We present case studies in

Sections 8.4.2 and 8.4.3.

8.4.1 Mapping Discrete Timed Automata to Basic Transition Systems

We presented an operational semantics for DTAs in Section 8.2.2, in terms of (discrete) timed

transition systems. In order to construct invariance proofs, though, we need to map DTAs to

BTSs.6 The mapping of preconditions and effects is straightforward; we just need to find a

proper representation for delays and deadlines.

As is customary in timed frameworks based on transition systems, delays can be accounted

for with a suitably defined time action, which increments the time variable T every time it is

executed. However, our goal here is to use MONA to assist the verification, and so the time

action should be defined in such a way that it can be expressed in WS1S. Thus, we define a

transition tick, which increments the value of T by 1. The effect of deadlines in computations will

be accounted for by constraining (the enabling condition of) the tick transition with a conjunct

5Actually, Manna and Pnueli [112, p. 372] proved completeness of the deductive rule to prove validity of
general safety properties 2 p, where p is an LTL past formula.

6Invariance proofs have also been defined for extensions to Basic Transition Systems, such as Fair Transition
Systems [111] and Clock Transition Systems [110]. However, in our case, basic transition systems suffice.
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¬ (p ∧ d), for each action (a, p, d, e) in the DTA (time can only pass when no enabled action is

urgent). The mapping is formally defined as follows.

Let |A be a network of DTAs, and Π = (VL,ΘL,TL,A, ∅, true) the product automaton for

|A. Assume that actions in Π are uniquely identified by their labels (or alternatively, apply a

proper renaming). We associate with Π a BTS BΠ = (V,Σ,Θ, T ), where

• V = VL ∪ {T};

• Σ is the set of states which corresponds to all type-consistent valuations for V.

• Θ = ΘL; and

• T = TL ∪ { idle, tick }, where

ρa , p ∧ e for each (a, p, d, e) ∈ A

ρtick , (T ′ = T + 1) ∧
∧

(a,p,d,e)∈A

¬ (p ∧ d)

Theorem 8.1 below proves the equivalence of DTAs and BTSs.

theorem 8.1. Let |A be a network of DTAs with product automaton Π = (VL,ΘL,TL,A, ∅, true),

TSΠ = (S, S0,Lab, TS) the TTS arising from the operational semantics of Π, and BΠ =

(V,Σ,Θ, T ) the corresponding BTS. Then, for any (a, p, d, e) ∈ A and δ ∈ N+,

1. s
a

=⇒ s′ ∈ TS iff s a−→ s′ ∈ BΠ; and

2. s
δ

=⇒ (s+ δ) ∈ TS iff s tick−−−→ (s+ 1) tick−−−→ (s+ 2) tick−−−→ . . . (s+ δ) ∈ BΠ.

Proof. The theorem holds by construction of BΠ. First, note that the set of possible states in

TSΠ and BΠ are the same, i.e., S = Σ. Secondly, both TSΠ and BΠ have the same initial state,

because Θ , ΘL. In addition, for every transition relation ρa , p ∧ e in BΠ there exists a

corresponding action (a, p, d, e) in Π with the same precondition and effect (and viceversa).

The theorem’s second statement is a consequence of the following observations. First, by

rule (D2) governing the semantics of a DTA (Section 8.2.2), for any δ ∈ N+ and s ∈ S, the

following holds

s
δ

=⇒ (s+ δ) iff s
1

=⇒ (s+ 1)
1

=⇒ (s+ 2)
1

=⇒ . . . (s+ δ)

Secondly, by rule (D2) and definition of ρtick , for any s ∈ S, the following holds.

s
1

=⇒ (s+ 1) iff s tick−−−→ (s+ 1)

This concludes the proof.
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Discussion: Timelocks in BTSs. Naturally, having mapped a DTA Π (with a timed seman-

tics) to a BTS BΠ (with untimed semantics), we may wonder about the interpretation of Zeno

runs and timelocks of Π, in BΠ. Note that, by definition, the idling transition is included in BΠ.

Because time-actionlocks cannot occur in Π, every reachable state in BΠ enables either some

action transition (i.e., a transition in BΠ obtained from some action in Π) or the tick transi-

tion. Consequently, there are no terminal states in BΠ, and computations are always infinite

sequences of diligent transitions (in other words, the idling transition loses its meaning in BΠ).

Zeno runs and Zeno-timelocks may occur in Π, and therefore also in BΠ. As is the case for

model-checking timed automata (Chapter 3), timelocks in BTS specifications may invalidate the

verification of correctness requirements. Moreover, timelocks are a source of incompleteness for

proof rules, such as the invariance rule (see, e.g., [1, 93, 25]).

Zeno runs in timelock-free specifications, on the other hand, do not affect the verification of

LTL formulae, whose semantics are defined w.r.t. divergent executions. Unlike model-checkers,

proof rules can selectively ignore Zeno runs: in general, the verification of liveness properties

is performed under fairness assumptions (of which time divergence can be seen as a particular

case).7 Therefore, in accord with the literature (and in particular, with [93]) we require the DTA

Π to be timelock-free, and we consider the semantics of LTL formulae to be defined only over

divergent computations (i.e., computations where the value of T increases beyond any bound).8

8.4.2 Example: Safety Properties for the Multimedia Stream

Consider again the multimedia stream example, and the product automaton Π depicted by

Figure 8.4. Figure 8.6 shows the equivalent BTS BΠ (we have renamed the actions in Π to

unique labels). In this section we prove a number of requirements for the multimedia stream.

Non-blocking Channel. Invariance proofs can be used on BΠ to confirm that synchronisation

between Source and either Place1 or Place2 is always possible, i.e., that packets can be put in

the channel whenever the Source is ready to send them. This safety property9 can be expressed

by the LTL formula ψnonblock , where

ψnonblock , 2¬((T = 0 ∨ T = t1 + 50) ∧ Place1State = 2 ∧ Place2State = 2 )

7Note, we are not claiming that proving liveness is easy (which is far from true!), but instead that proofs in
specifications with Zeno runs are possible and meaningful.

8Unless where it has been stated otherwise, we deal with DTA specifications that are timelock-free.
9We have seen a CTL formula describing the same property in the context of Timed Automata in Section 2.2.2.
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V : {T, t1 , t2 , t3 , t4 , tm, x ∈ N, l ∈ {0, . . . , 4}, error ∈ B,

SourceState ∈ {0, 1}, Place1State, Place2State, SinkState ∈ {1, 2} }
Θ : T = 0 ∧ t1 = 0 ∧ t2 = 0 ∧ t3 = 0 ∧ t4 = 0 ∧ tm = 0 ∧ x = 0 ∧ l = 0 ∧ ¬ error ∧

SourceState = 0 ∧ Place1State = 1 ∧ Place2State = 1 ∧ SinkState = 1
T : { ρtick : ¬ (SourceState = 0 ∧ T = 0 ∧ Place1State = 1) ∧

¬ (SourceState = 0 ∧ T = 0 ∧ Place2State = 1) ∧
¬ (SourceState = 1 ∧ T = t1 + 50 ∧ Place1State = 1) ∧
¬ (SourceState = 1 ∧ T = t1 + 50 ∧ Place2State = 1) ∧
¬ (Place1State = 2 ∧ T ≥ t4 + 90 ∧ SinkState = 1) ∧
¬ (Place2State = 2 ∧ T ≥ t3 + 90 ∧ SinkState = 1) ∧
¬ (SinkState = 2 ∧ T = t2 + 5) ∧
¬ (Place1State = 2 ∧ l < 4 ∧ T ≥ t4 + 90) ∧
¬ (Place2State = 2 ∧ l < 4 ∧ T ≥ t3 + 90) ∧
¬ (T = tm + 1000) ∧
T ′ = T + 1

ρsourceOut01 : SourceState = 0 ∧ T = 0 ∧ Place1State = 1 ∧
SourceState ′ = 1 ∧ t4 ′ = T ∧ Place1State ′ = 2

ρsourceOut02 : SourceState = 0 ∧ T = 0 ∧ Place2State = 1 ∧
SourceState ′ = 1 ∧ t3 ′ = T ∧ Place2State ′ = 2

ρsourceOut11 : SourceState = 1 ∧ T = t1 + 50 ∧ Place1State = 1 ∧
t1 ′ = T ∧ t4 ′ = T ∧ Place1State ′ = 2

ρsourceOut12 : SourceState = 1 ∧ T = t1 + 50 ∧ Place2State = 1 ∧
t1 ′ = T ∧ t3 ′ = T ∧ Place2State ′ = 2

ρsinkIn1 : Place1State = 2 ∧ T > t4 + 80 ∧ SinkState = 1 ∧
Place1State ′ = 1 ∧ t2 ′ = T ∧ SinkState ′ = 2 ∧ x′ = x + 1

ρsinkIn2 : Place2State = 2 ∧ T > t3 + 80 ∧ SinkState = 1 ∧
Place2State ′ = 1 ∧ t2 ′ = T ∧ SinkState ′ = 2 ∧ x′ = x + 1

ρloss1 : Place1State = 2 ∧ l < 4 ∧ l′ = l + 1 ∧ Place1State ′ = 1

ρloss2 : Place2State = 2 ∧ l < 4 ∧ l′ = l + 1 ∧ Place2State ′ = 1

ρplay : SinkState = 2 ∧ T = t2 + 5 ∧ SinkState ′ = 1

ρcheck : T = tm + 1000 ∧ t′m = T ∧ x′ = 0 ∧ l′ = 0 ∧ error ′ = x < 14
}

Figure 8.6: BTS BΠ for the Multimedia Stream
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As discussed in Section 8.3, the verification of ψnonblock is achieved by applying the rule inv

(Figure 8.5). We have used MONA to check the validity of the rule premises for every transition

in BΠ. The following auxiliary invariants, which describe various relationships among the DTA

variables, proved helpful in the verification of ψnonblock . These invariants were also validated

with MONA (the MONA predicate mult50 (n) denotes that n is a multiple of 50; see Figure 8.7).

(1) (Place1State = 2 ∧ Place2State = 2) → (t3 ≥ t4 + 50 ∨ t4 ≥ t3 + 50)

(2) t1 ≥ t3 ∧ t1 ≥ t4

(3) SourceState = 0→ T = 0 ∧ Place1State = 1 ∧ Place2State = 1

(4) (T > t4 + 90→ Place1State = 1) ∧ (T > t3 + 90 → Place2State = 1)

(5) T ≥ t1 ∧ T ≥ t2 ∧ T ≥ t3 ∧ T ≥ t4

(6) mult50 (t1 ) ∧ mult50 (t3 ) ∧ mult50 (t4 )

(7) t2 = T ∧ T > 0 → ((Place1State = 1 ∧ T ≤ t4 + 90 ∧ T > t4 + 80) ∨

(Place2State = 1 ∧ T ≤ t3 + 90 ∧ T > t3 + 80))

(8) SinkState = 2 → T ≤ t2 + 5

(9) T ≤ t1 + 50

pred mult50(var1 n) =

ex2 M:

(all1 x where (x in M & x < max M): x+50 in M & ∼ ex1 y : x<y & y<x+50 & y in M) &

0 in M & n in M;

Figure 8.7: A MONA Predicate To Test Multiples of 50

By way of example, Figure 8.8 shows the MONA specification that checks whether the assertion

¬((T = 0 ∨ T = t1 +50)∧Place1State = 2 ∧Place2State = 2 ) is preserved by the tick transition

(i.e., one of the proof obligations derived from premise P3 of the invariance rule).

Latency. Latency refers to the time a packet takes to be transmitted and eventually played

by the Sink : we want to verify that this time must be at most 95 ms. In the network of

Figure 8.3, the variable t1 in Source captures the time when each packet is sent (see the effect of

sourceOut!), and t2 + 5 in Sink captures the time when a packet is played (see the precondition

of play). However, the (intuitive) formula 2 (t2 + 5 ≤ t1 + 95) does not correctly represent the

latency; by the time the Sink receives a packet, t1 has already captured the time when the next

packet was sent. Therefore, we need to relate the sending and playing times for each packet.

For this specification, it suffices to capture the sending times of the last two packets [44].
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var1 T,T’,t1,t3,t4,t2,l where (0<=l & l<=4),

SourceState where SourceState in {0,1},
Place1State where Place1State in {1,2},
Place2State where Place2State in {1,2},
SinkState where SinkState in {1,2};

∼ (SourceState=0 & T=0 & Place1State=1) &

∼ (SourceState=0 & T=0 & Place2State=1) &

∼ (SourceState=1 & T=t1+50 & Place1State=1) &

∼ (SourceState=1 & T=t1+50 & Place2State=1) &

∼ (Place1State=2 & T>=t4+90 & SinkState=1) &

∼ (Place2State=2 & T>=t3+90 & SinkState=1) &

∼ (SinkState=2 & T=t2+5) &

∼ (Place1State=2 & l<4 & T >= t4+90) &

∼ (Place2State=2 & l<4 & T >= t3+90) &

∼ (T=tm+1000) &

T’ = T+1 &

(∼ ((T=0 | T=t1+50) & Place1State=2 & Place2State=2))

=>

(∼ ((T’=0 | T’=t1+50) & Place1State=2 & Place2State=2));

Figure 8.8: A MONA Specification to Characterise a Proof Obligation from the Invariance Rule

Figure 8.9 shows how the original Source automaton is modified to introduce the variables t10

and t11, which capture the sending times of the last two packets (no other component automaton

requires any modification). After sending the first packet (SourceState=0), the Source enters

into a 2-state loop (SourceState=1, SourceState=2), capturing the time when each packet is sent

(t10, t11). Latency can then be expressed by the safety property,

ψlatency , 2 ((SinkState = 2 ∧ T = t2 + 5) → (T ≤ t10 + 95 ∧ T ≤ t11 + 95))

DTA: Source

VL : {SourceState ∈ {0, 1, 2}, t10, t11 ∈ N }
ΘL : SourceState = 0 ∧ t10 = 0 ∧ t11 = 0
TL : {SourceOut ! }
A : SourceOut!

prec : SourceState = 0
deadline : prec

eff : SourceState ′ = 1
SourceOut!

prec : SourceState = 1 ∧ T = t10 + 50
deadline : prec

eff : SourceState ′ = 2 ∧ t′11 = T

SourceOut!

prec : SourceState = 2 ∧ T = t11 + 50
deadline : prec

eff : SourceState ′ = 1 ∧ t′10 = T

Figure 8.9: The Source Automaton Modified to Verify Latency
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We have proved ψlatency using the invariance rule, with MONA validating the necessary proof

obligations (here we omit the auxiliary invariants). We also refer the reader to our technical

report [73], where similar proofs are given in detail.

Throughput. We want to verify that the Sink never receives less than 14 packets per second.

In our DTA specification, this could be confirmed by checking the safety property 2¬ error .

The invariance proof would require auxiliary invariants to relate the number of received and

lost packets in a given second (variables x and l), and the time elapsed so far (T ). However, we

need multiplication to formalise such a relationship, which is not expressible in WS1S. Instead,

we will perform an analysis of throughput based on the receiving time of the last packet (t2 ).

Assuming a reliable channel, the minimum throughput can be expressed as a function of

the packet sending rate and the maximum transmission delay. Using invariance proofs, we can

confirm that the maximum accumulated time after n packets have been received, is given (in

ms) by equation 8.1, as follows.

at(n) = 90 + 50(n− 1) (8.1)

In the DTA specification, the accumulated time up to the last packet received by the Sink is

given by t2 , and so, if we add a variable n that is incremented every time a packet is received

(but n is never reset), we may attempt to assert the formula:

2 (l = 0 → t2 ≤ 90 + 50(n− 1))

However, as we mentioned before, multiplication is not expressible in WS1S. Thus, we introduce

a new variable N50 = 50n instead of n, which is incremented by 50 every time that a new packet

is received by the Sink. This yields the formula:,

ψthr , 2 (l = 0 → t2 ≤ N50 + 40)

We have validated ψthr with MONA (again, we omit the auxiliary invariants), and thus confirmed

equation 8.1. Assuming a reliable channel, the minimum throughput in the i-th second, thr imin ,

can be calculated as the difference between the accumulated number of packets received up to

the i-th and (i− 1)-th seconds. In terms of accumulated time, thr imin is given by the following

expression.

thr imin =







max ({n | 1000 ≥ at(n)}) if i = 1

max ({n | 1000i ≥ at(n)})−max ({n | 1000(i− 1) ≥ at(n)}) otherwise
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Induction on i will prove that the minimum throughput at any second, thrmin , is 19 packets per

second. In order to infer the minimum throughput for a lossy channel, the worst-case analysis

must consider the following scenario.

When T = 1000(i−1) (i.e., at the beginning of the i-th second), the action check in Monitor

becomes urgent, but the key observation here is that, although time may not pass, components

may still evolve if some action is enabled. In particular, note that when T = 1000(i− 1), Source

will synchronise with either Place1 or Place2 to put another packet in the channel, and that

such a packet may be immediately lost (provided l < 4, action loss can be performed as soon as

Source and Place1/Place2 have synchronised). Moreover, suppose that the packet is lost before

the action check is performed. Then, as the number of lost packets is reset (l′ = 0 in the check

action), up to 5 packets can be lost in the current second (4 packets plus the first packet sent

in the current second). We conclude that the minimum throughput, assuming a lossy channel

of up to 4 packets lost per second, is thr lossy
min = thrmin − 5 = 14 packets per second (thus, the

Monitor component never triggers an error event).

8.4.3 Other Examples

This section offers more examples of DTA specifications, including examples that illustrate the

specification of unbounded data structures in DTAs. Thanks to WS1S and MONA, DTAs pro-

vide data support for a class of systems that timed automata and model-checkers are not able

to analyse (or where finite abstractions must be provided, which may sacrifice generality).

Multimedia Stream with Unbounded Channel

Here we adapt the DTA specification of Figure 8.3 to implement the channel as an unbounded

buffer (instead of a two-place buffer); this is shown in Figure 8.10 (the Source, Sink and Monitor

remain unchanged). The buffer denotes an unbounded queue storing timestamps, which record

the time when the packet is put into the channel. We do not model here the content of packets,

although this is possible in WS1S if the content can be represented in some finite domain [148,

29]. We represent the buffer as a finite set of natural numbers (Buf ∈ F(N)), manipulated as a

queue through the following predicates (this is possible because timestamps, t, are monotonically

increasing).

Note that, a packet can be lost as soon as it is put into the channel. Correspondingly,

the predicate lose(Buf,Buf’) models this event by removing (non-deterministically) one of the

timestamps that are currently stored in the buffer (i.e., this denotes the loss of one of the packets

in transit).
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DTA: Channel

VL : {Buf ∈ F(N) }
ΘL : Buf = ∅
TL : { sourceOut?, sinkIn!, loss }
A : sourceOut?

eff : enQ(T,Buf ,Buf ′)
sinkIn!

prec : ∃ t. (head(t,Buf ) ∧ T > t + 80)
deadline : ∃ t. (head(t,Buf ) ∧ T ≥ t + 90)
eff : deQ(Buf ,Buf ′) ∧ x′ = x + 1

loss

prec : ¬ isEmpty(Buf ) ∧ l < 4
deadline : l < 4 ∧ ∃ t. (head(t,Buf ) ∧ T ≥ t + 90)
eff : lose(Buf ,Buf ′) ∧ l′ = l + 1

Figure 8.10: An Unbounded Channel for the Multimedia Stream

isEmpty(Buf ) , Buf = ∅

head(t,Buf ) , t = min(Buf )

enQ(t,Buf ,Buf ′) , Buf ′ = Buf ∪ {t}

deQ(Buf ,Buf ′) , Buf ′ = Buf \ {min(Buf )}

lose(Buf ,Buf ′) , ∃ t ∈ Buf .Buf ′ = Buf \ {t} ∧ Buf ′ 6= Buf

Abadi and Lamport’s Unbounded Queue

Here we show a DTA specification for the example of Abadi and Lamport [1]. Figure 8.11

illustrates an unbounded queue, which acts as a channel between a sender and a receiver process

(we do not model these processes here, just the behaviour of the channel). All components

evolve in discrete-steps, according to a single reference clock.

. . .0 1 1 0Q

last

ival

ibit

oval

obit
0

SENDER RECEIVER

CHANNEL

Figure 8.11: A Non-lossy Queue

There are two pairs of boolean-valued wires, one pair on each side of the channel: ival and

ibit, and oval and obit. The sender inputs a new message by setting the value of ival to the

message content, and signals this to the channel by complementing ibit. The sender may input

a message at most once every δsnd time units.
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DTA: Queue

VL : { ibit , obit , ival , oval , last ∈ B, xinp , xdeq , size ∈ N, Q, Qi, Qe ∈ F(N) }
ΘL : isEmpty(Q, size) ∧ Qi = ∅ ∧ Qe = ∅ ∧ xinp = 0 ∧ xdeq = 0
TL : { Inp, EnQ , DeQ }
A : Inp

prec : xinp + δsnd ≤ T

eff : ibit ′ = ¬ ibit ∧
x′

inp = T ∧ Q′
i = Qi ∪ {T}

EnQ

prec : last = ¬ ibit

deadline : prec ∧ xinp + ∆rcv ≤ T

eff : enQ(ival , Q, Q′, size, size ′) ∧
last ′ = ¬ last ∧
isEmpty(Q, size) → x′

deq = T ∧
Q′

e = Qe ∪ {T}
DeQ

prec : ¬ isEmpty(Q, size) ∧ xdeq + δsnd ≤ T

deadline : prec ∧ xdeq + ∆snd ≤ T

eff : get(oval ′, Q, Q′, size, size ′) ∧
obit ′ = ¬ obit ∧
¬ isEmpty(Q, size) → x′

deq = T

Figure 8.12: A Non-lossy Queue (DTA Model)

The channel is either sensing the ibit wire to detect a new message from the sender, appending a

new message to the queue (Q), or sending the message at the head of the queue to the receiver.

Whenever the channel is sensing, it compares the values of ibit in the current and previous state

(which is recorded in the internal variable last); if they differ then the content of ival is appended

to the queue. The channel passes messages to the receiver by setting the value of oval to the

content of the head of the queue, and complementing obit. The channel enqueues incoming

messages no later than ∆rcv time units after they were input by the sender, and passes messages

to the receiver between δsnd and ∆snd time units after they reach the head of the queue (with

δsnd ≤ ∆snd). The queue is non-lossy for ∆rcv < δsnd [1].

Figure 8.12 is a DTA specification of the queue, with constants δsnd = 5, ∆rcv = 3 and

∆snd = 7. To simplify matters, we consider that messages are boolean values. Actions Inp,

EnQ and DeQ denote the sender putting a new message, the channel putting a message into the

queue and the channel sending the message at the head of the queue to the receiver, respectively.

The queue is represented by a pair (Q, size), where Q is a finite set of indices and size is the

number of messages in the queue (max (Q) < size). For all 0 ≤ i ≤ size − 1, the message stored

in the i-th slot of the queue has a true-value if and only if i ∈ Q. For example, for Q = {1, 2} and

size = 4, the queue contains (in order) the messages false, true, true, false. Queue operations

are represented by the following MONA predicates.
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isEmpty(Q, size) , Q = ∅ ∧ size = 0

enQ(elem, Q,Q′, size, size ′) , size ′ = size + 1 ∧

(elem → Q′ = Q ∪ {size}) ∧

(¬ elem → Q′ = Q)

get(elem, Q,Q′, size, size ′) , size > 0 ∧

(elem ↔ 0 ∈ Q) ∧

(∀ e ∈ Q. e > 0 → e− 1 ∈ Q′) ∧

(∀ e ∈ Q′. e+ 1 ∈ Q) ∧

size ′ = size − 1

The time capture variables xinp , xdeq ∈ N are used to enforce the input rate and the maximum

delay to put a message in the queue (xinp), and the minimum and maximum delays to pass a

message from the queue to the receiver (xdeq).

In action Inp, the terms xinp +δsnd ≤ T and x′inp = T ensure that messages are input at most

once every δsnd time units. Together, the terms x′inp = T in Inp and xinp + ∆rcv ≤ T in EnQ,

ensure that messages are put into the queue no later than ∆rcv time units after they were input

(because ∆rcv < δsnd , the channel has always time to enqueue the last input message before

the next one arrives). The terms isEmpty(Q, size) → x′deq = T in EnQ, and xdeq + δsnd ≤ T ,

xdeq +∆snd ≤ T (deadline) and ¬ isEmpty(Q, size) → x′deq = T in DeQ, ensure that a message

is sent to the receiver between δsnd and ∆snd time units after it reaches the head of the queue.

Note that xdeq is reset (x′deq = T ) as soon as a new value is available at the head of the queue.

Assume that the system is timelock-free, and that every message that is enqueued is even-

tually sent. We could prove that the queue does not lose messages, by checking that every

input message is eventually put into the queue. One way to express this requirement as a safety

property is to add two variables, Qi and Qe, which respectively record the time when a message

is input, and the time when that message is put into the queue.

If we are to ensure that no messages are lost, then there must exist a temporal correspondence

between the timestamps stored in Qi and Qe. At any given time, a timestamp ti is stored

in Qi (except maybe the last one) if and only if a timestamp te is stored in Qe, such that

ti ≤ te ≤ ti + ∆rcv . The safety property in question is represented by the formula ψnonlossy ,

ψnonlossy , 2(φie ∧ φei)

φie , ∀ ti ∈ Qi. ti < max (Qi) → ∃ te ∈ Qe. ti ≤ te ≤ ti + ∆rcv

φei , ∀ te ∈ Qe.∃ ti ∈ Qi. ti ≤ te ≤ ti + ∆rcv
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The following auxiliary invariants helped to prove ψnonlossy .

(1) max (Qi) = xinp

(2) Qi 6= ∅ → min(Qi) ≥ δsnd

(3) ∀ ti ∈ Qi. (t < max (Qi) → ∃ t
′
i. (cons(Qi, ti, t

′
i) ∧ t+ δsnd ≤ t

′
i))

(4) ∀ ti ∈ Qi, te ∈ Qe. T ≥ ti ∧ T ≥ te

(5) (Qi 6= ∅ ∧ Qe 6= ∅ ∧ max (Qe) < max (Qi)) → T ≤ max (Qi) + ∆rcv

(6) (last = ibit)↔ (max (Qi) ≤ max (Qe))

(7) (last = ¬ ibit) → T ≤ max (Qi) + ∆rcv

Intuitively, these assertions can be explained as follows.

(1) The value of xinp always correspond to the last timestamp stored in Qi.

(2) The first timestamp stored in Qi is greater than or equal to δsnd .

(3) The difference between any two consecutive timestamps in Qi is greater than or equal to

δsnd (because of the input rate).

(4) Timestamps are always less or equal to the current time.

(5) If the last timestamp of Qi is greater than the last timestamp of Qe (meaning that the

last input message has not been put into the queue yet), then the difference between the

current time and the last input time must be less than or equal to ∆rcv .

(6) The values of last and ibit are equal if and only if the last timestamp in Qe is greater

than or equal to the last timestamp in Qi (i.e., every input message has been put into the

queue).

(7) If the values of last and ibit differ, then the difference between the current time and the

last input time must be less than or equal to ∆rcv (i.e., there is an input message waiting

to be put into the queue).

Fischer’s Mutual Exclusion Protocol

Here we model a simplified version of the well-known Fischer’s protocol. This DTA specification

is inspired by a similar example in Abadi and Lamport [1]. The protocol guarantees mutual

exclusion for a number of processes executing the following code, where x ∈ N is a variable

shared among all processes, and i ∈ N is an index uniquely identifying the process.
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testi: await 〈x = 0〉;

seti: 〈x := i〉;

checki: await 〈x = i〉;

criti: (critical section)

The process i waits until x = 0 (testi); then sets x to its process identifier at most ∆test time

units later (seti); then waits for at least δcheck time units and checks the value of x again (checki).

If x = i, the process may enter it critical section (criti).

Processes have only one chance to enter the critical section, and that process i will remain

deadlocked in checki if some other process j updated the shared variable x between seti and

checki. We could easily add repetitive behaviour (e.g., as in the TIOA specification of [92], the

code could be included in a loop, and processes may go back to testi if checki fails), but this

specification suffices to illustrate the timing constraints of the protocol.

Network: |〈Proc1,Proc2〉
VS : {x ∈ N }
ΘS : x = 0

DTA: Proci

VL : { pc
i
∈ {0, 1, 2, 3}, tt i, tci ∈ N }

ΘL : pc
i
= 0 ∧ tt i = 0 ∧ tci = 0

TL : { test i, set i, check i }
A : test i

prec : x = 0 ∧ pc
i
= 0

eff : x′ = 0 ∧ pc′
i
= 1 ∧ tt ′i = T

set i

prec : pc
i
= 1

deadline : prec ∧ tt i + ∆test ≤ T

eff : x′ = i ∧ pc′
i
= 2 ∧ tc′

i = T

check i

prec : x = i ∧ pc
i
= 2 ∧ tci + δcheck ≤ T

eff : pc′
i
= 3

Figure 8.13: A Process in Fischer’s Protocol

Figure 8.13 shows part of our DTA specification of Fischer’s protocol, for two processes

(the definitions of automata Proc1 and Proc2 are symmetric, so we show just the template).

Unfortunately, a DTA specification parameterised on the number of processes is not possible.

Even though an unbounded array of program counters could be represented, we also need to

represent unbounded arrays of time capture variables. The problem is that the maximum value

of time capture variables is not known: MONA can represent unbounded arrays only if the

element type is in a bounded domain [148].
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It is known that mutual exclusion (i.e., that no two process can ever be in their critical

sections at the same time) can be guaranteed if ∆test < δcheck . We have used the constants

∆test = 3 and δcheck = 5. Variables pci, tti and tci denote the program counter, and the time

capture variables to enforce the ∆test and δcheck delays, respectively. The program counter

ranges over {0, 1, 2, 3}, denoting that the process i is in testi, seti, checki or in the critical

section, respectively. Mutual exclusion, then, can be expressed as the safety property,

ψmutex , 2¬ (pc1 = 3 ∧ pc2 = 3)

The following are auxiliary invariants that proved helpful in the verification of ψmutex .

(1) T ≥ tt1 ∧ T ≥ tc1 ∧ T ≥ tt2 ∧ T ≥ tc2

(2) (pc1 = 1 → T ≤ tt1 + ∆test) ∧ (pc2 = 1 → T ≤ tt2 + ∆test)

(3) (pc1 = 3 → T ≥ tc1 + δcheck ) ∧ (pc2 = 3 → T ≥ tc2 + δcheck )

(4) (pc1 > 1 → tt1 ≤ tc1) ∧ (pc2 > 1 → tt2 ≤ tc2)

(5) x = 0↔ (pc1 < 2 ∧ pc2 < 2)

(6) pc1 = 3 → (x = 1 ∧ tc1 ≥ tc2 ∧ tc1 ≥ tt2)

(7) pc2 = 3 → (x = 2 ∧ tc2 ≥ tc1 ∧ tc2 ≥ tt1)

(8) (tc1 > tc2 → x = 1) ∧ (tc2 > tc1 → x = 2)

(9) (pc1 = 2 → tc1 ≥ tt2) ∧ (pc2 = 2 → tc2 ≥ tt1)

Assertion (1) denotes that the values of time capture variables cannot be greater than the current

time. A process (2) cannot take more than ∆test time units to set the variable; (3) it cannot

enter the critical region before δcheck time units have passed since it set the variable; and (4) it

tests the variable before it sets it. The variable keeps its initial value if and only if no process

has yet set it (5). If Proci is in its critical section, then x = i and the other process can no

longer set the variable, or pass the test (6-7). If Proci was the last to set x, then x = i (8). If a

process has set the variable, the other process can no longer pass the test (9).

8.5 An Evaluation of Discrete Timed Automata

Discrete Timed Automata address limitations of timed automata and model-checkers; these con-

cern data support (Section 2.4) and prevention of timelocks (Chapter 3). In addition, compared

to PITL (Chapter 7), Discrete Timed Automata presents advantages as a specification language

for real-time systems. This section also reveals limitations of Discrete Timed Automata.
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8.5.1 Discrete Timed Automata vs Timed Automata

Data Support. WS1S is an expressive and natural notation, where certain unbounded data

structures can be represented intuitively by finite sets. For instance, Section 8.4.3 studied DTA

specifications where unbounded buffers were represented (importantly, MONA allowed us to

automatically validate assertions that involved quantification and sets). As we discussed in

Section 2.4, unbounded structures (and quantification and sets) are beyond the scope of timed

automata and model-checkers, and so Discrete Timed Automata allow a more accurate mapping

between systems and specifications.

Structured types such as enumerations, records, lists and arrays (where elements in the

collection are in bounded finite domains) can also be expressed in WS1S [29, 148]. In addition,

WS1S supports a form of parameterised specifications, where parameters are treated as un-

initialised rigid variables. This is possible to the extent that the resulting parametric formulae

are expressible in WS1S. For example, if ∆ ∈ N is a parameter and v ∈ N is a variable in the

DTA, then an action can assign v′ = ∆ + 1, but not v′ = ∆ + v or v′ = ∆v, because general

addition and multiplication are not expressible in WS1S. On the other hand, real-valued clocks,

negative integers, and constraints such as x− y ≤ 2v (where x, y are clocks and v is an integer

variable) are expressible in Uppaal (Chapter 2), but cannot be expressed in DTAs.

In DTAs, constant time-bounds can be expressed using time capture variables. For example,

if an action must be executed in the time interval [low , up], with constants low , up ∈ N, this can

be modelled in the DTA by (a) declaring a time capture variable c ∈ N, (b) adding T ≥ c+ low

to the action’s precondition, and (c) adding T ≥ c+ low ∧ T ≥ c+ up to the action’s deadline

(c is reset by adding c′ = T to effect formulae). Unlike in Uppaal, low and up cannot denote

variables in DTAs (terms in WS1S cannot contain more than two variables). However, variable

bounds are possible if we extend DTAs with clock variables; i.e., variables T1, T2, . . . , Tn that

are implicitly (and simultaneously) incremented by the passage of time (as in Clock Transition

Systems [110]). In such an extension of DTAs, we could declare a clock variable Tc and add

Tc ≥ low to the action’s precondition, and Tc ≥ low ∧ Tc ≥ up to the action’s deadline (Tc is

reset by adding Tc = 0 to effect formulae).

Prevention of Time-actionlocks. In Discrete Timed Automata, deadlines express urgency

and imply preconditions, and urgency is not enforced on input or output actions unless synchro-

nisation is possible. This makes DTAs time reactive by construction; thus well-timed specifica-

tions are easier to obtain than in timed automata and most other deductive frameworks (as we

explained in Chapter 3, prevention of timelocks is not possible in timed automata).10

10Timed I/O Automata with Urgency [69] is the only other time reactive deductive notation.
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In addition, we believe that timelock-freedom may be easier to prove in Discrete Timed

Automata than in other deductive frameworks: since time-actionlocks cannot occur, absence of

Zeno-timelocks (or absence of Zeno runs) guarantees timelock-freedom.

Time models. DTAs assume a discrete-time model; in this sense, DTAs are less expressive

than timed automata. It is generally accepted that dense time has a number of advantages over

discrete time; e.g., the possibility to express arbitrarily small delays [5]. Therefore, if dense-time

models are to be represented and verified with DTAs, digitization arguments have to be checked

both for the system and the property to verify [83, 34].

Nonetheless, the semantics of DTAs and timed automata share a number of properties.11

Let δ, δ′ ∈ R+ denote delays (resp. δ, δ′ ∈ N for discrete time), and s, s′, s′′ denote reachable

states in the semantics. Time determinism holds if delays yield unique states. Timed additivity

holds if, whenever time can pass by two consecutive delays δ and δ′, then it can also pass by a

(δ + δ′)-delay. Time interpolation holds if, whenever a (δ + δ′)-delay is possible, then time can

also pass by two consecutive delays δ and δ′. Time closure applies only for dense-time domains;

time closure holds if, for any δ such that any δ′-delay is possible, with δ′ < δ, then a δ-delay is

also possible.

(TDet) ∀ δ, s, s′, s′′. ((s
δ

=⇒ s′ ∧ s
δ

=⇒ s′′) ⇒ (s′ = s′′))

(TAdd) ∀ δ, δ′, s, s′, s′′. ((s
δ

=⇒ s′
δ′

==⇒ s′′ ⇒ (s
δ+δ′

===⇒ s′′))

(TInt) ∀ δ, δ′, s, s′′. ((s
δ+δ′

===⇒ s′′) ⇒ ∃ s′. s
δ

=⇒ s′
δ′

==⇒ s′′)

(TClos) ∀ δ. ((∀δ′ < δ. s
δ′

==⇒ ) ⇒ s
δ

=⇒ )

Time determinism, time interpolation and time additivity hold both in timed automata and in

DTAs. Timed automata do not satisfy time closure, because right-open invariants are allowed

(e.g., x < 1).

8.5.2 Discrete Timed Automata vs PITL

The adoption of an infinite-time model, the use of WS1S to represent data, and an “action-

oriented” style of specification, are features that allow Discrete Timed Automata to overcome

some of the limitations of PITL as a specification language (Chapter 7). The benefits related

to infinite-time and WS1S data types in DTAs, compared with the restrictions of finite-time

and propositional variables in PITL, are clear. On the other hand, the issue of framing is worth

discussing in some more detail.

11These properties are typical of analyses of timed transition systems; see e.g., [129, 168, 144].
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In PITL, the truth value of a propositional variable is not preserved from one state in the

interval to the next. However, this assumption is usually needed when specifying systems; thus,

in such cases, PITL specifications must explicitly assert or negate propositions (Section 7.5). On

the other hand, DTAs can deal with the issue of framing in an elegant way. By way of example,

consider a DTA with variables V = {x, y} and an action act with effect:

e , x′ = x+ 1

We do not specify what happens to y when act is performed, but we assume the persistence of

values for all those variables that are not modified by e; i.e., we assume that y′ = y. Furthermore,

we do not need to explicitly state y′ = y when we perform invariance proofs. Suppose that we

need to validate a certain proof obligation (generated by the invariance rule):

(φ ∧ x′ = x+ 1)⇒ φ′

There are two cases to consider, but in both cases we avoid stating y′ = y explicitly: (a) if φ

does not refer to y, then the value of y′ is clearly irrelevant, otherwise (b) φ refers to y, in which

case we can safely replace y for y′ in φ′ (we have assumed that y′ = y).

Another limitation of PITL is that consecutive states in an interval necessarily denote a 1

time unit delay. As a result, instantaneous actions (the typical assumption in real-time no-

tations) cannot be expressed in PITL. In addition, interleaving cannot occur unless actions

yield consistent next states (i.e., if an action a changes the value of proposition P from true to

false, then any other action that occurs concurrently with a must yield a next state where P is

false). In contrast, Discrete Timed Automata assume a model with instantaneous actions, and

interleaving is independent of the effect of actions.

Finally, consider that operators such as chop, chop-star and projection, and past operators,

give PITL flexibility to express complex requirements that refer to sequences, iteration or past

events. In DTAs, requirements are represented by LTL formulas (where modal operators are

more restrictive than in PITL), although state formulae are not limited to propositional variables

(instead, they may be any WS1S formulae).

8.6 Related Work

Smith and Klarlund [148] use (untimed) I/O Automata [109] to model a sliding window protocol,

and MONA to assist the verification of safety properties via invariance proofs. Our work on

Discrete Timed Automata can be considered an extension of these ideas to real-time systems.
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Timed I/O Automata [92, 69], Clock Transition Systems [93],12 and the Temporal Logic of

Actions [1], are deductive frameworks to reason about real-time systems. These notations assume

a dense-time domain, and share other elements. Specifications may be parameterised, and

consist of a finite set of variables and actions, where actions are defined through preconditions

and postconditions.

These notations adopt first-order logic as the assertion language. A comparison between

first-order logic and WS1S (the assertion language of Discrete Timed Automata) is beyond

the scope of this thesis; let us just mention that both assertion languages present advantages,

and that there are properties that may be expressed in one logic but cannot be expressed in

the other. For instance, first-order logic permits more general arithmetic operations; however,

the logic is undecidable and tool support is confined to theorem provers (although, theorem

provers may include decision procedures that will automatically verify certain fragments of the

assertion language). On the other hand, WS1S may express second-order quantification, and

MONA implements an efficient decision procedure for WS1S.

Timed I/O Automata, Clock Transition Systems and the Temporal Logic of Actions partition

the set of actions into controlled actions, which are performed by the system, and external

actions, which are performed by the environment. This facilitates the analysis of so-called open

systems (see, e.g., [63]). Communication in these theories is realised through shared variables

and multiway synchronisation. In contrast, DTAs model closed systems, where the environment

must be represented by components in the network. Only binary synchronisation has been

defined for DTAs, but other modes (including multiway synchronisation) can be accommodated

by redefining the product automaton. Note, these design decisions affect the way in which DTAs

behave, but are orthogonal to the use of WS1S and MONA. We finish this section by comparing

Discrete Timed Automata against particular elements of each theory.

Timed I/O Automata. In Timed I/O Automata (TIOAs), the evolution of variables over time

can be either discrete or continuous. Discrete changes are expressed by actions. The passage

of time is represented by special functions called trajectories, which describe the continuous

evolution of dynamic variables over intervals of time (TIOAs support the definition of certain

classes of hybrid systems; clocks are just a particular class of dynamic variables).

Urgency is represented by time-stopping conditions over trajectories, with a semantics sim-

ilar to deadlines and invariants. However, from a pragmatic point of view, stopping conditions

are more difficult to use, and may lead more easily to timelocks (this is because the stopping

conditions are related to trajectories, and so urgency of actions is imposed indirectly).

12Clock transition systems are extended with modules in [25].
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Trajectories satisfy certain axioms, including time reactivity; however (unlike in Discrete

Timed Automata), the theory does not specify the means to obtain time reactivity by con-

struction. Nonetheless, the theory identifies subclasses of TIOAs that are free from timelocks

(feasible and receptive TIOAs), and free from Zeno runs (progressive TIOAs). These notions

are defined in the context of open systems, e.g., a TIOA is considered free from Zeno runs or

timelocks assuming that the environment does not engage in such abnormal behaviours (see [92]

for detailed definitions).

Verification in TIOAs is currently supported by the theorem prover PVS [107]. Robson

[139] implemented a translator from a subclass of TIOAs to Uppaal models.13 TIOAs with

Urgency [69] are an extension of TIOAs with deadlines attached to actions, similar to DTAs

(our theories were developed independently), and time reactivity is guaranteed by construction.

To our knowledge, mechanisation of TIOAs with urgency has not been investigated.

Clock Transition Systems. Clock Transition Systems (CTSs) include a set of clocks, which

are real-valued variables that increment uniformly with the passage of time. In this sense, clocks

in CTSs behave as clocks in timed automata, rather than time capture variables as in DTAs.

A CTS includes an explicit time action, and a time-progress condition to specify urgent

behaviour. The time action increments all clocks by some δ-delay, provided no δ′-delay (δ′ < δ)

invalidates the time-progress condition. As in TIOAs, urgency is modelled indirectly.

Bjorner et al. [25] propose a deductive method to check timelock freedom in CTSs. The

method characterises a sufficient-only condition for the absence of timelocks, in terms of first-

order logic proof obligations and ranking functions on well-founded domains. In addition, a

similar method is proposed to check receptiveness (as in TIOAs, this is a compositional property

that guarantees timelock-freedom in open systems). Deductive verification of LTL formulae is

supported by the STeP tool.14 STeP includes tools for the automatic generation of invariants,

and also assists the verification of timelocks [25].

The Temporal Logic of Actions. Specifications in the Temporal Logic of Actions represent

the passage of time using a time variable now (as we do with T in DTAs), and lower and upper

(urgent) time bounds are related with actions through timers. Timers are formulae that con-

strain the enabling conditions of actions to represent lower bounds, and the evolution of now

to represent upper bounds. Based on timers, the authors give in [1] a number of sufficient-only

conditions to guarantee timelock-freedom.

13See also http://tioa.csail.mit.edu/
14www-step.stanford.edu/
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Verification of TLA specifications is supported by theorem provers, such as the Larch Prover

[67], HOL [163] and Isabelle [90]; the model-checker TLC supports automatic verification of

finite-state TLA models [167].15 Lamport [101] gives a method to ensure timelock-freedom

in finite-state, discrete-time TLA specifications. Briefly, Lamport’s check verifies a condition

similar to the TCTL formula ∀2∃3=1 true.

8.7 Conclusions

We presented Discrete Timed Automata as a notation to specify real-time systems, and used

MONA to assist invariance proofs. To do this, we mapped DTAs to basic transition systems, in

order to apply the invariance rule [112]. The proof obligations that result from the invariance

rule can be automatically validated in MONA, which facilitates the verification of complex

requirements (e.g., MONA is able to validate formulae involving arithmetic operations, set

operations and quantification).

DTAs consist of a set of variables whose possible valuations represent the state space, and

a set of actions to describe discrete changes. Actions are defined through preconditions and

effects (i.e., postconditions) in the usual way. A time variable, T , represents the value of the

current time; we assume a discrete time domain, and so T ∈ N (discrete time is necessary to

express DTAs in MONA). Urgency can be modelled by attaching deadlines to actions; deadlines

are formulae that impose certain maximal valuations for T , thereby forcing the immediate

execution of the corresponding action. Importantly, the semantics of deadlines is such that

actions can be made urgent only when they are enabled; in addition, this semantics is preserved

by synchronisation. Therefore, networks of DTAs are time reactivity by construction (i.e.,

networks of DTAs are free from time-actionlocks).

This chapter concludes Part III and our study of WS1S and MONA in the context of real-time

systems. Discrete Timed Automata provide solutions to some limitations of timed automata

and model-checkers (Chapter 2) , regarding data support and prevention of timelocks; and PITL

(Chapter 7), regarding the specification of real-time systems.

In Discrete Timed Automata, a class of unbounded data structures can be represented and

analysed; time-actionlocks are prevented by construction; and framing is easily accommodated in

specifications (and proofs). As a result, certain systems can be more accurately represented (e.g.,

in communication protocols, DTA specifications do not need to bound buffers to any predefined

capacity), and well-timed specifications are easier to obtain in Discrete Timed Automata than in

most other notations (including Timed Automata). Moreover, because time-actionlocks cannot

15See also http://research.microsoft.com/users/lamport/tla/tla.html
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occur in DTAs, the proofs of timelock-freedom can be reduced to proofs for absence of Zeno-

timelocks (or absence of Zeno runs), which may facilitate the task considerably.

Therefore, Discrete Timed Automata (and in turn, WS1S and MONA) present solutions to

some of the reliability issues that this thesis has tried to address (Chapter 1). In addition, we

have revealed some limitations of Discrete Timed Automata, due to the restrictive arithmetic of

WS1S (we compared Discrete Timed Automata, Timed Automata and PITL, in Section 8.5).

We conclude this chapter by identifying possible ways in which our work could be extended.

This demonstrates the flexibility of Discrete Timed Automata to accommodate new elements

and tool support.

Checking Timelock-freedom. There are a number of alternatives to investigate. Following

Robson’s work on TIOAs [139], a translation from finite-state DTAs to Uppaal timed automata

would allow us to apply the detection methods discussed in Chapter 3. We could also derive,

from Abadi and Lamport’s non-Zenoness theorem for TLA specifications [1], similar conditions

that apply to DTAs (the theorem in [1] is formulated for timers, instead of deadlines). A third

alternative is to adapt to DTAs the non-Zenoness conditions proposed by Bjorner et al. [25] for

Clock Transition Systems.

Tool Support. Deriving BDD variable-ordering heuristics from DTA specifications may im-

prove the performance of MONA. Built-in high-level data-types (e.g., bounded sequences or

enumerated types [29, 148]), and tools to automatically generate invariants (e.g., [27]), will fa-

cilitate specification and verification of DTAs. Additionally, it would be interesting to investigate

the mechanisation of DTAs using tools other than MONA. For example, translating DTAs to

TLA specifications may allow mechanisation in HOL [163] and Isabelle [90], and model-checking

in TLC for finite-state specifications [167]; similarly, translating DTAs to TIOAs may allow

mechanisation in PVS [107], and Uppaal [139] for finite-state specifications. The PAX tool [13]

may be used for parametric verification.

LTL Properties. We have proved safety properties of the form 2φ, where φ is a state formula

(in our case, a WS1S assertion on the automaton’s variables), by using the invariance rule.

Other deductive rules are known that infer a more general class of LTL safety properties, where

φ denotes an LTL past formula [112]. These include waiting-for properties, 2 (p → qW r) (q

holds since p holds, until r holds), and causality properties, 2 (p → -3 q) (if p holds then q

must have held somewhere in the past). These deductive rules also reduce temporal reasoning

to checking the validity of a number of state assertions, enabling MONA to assist the proofs.
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The deductive verification of (a class of) liveness properties is also possible in DTAs. De-

ductive rules to verify response properties, p ⇒ 3 q (whenever p holds, q eventually holds),

are given by Kesten et al. [93] for clock transition systems. A mapping from DTAs to clock

transition systems would allow us to apply these rules in our framework, and use MONA to

check the proof obligations. Other deductive rules (similar to those in [93]) were considered by

Henzinger et al. [84] and may be applicable to DTAs (the computational model [84] is closer

to Discrete Timed Automata than are Clock Transition Systems, since it assumes discrete time

and employs a single time variable now) .

Other Extensions. We have mapped Discrete Timed Automata to Basic Transition Systems,

which proved to be sufficient to verify simple safety properties. In addition, we may consider

extending Discrete Timed Automata with fairness assumptions (as in Fair Transition Systems

[112]), clock variables (as in Clock Transition Systems), and timers (as in TLA).
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Part IV

Conclusions
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Chapter 9

Conclusions

We explained that limitations of timed automata [7] and real-time model-checkers undermine

the confidence of users in formal verification. Our search for solutions to these reliability issues

resulted in improvements to Uppaal [22] (Chapter 2), and in the evaluation of WS1S and MONA

[96] (Chapter 6) in real-time settings. In general, we have improved the available tool support

for formal verification of real-time systems.

Timelocks and Zeno runs represent abnormal behaviours in the semantics of a timed automa-

ton. Unless specifications are guaranteed to be timelock-free (and sometimes, also free from Zeno

runs), users cannot trust in the verification of safety or liveness properties. We improved the

support offered by model-checkers (and in particular, Uppaal) for detecting timelock-freedom

and absence of Zeno runs. We improved existing methods, developed new ones, and implemented

them in a tool to check the well-timedness of Uppaal specifications (Chapters 3, 4 and 5).

Model-checkers, whose requirements languages are based on branching-time logics, cannot

adequately express requirements that refer to sequence and iteration of events, or past computa-

tions. This is the case for Uppaal, where requirements are expressed in a subset of CTL. PITL (a

propositional subset of Interval Temporal Logic [120]) is a linear-time logic with past operators

and the power of regular expressions, which allows sequences, iterations and past computations

to be naturally modelled. Therefore, as a requirements language, PITL overcomes a number of

expressiveness limitations of the logics of Uppaal and other real-time model-checkers.

However, PITL has a non-elementary worst-case complexity, which has hampered the devel-

opment of efficient tool support. We proposed to benefit from MONA, which has been successful

in dealing with applications of WS1S (despite its non-elementary complexity). We developed

a translation from PITL to WS1S, so that MONA could be used as a decision procedure for

PITL. Thanks to the many optimisations included in MONA, we obtained a practical and effi-

cient decision procedure for PITL (Chapter 7).
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Timed automata cannot represent infinite-state systems, and model-checkers restrict data

types to bounded domains. This limits the analysis of certain systems, such as communication

protocols with unbounded buffers. In addition, timelocks cannot be prevented by construction

in timed automata. These limitations motivated our development of Discrete Timed Automata,

a deductive notation based on WS1S, where MONA is used to mechanise invariance proofs. We

have shown that certain unbounded data structures could be naturally represented in WS1S, and

analysed with MONA. Moreover, Discrete Timed Automata are time reactive by construction:

time-actionlocks cannot occur, and so, well-timed specifications are much easier to obtain than

in Timed Automata and other notations (Chapter 8).

We have evaluated our solutions in a number of case studies. Importantly, the CSMA/CD

protocol (to test our timelock detection methods), the Symphony Problem (to test PITL and

our MONA-based decision procedure), and the Multimedia Stream (to test Discrete Timed

Automata) are well-known benchmarks in the real-time verification literature.

In this chapter we conclude our thesis with an account of our contributions. In addition, we

compare the different notations and tools studied in this thesis, and discuss further research.

9.1 Contributions

We improved the available tool support for the verification of real-time systems, aiming to

increase the confidence users can obtain in their specifications and analyses. We made practi-

tioners and researchers aware of reliability issues in real-time model-checkers: such issues have

not been addressed before to the extent found in this thesis. This strengthens the use of formal

methods to assert the correctness of complex systems.

In particular, our analysis focused on Uppaal, which is probably the most developed real-

time model-checker (and the most extensively used). Limitations in methods to detect timelocks

and Zeno runs, a restrictive branching-time requirements language, and data support limited to

bounded domains, all attempt against the reliability of Uppaal (and model-checkers, in general).

In our search for solutions, we studied the applicability of WS1S and MONA in real-time

specification and requirements languages. This analysis resulted in a number of benefits. Firstly,

WS1S and MONA helped us to develop solutions to the problems found in Uppaal. Secondly,

we extended the use of WS1S and MONA (and identified strengths and weaknesses) to a new

application domain for which they were not originally developed; i.e., the formal verification

of timed systems. Finally, we were able to compare different notations, such as Timed Au-

tomata, PITL and Discrete Timed Automata, and different tools, such as Uppaal and MONA.

This comparison is novel, and reveals useful links between timed and untimed methods (see

Section 9.2).
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The transition between different notations and tools is reflected in this thesis, from Part II,

which studied Timed Automata and Uppaal (Chapters 2, 3, 4 and 5), to Part III, which studied

WS1S, MONA, PITL and Discrete Timed Automata (Chapters 6, 7 and 8). As we explain next,

this transition has been motivated by limitations found in notations and tools.

1. We started by studying timelocks and Zeno runs in timed automata, and we improved the

detection methods available in model-checkers such as Uppaal and Kronos (Chapters 2,

3, 4 and 5). Timelocks and Zeno runs are an important source of unreliability in formal

verification, but there are others. In particular, certain systems and requirements are

difficult to express in timed automata and the branching-time logics of model-checkers.

These limitations motivated our work on WS1S and MONA, PITL and Discrete Timed

Automata.

2. PITL can naturally express requirements that refer to quantitative time constraints, se-

quences and iteration of events, and past computations. In this respect, PITL solves

some of the expressiveness limitations of requirements language for model-checkers. Un-

fortunately, PITL has a non-elementary complexity, which makes it difficult to apply.

This motivated the use of MONA (Chapter 6) as an efficient decision procedure for PITL

(Chapter 7). Furthermore, this was justified by the success of MONA in dealing with

WS1S-based applications, despite its non-elementary complexity.

3. On the other hand, as a specification language, PITL presents a number of shortcomings:

data are restricted to propositional variables, and the interleaving of actions and time

delays is more difficult to express than in behavioral notations. These limitations of

PITL, the limitations related to bounded data types supported by model-checkers, and

the difficulty of detecting and preventing time-actionlocks in timed automata, motivated

the use of WS1S and MONA to develop Discrete Timed Automata (Chapter 8). WS1S

allows Discrete Timed Automata to represent unbounded data structures, MONA assists

in the proofs of complex requirements (e.g., those which arise when we must reason about

unbounded data structures), and time reactivity by construction (i.e., prevention of time-

actionlocks) is obtained by the semantics of urgency and synchronisation.

The following sections explain our contributions in more detail.

9.1.1 New Methods to Assert Absence of Timelocks and Zeno Runs

Timelocks (states where time cannot diverge) and Zeno runs (arbitrarily fast executions) are

abnormal behaviours in the semantics of a timed automaton. Verification cannot be trusted

unless specifications are guaranteed to be timelock-free; in some cases (e.g., for the verification
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of certain liveness properties) absence of Zeno runs is an additional sanity requirement. On the

other hand, there are cases where Zeno runs are perfectly acceptable, as long as the specification

is timelock-free. Therefore, we need the means to assert timelock-freedom and absence of Zeno

runs, and methods to assert timelock-freedom that are insensitive to Zeno runs.

However, only a few model-checkers provide support to assert the absence of timelocks and

Zeno runs, and this support is limited in many ways. A liveness formula can be verified in Uppaal

that denotes absence of timelocks and Zeno runs, but the algorithm involves a demanding nested

reachability analysis, and rules out timelock-free specifications where Zeno runs occur.

In the case of model-checkers such as Kronos [169] and Red [165], timelock-freedom can be

characterised more precisely than in Uppaal, but verification requires fixpoint algorithms (which

can be computationally expensive). Another limitation of Kronos is that absence of Zeno runs

cannot be checked, and the product automaton must be constructed before timelock-freedom

can be checked. We note that both, Red and the tool Profounder [159] (which checks emptiness

of Timed Büchi Automata) are able to detect Zeno runs and avoid them during verification, but

these require demanding algorithms.

We studied the nature of timelocks and Zeno runs in detail (Chapter 3), and developed new

methods to assert absence of Zeno-timelocks (an important class of timelocks) and Zeno runs.

Our work improves and complements the existing tool support.

• We refined the application of strong non-Zenoness, a static check that guarantees absence

of Zeno runs in networks of timed automata [156] (Chapter 4). We proved that, in order

to guarantee absence of Zeno runs, (a) it is sufficient to check strong non-Zenoness just on

simple loops, and (b) not every loop in the specification is required to be strongly non-Zeno

(SNZ). In particular, we proved that a non-simple loop is SNZ if and only if any of its

constituent simple loops is SNZ, and we proved that strong non-Zenoness is preserved by

synchronisation (even if only one component loop is SNZ). Therefore, we provide a more

efficient and comprehensive check for strong non-Zenoness. Thanks to our improvements,

a class of systems that are free from Zeno runs, but where not every loop is SNZ, can now

be positively analysed.

• We introduced new static checks to guarantee absence of Zeno-timelocks in a timed au-

tomaton, based on the syntax of invariants in simple loops. These checks recognise speci-

fications that are free from Zeno-timelocks, even if they are not SNZ (Chapter 4).

• We developed semantic checks to detect Zeno-timelocks and Zeno-runs in a timed au-

tomaton, which are based on reachability formulae obtained from the syntax of loops in

a timed automaton (Chapter 5). These checks can be conclusive in specifications where

strong non-Zenoness, invariant-based properties, and Uppaal’s check for timelock-freedom,
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fail to hold. Interestingly, this is the first time that timelocks and Zeno runs have been

characterised in terms of static analysis and reachability (note that, time-divergence is a

liveness property).

• We implemented a tool that exploits the complementary nature of our static and semantic

checks (Chapter 5). This tool receives an Uppaal specification as input (a network of timed

automata), and performs our refined strong non-Zenoness check first, followed by strong

non-Zenoness and invariant-based checks on the product automaton, and finally interfaces

with Uppaal to verify reachability formulas (those that characterise the semantic checks).

Importantly, this strategy applies efficient, sufficient-only checks first, and proceeds to

more demanding, sufficient-and-necessary checks as required (i.e., only if previous checks

have been inconclusive).

Zeno-timelocks cannot occur in specifications that are free from Zeno runs (by definition). Fur-

thermore, provided the specification is deadlock-free, the absence of Zeno-timelocks (or the ab-

sence of Zeno runs) guarantees timelock-freedom. Typically, deadlock-freedom is asserted (and

specifications are corrected accordingly, otherwise) before any other verification takes place.

Note that, strong non-Zenoness is static and compositional, and holds often in specifica-

tions. Therefore, in most cases, this property suffices to guarantee both absence of Zeno runs

and timelock-freedom. In other words, we have proposed an efficient method that avoids the

complexity of model-checking liveness properties (as done in Uppaal, Kronos and Red), but

which can be equally effective for asserting the sanity of specifications.

In addition, strong non-Zenoness complements timelock detection in Kronos (which cannot

assert absence of Zeno runs), and simplifies the verification in Red and Profounder (which must

run demanding algorithms to avoid Zeno runs).

Our invariant-based checks guarantee absence of Zeno-timelocks but are insensitive to Zeno

runs. Thus, we are able to guarantee timelock-freedom in (deadlock-free) specifications that

Uppaal’s check would classify as unsafe (Uppaal’s check demands absence of Zeno runs).

Unlike Uppaal, Kronos and Red, which all depend on liveness properties to assert timelock-

freedom, our static and semantic checks are available to all timed automata specifications, and

(in the case of semantic checks) only require reachability analysis. Thus, our checks can be

implemented in all real-time model-checkers.

Our checks improve the support provided by Uppaal, but they also complement it: in some

cases, Uppaal’s liveness formula may be the best solution. For instance, the invariant-based

properties, and the semantic checks, require the product automaton to be constructed a priori

(in Uppaal, on the other hand, verification is on-the-fly). Thus, Uppaal may be more efficient

if a timelock is detected after exploring just a small part of the reachability graph. Another
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advantage of Uppaal is that verification is performed over a richer specification language. For

instance, Uppaal’s timed automata may include variables and richer reset conditions, while

strong non-Zenoness only takes into account zero-resets and guards with constant lower bounds.

9.1.2 An Efficient Decision Procedure for PITL

PITL is a propositional subset of ITL with quantification, future operators such as len, chop,

chop-star and projection, and past operators such as previous and since. PITL can naturally

model requirements that refer to quantitative time constraints, sequences and iteration of events,

and past computations; hence, PITL presents advantages with respect to requirements languages

based on branching-time logics (such as the CTL-based language of Uppaal, or the TCTL-based

languages of Kronos and Red).

Importantly, PITL facilitates the mapping between requirements and logic formulae, which

increases the confidence of users in verification: Validation problems are less likely to occur if

formulae are easier to understand.

However, until now, practical tools to analyse PITL specifications have been difficult to

obtain, due to the non-elementary (worst-case) complexity of PITL’s decision procedure. Thanks

to MONA, we believe we have contributed to improve this situation (Chapter 7).

• We demonstrated that WS1S is expressive enough to encode the semantics of PITL formu-

lae, revealing a link between these two logics. Interestingly, our work provides yet another

evidence of the power of WS1S. The fact that WS1S (with simple arithmetic and set oper-

ators) is able to express intervals, quantitative time constraints, concatenation, iteration,

projection and past operators (as featured by PITL) is far from obvious.

• We translated PITL to WS1S, and used MONA as a decision procedure for PITL. We im-

plemented a front-end, PITL2MONA, which takes a PITL formula as input, and produces

a semantically equivalent MONA specification. To our knowledge, this is the first time an

automata-based decision procedure has been implemented for PITL.

• Thanks to its many optimisations, MONA is an efficient decision procedure for PITL,

despite the non-elementary complexity of this logic. We performed experiments that show

that PITL2MONA+MONA outperforms LITE, a known tableau-based decision procedure

for Propositional ITL (LITE does not implement past operators). Being based on BDDs,

we think that MONA would provide even better performance if variable-ordering heuristics

are implemented.

We believe that our work on PITL is a helpful step to obtaining real-time model-checkers

with more expressive requirements languages. Indeed, this aim is being pursued by industry for

182



untimed model-checkers; for instance, IBM’s model-checker RuleBase includes regular expression

operators in its requirements language, PSL/Sugar [14].

9.1.3 Discrete Timed Automata

We introduced Discrete Timed Automata as a deductive notation to specify real-time systems

(Chapter 8). WS1S is the assertion language, which is used to define actions and typed variables.

In addition, this allows invariance proofs to be mechanised using MONA. Note that, MONA

facilitates complex proofs; for instance, MONA is able to automatically validate rich WS1S

formulae involving arithmetic operations, set operations and quantification.

Urgency in Discrete Timed Automata is expressed through deadline predicates attached to

actions, such that (a) only enabled actions may be urgent, and (b) synchronisation may be

urgent only if both parties are enabled. Thus, the semantics of urgency and synchronisation

make Discrete Timed Automata time reactive by construction (time-actionlocks cannot occur).

With such distinctive features, Discrete Timed Automata are able to overcome some relia-

bility issues that arise in timed automata and model-checkers.

• Discrete Timed Automata can deal with infinite-state systems, and the representation

and analysis of unbounded data structures is possible thanks to WS1S and MONA. For

instance, unbounded buffers, and buffers where elements can range over N (which are com-

mon in specifications of communication protocols) can be naturally modelled in Discrete

Timed Automata. Note that, such structures must be mapped by finite abstractions in

Uppaal (and other model-checkers), hence the analysis loses generality.

• Time-actionlocks are ruled out by construction in Discrete Timed Automata. This has

two important benefits. Firstly, well-timed specifications are easier to obtain than in other

notations (including Timed Automata, where prevention of timelocks is not possible).

Secondly, in Discrete Timed Automata, proving absence of Zeno runs (or absence of Zeno-

timelocks) suffices to guarantee timelock-freedom.

As a specification language for real-time systems, Discrete Timed Automata also present advan-

tages with respect to PITL. Unlike in PITL, the interleaving of actions and time is natural in

the semantics of Discrete Timed Automata, and the framing of variables is easily accounted for

in specifications and proofs.

Discrete Timed Automata also inherit expressiveness limitations from WS1S. The lack of

general addition and multiplication in WS1S may prevent certain specifications from being

represented (and analysed) in Discrete Timed Automata. WS1S also imposes a discrete-time

model for Discrete Timed Automata: the logic is interpreted over N.
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Importantly, our work on Discrete Timed Automata also serves as a study of the suitability

of WS1S and MONA in real-time settings. This is the first time that WS1S and MONA have

been proposed for the formal verification of real-time systems; we have shown that many positive

aspects result when they are integrated in a deductive framework.

9.2 Comparing Different Notations and Tools

We have studied different formalisms and tools: Timed Automata and Uppaal, WS1S and

MONA, PITL and Discrete Timed Automata. This section highlights key relationships among

these methods (see also our discussions in Sections 2.4, 7.4.2 and 8.5).

• PITL can naturally express sequences and iteration of events, and past computations.

These are concepts that are difficult (or even impossible) to express in Uppaal (which

verifies a subset of CTL) or DTAs (which verify LTL invariance properties). Data variables,

however, are limited to propositions.

• Real-valued clocks, negative integers, arrays of clocks, and constraints such as x− y ≤ 2v

(where x, y are clocks and v is an integer variable), are all expressible in Uppaal but not in

WS1S. On the other hand, Uppaal does not support unbounded sets of natural numbers,

or first-order and second-order quantification, which are all expressible in WS1S. Note

that, structured types such as enumerations, records, lists and arrays, where elements in

the collections are in known-size finite domains, can also be expressed in WS1S [29, 148].

• The time model is infinite and dense in Timed Automata, infinite and discrete in Discrete

Timed Automata (due to WS1S being interpreted over N), and finite and discrete in PITL

(due to models being finite sequences of states). In this respect, Timed Automata are

more expressive than Discrete Timed Automata, which in turn are more expressive than

PITL.

• The interleaving of actions and time is restricted in PITL (actions are not a primitive

concept in PITL). Actions must have a minimal duration (the delay occurring between

consecutive states in an interval), and interleaving cannot occur unless the involved actions

yield consistent next states. For instance, if an action a changes the value of proposition P

from true to false, then any other action that occurs concurrently with a must yield a next

state where P is false. On the other hand, actions are instantaneous in Timed Automata

and Discrete Timed Automata, and interleaving of actions is independent of the resulting

next state.

• Framing of variables must be taken into account in PITL specifications: values are not

necessarily preserved from one state to the next. This is not an issue in Timed Automata
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(model-checkers preserve values during the exploration of the state space, unless these are

explicitly changed by resets) or in Discrete Timed Automata (framing is handled implicitly

in the interpretation of primed variables).

• Discrete Timed Automata prevent time-actionlocks by construction; this is not possible in

Timed Automata. On the other hand, Zeno runs and Zeno-timelocks may occur both in

Timed Automata and Discrete Timed Automata.

9.3 Further Research

We conclude this thesis by suggesting possible extensions to our work. Some of these ideas are

explored in more detail in the conclusions of Chapters 4, 5, 7 and 8.

Absence of Zeno Runs and Zeno-timelocks in Timed Automata. Our checks for Zeno-

runs and Zeno-timelocks may be extended to deal with a richer timed automata model. In

particular, a good target is the specification language of Uppaal, which supports non-zero resets,

data variables, urgent channels and C-like functions in transitions. In addition, the compositional

nature of strong non-Zenoness can be further exploited (we presented and example of this in

Section 4.3).

Tool Support for ITL Specifications. Variable-ordering heuristics may be derived from

PITL formulae, to better exploit the efficiency of BDDs (and avoid worst-case scenarios as

much as possible).

The translation from PITL to WS1S may be integrated in theorem provers to improve

mechanisation for ITL proofs (through MONA). This research may benefit from previous work

done on mechanisation of ITL in PVS [55], and of WS1S in PVS [131] and Isabelle [11].

Operators such as chop and chop-star, and past operators, may be used to enhance the

requirements languages of real-time model-checkers; e.g., integrating chop into Uppaal’s re-

quirements language would allow sequences to be expressed naturally. In this respect, the work

of Pandya on extending CTL with QDDC formulae is relevant [135].

Discrete Timed Automata. Proofs to assert timelock-freedom have been developed for

frameworks such as TLA [1] and Clock Transition Systems [93]; these proofs could be adapted

to DTA specifications, and may be simplified because DTAs are time reactive (thus, absence of

Zeno runs, or absence of Zeno-timelocks, guarantee timelock-freedom).

DTAs can be extended with structured data types [29, 148] and clock variables [93]. A more

general class of LTL formulas could also be verified and assisted by MONA, such as waiting-for,
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causality and response properties, using the inference rules proposed in [112, 93]. In general,

deductive proofs will benefit from tools that generate auxiliary invariants [27, 143, 59].

Additionally, a class of finite-state DTA specifications may be identified that can be trans-

lated to timed automata. Some expressiveness of DTAs will be sacrificed to gain automatic

verification, with the additional benefit that the resulting automata will be free from time-

actionlocks. In this respect, Robson’s work [139] on translating Timed I/O Automata to Uppaal

is relevant.
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Appendix A

Reachability Analysis in Uppaal

(Chapter 2)

Here we explain the basics of reachability analysis as performed by model-checkers such as

Uppaal and Kronos. We also give some details about Uppaal’s optimisations.

A.1 Reachability Analysis

Model-checkers are able to verify a number of different correctness properties. Even though

different algorithms are needed to verify different classes of properties, reachability analysis is

central to all of them. Reachability analysis refers to the exploration of the state-space, in order

to determine whether a particular state is reachable. The space of clock valuations is infinite,

thus, exploration must be performed on a finite abstraction of this space.

This section describes the reachability graph, which divides the state space of a network into

a finite number of symbolic states (necessarily, a symbolic state represents a possibly infinite

set of states in the underlying TTS).1 Given a formula φ, which characterises a set of states

Sφ in the underlying TTS, an algorithm is presented that explores the reachability graph, and

determines whether there exists a symbolic state in the graph that satisfies φ (i.e., a symbolic

state that contains any s ∈ Sφ). To simplify the presentation, explanations assume a single

timed automaton, but they readily extend to networks.

1The reachability graph is based on the region graph of Alur and Dill [7], but it is a much coarser abstraction,
i.e., the space of clock valuations is divided in fewer symbolic states [156, 21].
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A.1.1 Symbolic States

Let A = (L, l0,TL, C, T, I) be a timed automaton, and TSA = (S, s0,Lab, TS) the TTS that

represents the behaviour of A. A symbolic state is a pair (l, Z), where l ∈ L is a location in A

and Z ∈ CCC (called a zone) is a conjunction of clock constraints (bounds on single clocks, and

clock differences). A symbolic state (l, Z) denotes the (usually infinite) set

(l, Z) = { s | s ∈ S, s = [l, v] and v |= Z }

Symbolic states constitute the nodes of the reachability graph. We explain here a number of

operations on zones, which are required during the construction of the graph. These operations

are relevant for the calculation of node successors, as it will become clear shortly.

Conjunction. The conjunction of a zone Z with a clock constraint, φ ∈ CCC , corresponds to

the intersection of the solution sets. This gives the expected,

Z ∧ φ , { v | v |= Z and v |= φ }

Reset. The reset of a zone Z, with respect to a reset set r, denotes the set of valuations that

result from valuations in Z, by setting every clock in r to 0.

r(Z) , { r(v) | v |= Z }

Forward projection. The forward projection of a zone Z is the set of valuations that can

be reached from any valuation in Z, by letting some time pass. In terms of clock constraints,

you can understand this operation as removing upper bounds in single-clock constraints. Lower

bounds, and bounds on clock-difference constraints, are preserved.2

Z↑ , { v + d | v |= Z ∧ d ∈ R+0 }

2Zones obtained during reachability include clock-difference constraints that represents that all clocks advance
uniformly. Therefore, this property is preserved by forward projection.
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Figure A.1: (i) Z and φ, (ii) Z ∧ φ, (iii) r(Z), r = {x}, (iv) Z↑

Figure A.1 illustrates the results of these operations, where

Z : x ≥ 1 ∧ x ≤ 4 ∧ y ≥ 1 ∧ y ≤ 2 ∧ x− y ≥ 0 ∧ x− y ≤ 3

φ : x ≥ 2 ∧ x ≤ 4 ∧ y ≥ 1 ∧ y ≤ 4

Z ∧ φ : x ≥ 2 ∧ x ≤ 4 ∧ y ≥ 1 ∧ y ≤ 2

r(Z) : x = 0 ∧ y ≥ 1 ∧ y ≤ 2

Z↑ : y ≥ 1 ∧ x− y ≥ 0 ∧ x− y ≤ 3

The following operation, normalisation, ensures that the space of clock valuations can be divided

into a finite number of zones.

Normalisation. Let cmax ∈ N be the greatest constant occurring in any guard or invariant

in A. Let Z be a zone, and m ∈ N, m > cmax. We define norm(Z) as the zone that can be

obtained from Z by removing all constraints x ∼ m and x− y ∼ m (∼∈ {<,≤}); and replacing

all constraints x ∼ m and x−y ∼ m (∼∈ {>,=}) with x > cmax and x−y > cmax , respectively.

Other operations on zones include the check for consistency, which determine if the solution set

of a zone is nonempty; and inclusion between zones, Z ⊆ Z ′ (in terms of the solution sets).

A.1.2 Reachability Graph

The reachability graph is a finite abstraction of the behaviour (TTS) of a timed automaton.

Nodes in the graph denote symbolic states. Moreover, a node (l, Z) represents the set of time

transitions

{ [l, v]
d

=⇒ [l, v + d] | d ∈ R+ ∧ v |= Z ∧ v + d |= Z }

An edge in the graph, from (l, Z) to (l, Z ′), denotes the set of action transitions

{ [l, v]
a

=⇒ [l′, v′] | a ∈ Act ∧ v |= Z ∧ v′ |= Z ′ }
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The starting node in the graph is the symbolic state (l0, Z0), where l0 is the initial location of A

and Z0 is the zone describing the maximum time-progress allowed in l0 (notice that this depends

on the invariant in l0). Given a node (l, Z) and a transition t = l a,g,r−−−−→ l′ in the automaton, a

direct successor (l′, Z ′) is obtained, where Z ′ represents the maximum time-progress allowed in

l′, after t has been performed. Z ′ is derived from Z, the guard g and reset set r, and the target

invariant I(l′).

Generating Successors. Let A be a timed automaton; t = l a,g,r−−−−→ l′ a transition in A; and

(l, Z) a symbolic state. Let Zt be the zone defined as follows,

Zt , r(Z ∧ g) ∧ I(l′)

The symbolic state (l′, Zt) represents the set of all states that can be reached from any state in

(l, Z), by performing transition t. Hence, the following holds,

∀ s′ ∈ (l′, Zt) , ∃ s ∈ (l, Z) . s
a

=⇒ s′

It is not difficult to see that, if a state s′ = [l′, v′] ∈ (l′, Zt) is reachable from some state s ∈ (l, Z),

by performing t, then so is any state s′′ = [l′, v′ + d], d ∈ R+, (v′ + d) |= I(l′) (just by allowing

time to pass in the target location l′). The set of direct successors of a node (l, Z) is given by,

Successors(l, Z) = { (l′,norm(Z↑
t ∧ I(l

′))) | t = l a,g,r−−−−→ l′ }

We assume that Successors(l, Z) contains only consistent states, i.e. states (l′, Z ′) where Z ′

represents a non-empty set of valuations. This assumption, in turn, implies the consistency of

Zt. Successors of (l, Z), then, are generated from outgoing transitions in l that are enabled by

some valuation in Z.

Reachability Graph. The reachability graph is a finite set of nodes, N , and a finite set of

edges, E. N is defined as the smallest set of symbolic states which includes the initial state

(l0, Z0) and is closed under the successor relation (as defined by Successors(l, Z)). E is simply

defined as the set of edges which connect every symbolic state with its successors.

N = { (l0, Z0) } ∪
⋃

(l,Z)∈N

Successors(l, Z)

E = { (l, Z)−→ (l′, Z ′) | (l, Z) ∈ N ∧ (l′, Z ′) ∈ Successors(l, Z) }

where the initial zone is given by Z0 , I(l0) ∧
∧

x,y∈C, x 6=y

x = y.
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Figure A.2: Timed Automaton (left) and its Reachability Graph (right)

Example.3 Figure A.2 shows a timed automaton and its reachability graph. The starting node

in the reachability graph is the symbolic state

(1, x ≤ 10 ∧ x = y)

This state denotes that initially (location 1) time can pass up to 10 time units and that clocks

x and y have the same value. One of the direct successors of the starting node is given by

(1, x ≤ 10 ∧ y − x = 10)

This new symbolic state represents all the states that are reachable from (1, x ≤ 10∧ x = y) by

performing transition a, and then letting some time pass in location 1. Similarly, the symbolic

state,

(2, x ≥ 10 ∧ y − x = 10)

represents the states reachable from any state in (1, Z1), after transition b is performed. Note

that y is allowed to “drift” unbounded in location 1. Clock x is constrained by the invariant in

location 1, such that v(x) ≤ 10 whenever the automaton remains in that location. On the other

hand, the difference between y and x increases every time a is performed (x is reset, but y is

not). If normalisation would not be applied when the successors are generated, then an infinite

3This is inspired by an example in [21].
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number of symbolic states (1, Zi) could be derived, where

Z0 = x ≤ 10 ∧ x = y

Z1 = x ≤ 10 ∧ y − x = 10

Z2 = x ≤ 10 ∧ y − x = 20

Z3 = x ≤ 10 ∧ y − x = 30
...

Zn = x ≤ 10 ∧ y − x = 2n

and (1, Zi+1) is a successor of (1, Zi). Consider the effect that the different zones Z3, Z4, . . . have

on reachability. Every zone contains valuations that enable a, because v(x) ≤ 10, and valuations

that enable b, because v(y) > 20. Thus, these zones introduce unnecessary fragmentation into

the space of clock valuations. With normalisation, the infinite union, Z3∪Z4∪ . . ., is represented

by a single zone,

norm(Z3) = x ≤ 10 ∧ y − x > 20

and the self-loop in (1, x ≤ 10 ∧ y − x > 20), which can be seen in the reachability graph of

Figure A.2 (right).4

A.1.3 A Reachability Algorithm

A reachability algorithm is shown in Figure A.3. This is sketched as a Boolean function

reachable(A,φ), where A is a timed automaton, and φ is a state formula with the following

syntax,

φ ::= cc | l | φ ∧ φ | ¬ φ

where cc is a clock constraint and l a location in A.

The algorithm can be thought of as exploring the reachability graph described in the previous

section, generating its nodes on demand. The exploration begins with the initial node of the

graph, and then generates, in every step, the set of successors for the current node. This is

repeated until a node is found which satisfies the reachability formula (line 7), or until the

whole graph has been explored and no node has been found to satisfy φ (line 19).

A state (l, Z) satisfies φ if the intersection between the solution sets is nonempty (i.e., if any

of the states characterised by φ is reachable). Termination of the algorithm is guaranteed by

normalisation, which ensures that only a finite number of different zones can be generated, and

by keeping a set of visited nodes, Visited. The set Waiting contains the nodes to be explored.

Note that, given two symbolic states, (l, Z) and (l, Zv), if Z ⊆ Zv then all states which are

4Normalisation replaces, in Z3, the constraint y − x = 30 with y − x > 20 (cmax = 20).
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reachable from (l, Z) are also reachable from (l, Zv). Thus, there is no need to explore (l, Z) if

(l, Zv) has been visited already (lines 9 and 10).

Function reachable(A,φ)
1 begin
2 Visited ← ∅;
3 Waiting ← {(l0, Z0)};
4 while Waiting 6= ∅ do
5 Choose (l, Z) ∈Waiting;
6 Waiting ← Waiting \{(l, Z)};
7 if (l, Z) |= φ then return true;
8 end if
9 if ∄ (l, Zv) ∈ Visited. Z ⊆ Zv then
10 Waiting ← Waiting ∪ Successors(l, Z);
11 Visited ← Visited ∪ {(l, Z)};
12 end if
13 end while
14 return false;
15 end.

Figure A.3: A Reachability Algorithm

This algorithm readily applies to a network of timed automata, if we interpret symbolic

states over location vectors, and the generation of successors over transitions in the product

automaton. Note that the product automaton does not need to be constructed before the

exploration is performed. Rather, as exploration progresses, only the necessary location vectors

are generated on demand. Similarly, transitions are generated only from the reachable location

vectors, either from completed actions in some component, or from synchronising half actions

(i.e., synchronisation is computed on demand). In the generation of successors, only those

transitions that are enabled at the current symbolic state need to be considered.

It is worth mentioning, as well, that the algorithm of Figure A.3 can be modified to avoid

keeping visited states in the Waiting list. Note that successors are generated and stored in

Waiting regardless of whether they have been previously visited, thus potentially wasting mem-

ory. Additionally, the algorithm can be modified to provide diagnostic information (e.g., the

symbolic path leading to a relevant reachable state).

Example: Reachability Analysis on the Multimedia Stream. Figure A.4 shows (part

of) the reachability graph for the network of timed automata of Figure 2.5. For example, S0

corresponds to the initial symbolic state, in which the location vector 〈0, 1, 1, 1〉 corresponds to

Source.State0, Place1.State1, Place2.State1 and Sink.State1; and the initial zone represents that

all clocks are initially set to 0. Moreover, because of the constraint t1 = 0, time is not allowed
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to pass (this constraint results from the invariant in Source.State0).

The edge connecting S0 with one of its successors, S1, corresponds to the initial, urgent

sourceOut between the Source and Place1. The zone in S1 confirms the intuition that, after

performing the first sourceOut action, control can remain in Source.State1 and Place1.State2 as

long as v(t1 ) ≤ 50 and v(t4 ) ≤ 90. Following a similar reasoning, S4 represents all those states

that can be reached after the first packet has been played and before the second packet arrives

at the Sink, provided the former was initially put in Place1.

play
(Sink)

S2 S3 S4
<1,2,2,1>
t1=t3,
t2=t4,
t1<=50,
t3<=90,
t4<=90,
t4−t1=50

S1

<1,2,1,1>
t1=t2=t3=t4,
t1<=50,
t4<=90

sourceOut
(Source || Place1)

sourceOut
(Source || Place2)

sinkIn
(Place1 || Sink)

<1,1,2,2>
t1=t3,
t1<=50,
t2<=5,
t3<=90,
t4−t1=50,
t4−t2>=80

<1,1,2,1>
t1=t3,
t1<=50,
t2>=5,
t3<=90,
t4−t1=50,
t4−t2>=80

S0
<0,1,1,1>
t1=t2=t3=t4,
t1<=0

Figure A.4: Reachability Graph (Fragment) for the Multimedia Stream

A.2 Reachability Analysis in Uppaal

Except for the leads-to formula, Uppaal’s main verification algorithm is basically an efficient

implementation of the algorithm of Figure A.3. Reachability is performed on-the-fly, and net-

works are verified without building the product automaton (Section A.1.3). We discuss, next,

some implementation details and optimisations in Uppaal’s reachability algorithm.

A.2.1 The Representation of Symbolic States

Symbolic states are of the form (D,Z), with a discrete state D and a zone Z. The discrete state

represents both, a location vector and a valuation for all declared variables. Correspondingly,

the interpretation of guards, invariants and assignments5 are extended to consider variables. For

example, in order to determine that a transition t, with guard g , gc ∧ gv, is enabled in some

state (D,Z), the following conditions must be checked.

5When synchronisation occurs, assignments in the transition with the output action are performed first. This
asymmetry solves the problem of a variable being assigned different values in the output and input actions.
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• Clock constraints, gc, must be satisfiable in Z.

• Variable constraints, gv, must be satisfiable in D.

• There exists at least one valuation in (D,Z) (both for variables and clocks) that satisfies g,

and such that, after the assignments have been performed, the resulting valuation satisfies

the invariant in the target location (both for variables and clocks).

Uppaal offers two different representations for zones (the user may select the most convenient for

the specification at hand). Difference Bound Matrices (DBMs) result in fast zone operations, but

memory may be wasted in redundant constraints (DBMs must store a bound for the difference

between each pair of clocks). On the other hand, Minimal Constrain Graphs [103] eliminate this

redundancy, but may result in slower operations.

Clock Difference Diagrams (CDDs), a BDD-like data structure to efficiently represent list of

zones, are described in [17]. Efficient encoding of DBMs, sharing among data structures and

other storage optimisations are discussed in [18, 15, 60].

Uppaal also allows the user to control other parameters regarding the state-space represen-

tation, such as the size of hash tables, or the use of different zone-inclusion algorithms. These

options are described in more detail in [22].

Difference Bound Matrices. Let Z be a zone over the set of clocks CZ = {x1, x2, . . . , xn }.

Let x0 be a special clock denoting the constant 0. Z can be expressed using just clock-difference

constraints xi− xj ∼ k, where xi, xj ∈ CZ ∪ {x0}, 4∈ {<,≤} and k ∈ Z. Given Z expressed in

this form, a DBM representing Z is a matrix M of dimension (n+1)×(n+1), where the element

Mij stores the bound for the difference xi − xj . The element Mij is calculated as follows.

• Mij is set to (k,4), for every constraint xi − xj 4 k occurring in Z;

• Mij is set to ∞, for every clock difference xi − xj , i 6= 0, i 6= j, which is not constrained

in Z;

• Mii is set to (0,≤), denoting that the difference between a clock and itself is 0; and

• M0i is set to (0,≤), for every clock difference x0 − xi which is not constrained in Z. This

denotes that every clock is positive.

For example, the zone

Z = x1 ≥ 5 ∧ x1 ≤ 10 ∧ x3 > 20 ∧ x1 − x2 = 3

can be written using clock-difference constraints as follows.
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Z = x0 − x1 ≤ −5 ∧

x1 − x0 ≤ 10 ∧

x0 − x3 < −20 ∧

x1 − x2 ≤ 3 ∧

x2 − x1 ≤ −3

The DBM implementing Z is then,











(0,≤) (−5,≤) (0,≤) (−20, <)

(10,≤) (0,≤) (3,≤) ∞

∞ (−3,≤) (0,≤) ∞

∞ ∞ ∞ (0,≤)











Zones can be interpreted as directed graphs. Let M be a DBM with clocks in {x0, . . . , xn},

corresponding to a certain zone Z. Every clock is represented by a node in the graph. For

every pair of nodes xi and xj , there is an edge in the graph from xj to xi, labelled with Mij .

Figure A.5 shows the graph representation for the zone Z of our previous example.

x3

x0 x1

x2

(0,<=) (0,<=)

(0,<=)(0,<=) (−5,<=)

(3,<=)
(−3,<=)(−20,<)

(0,<=)

(10,<=)

Figure A.5: Graph Representation for a DBM

Uppaal implements operations on zones, such as forward projection and inclusion, in terms of

the DBM representation. For efficiency reasons, zones are kept in canonical form. A zone is

in canonical form if no atomic constraint can be strengthened without losing solutions. The

canonical form corresponds to the shortest-path closure of the graph representation for the zone

(Uppaal uses Floyd-Warshall’s all-pairs shortest-path algorithm [21]).

Bengtsson and Yi [21] discuss how operations on zones can be implemented so that either

the canonical form is preserved, or a full shortest-path calculation is not necessary to put the

zone back into canonical form. Here we sketch just a few intuitive implementations. We assume

that the zones Z and Z ′ are implemented by DBMs M and M ′, both in canonical form, and

they refer to the same set of clocks, {x0, . . . , xn}. We also assume 0 ≤ i, j ≤ n, and 4∈ {<,≤}.

The minimum between two bounds, min(b1, b2), is defined as follows.
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min(b1, b2) =







b1 if b2 =∞ ; or

b1 = (n,41), b2 = (m,42) and n < m ; or

b1 = (n,<) and b2(n,≤)

b2 otherwise.

Operations on zones correspond to the following DBM operations.

• The conjunction of Z with a clock constraint xi−xj 4 b, updates Mij ← min((b,4),Mij).

• The reset xi := 0 in Z updates Mi0 ← (0,≤) and M0i ← (0,≤); and, for all j 6= i, it

updates Mji ←Mj0 and Mij ←M0j .

• Inclusion between zones, Z ⊆ Z ′, holds if Mij = min(Mij ,M
′
ij) for all i, j (this is correct

because both zones are in canonical form).

• Forward projection, Z↑, updates Mi0 ← ∞, for all i. This effectively removes the upper

bounds on single-clock constraints.

Minimal Constraint Graphs. Given a zone as a directed graph, an algorithm [103] removes

redundant edges, and returns an equivalent, minimal graph in canonical form (i.e., with the

same shortest-path closure as the original graph). Even though the minimisation algorithm

causes some overhead during reachability, experiments show that minimal constraint graphs

may actually speedup verification, when compared with DBMs. This can be explained in terms

of faster zone-inclusion checks, which is performed by the reachability algorithm every time a

new state is generated. Inclusion between zones can be decided in time linear in the number of

number of constraints, thus, inclusion is influenced adversely by the redundancy in DBMs.

A.2.2 Optimisations

Keeping Symbolic States in a Single List. In Uppaal, generated states are only saved in

the Visited list; the Waiting list just keep pointers to elements in Visited. States are considered

visited as soon as they are generated: They are checked for inclusion with respect to states

already in Visited, and added to this list accordingly. In this way, there cannot be visited states

waiting to be explored (and wasting memory in the data structure) [15].

Storing Fewer Visited States. Uppaal implements a technique that reduces the number of

symbolic states stored in the Visited list [103]. The reachability algorithm needs to save visited
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states in order to guarantee termination. However, not every generated state needs to be saved.

Based on static information gathered from the network structure, a minimal subset of symbolic

states can be identified during reachability: keeping just this subset in Visited is enough to

guarantee termination. These states correspond to locations in the cycles that can be reached

from some outside the cycle. Furthermore, this subset is chosen in such way that not only

termination is guaranteed, but also that no symbolic state is explored more than once.

Normalisation. For efficiency reasons, Uppaal reduces zones with respect to a set of maximal

constants cmax(x), one for every clock x, instead of one maximal constant for all clocks (as

defined in Section A.1.1) [21]. More efficient techniques have recently been proposed in [16].

Over-approximation. During reachability analysis, many symbolic states may be found that

refer to the same discrete state (location vector plus data variables), but differ in the zones. This

is a natural reflection of executions visiting the same location at different times (for example,

when a given location can be reached through different paths in the automaton). When this

happens, and there is no inclusion between zones, Uppaal associates a list of zones to the same

discrete state. For some systems, the symbolic state-space is too big, and there is no memory

available to store all the generated zones.

To help with this problem, Uppaal can be instructed to perform an over-approximation of the

state-space (see, e.g., [9, 61]). With over-approximation, every discrete state is associated with

a single zone, usually called a convex hull. The convex hull is a zone that “tightly” approximates

the union of zones that may otherwise be related to discrete states. Storing convex hulls, instead

of lists of zones, clearly requires less memory. However, verification on convex hulls may yield

inconclusive answers. A convex hull represents, in general, a superset of those valuations included

in the original lists of zones. In other words, a convex hull represents a superset of reachable

states. Therefore, when verification is performed on convex hulls, only the unreachability of

states can be guaranteed.

Under-approximation. As is the case for over-approximation, under-approximation reduces

the amount of memory required to store visited states, and sacrifices exact verification. When

under-approximation is used, the list of visited states just records whether a state has been

visited, instead of storing the state itself. So, the list of visited states is implemented as a bit

vector, and a hash signature is computed for every generated state: If Visited is the list of visited

states, and h(s) is the signature for some symbolic state s = (l, Z), then Visited [h(s)] = 1 if s

is visited, and Visited [h(s)] = 0 otherwise.
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It may happen, though, that different states with the same signature are found by the

reachability algorithm. After a state s is recorded as visited, all other states with the same

signature, s′, s′′, . . . , will be considered visited, and will not be explored. As a consequence,

some parts of the state-space will remain unexplored when the reachability analysis is finished

(i.e., those states which can be reached only from s′, s′′, . . .). When verification is performed

with under-approximation, only the reachability of states can be guaranteed.

Another problem with under-approximation is that inclusion between zones cannot be checked,

which causes some redundant states to be explored. Bengtsson compares different implementa-

tions of under-approximation in [18].

Active Clock Reduction. A clock is said to be active from the point where it is reset, up

to the point where it is tested (i.e., in a guard or invariant), without being reset on the way.

For every location in the timed automaton, a set of active clocks can be computed based on

syntactic information. The technique, proposed by Daws and Yovine [62], is compositional and

can be applied to networks of automata.

During reachability analysis, then, generated zones need to include only constraints on ac-

tive clocks (for the current location). This may result not only in smaller zones, but also in

fewer symbolic states: Different symbolic states, sharing a common discrete part, may become

indistinguishable when clock constraints are removed from their zones.

Active clock reduction is performed automatically in Uppaal. Similar heuristics, applied to

data variables, are suggested in [22].

Other Optimisations. Hendriks and Larsen [80] propose cycle acceleration to deal with the

problem of different time scales in a system. When a timed automata specification must ac-

commodate time constraints in different time scales (e.g., where some deadlines are specified

in milliseconds, whereas others are given in minutes), all constants must be converted to the

finer scale. The constants obtained may differ wildly in magnitude, which causes unnecessary

fragmentation in the space of clock valuations (i.e., many different zones will be generated that

do not contribute to the verification of the property). In certain kind of specifications (e.g.,

those with busy-waiting behaviour), cycles responsible for this fragmentation can be identified,

and syntactically transformed to avoid it (or reduce it).

Hendriks et al. [79] present a prototype implementation of Uppaal with added symmetry

reduction. The user identifies structural symmetry in the specification, and this information

is used by the model-checker to group symbolic states into equivalence classes: Given a state

formula φ, all states in a class satisfy φ, or none does. For every successor state generated during

reachability, a representative of that state’s class is computed and stored instead. In this way,
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only representative states need to be stored and explored, with the obvious improvements in

time and memory consumption (experiments described in [79] confirm that, for systems that

present a high degree of symmetry, memory consumption decreases drastically).
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Appendix B

Simpler Reachability Formulae

(Chapter 5)

Sections 5.2 and 5.3 defined the formulae α(lp) and β(lp), so that they clearly reflect our in-

tuition behind Zeno loops, maximal valuations and escape transitions. These definitions also

facilitated the proofs. However, they contain some redundancy that can be easily eliminated.

We present a few of such reductions here.

A Simpler α(lp).1 Note that, v is a valuation that satisfies all invariants in a loop lp, if and

only if v(x) ≤ cmin(x, lp) for all clocks occurring in any invariant of lp (by definition of smallest

upper bound). In addition, if v is a maximal valuation of lp, then v(y) = 0 for all y ∈ Resets(lp).

Then, and because we assumed that invariants are either true or right-closed, the value of clocks

that are reset in lp trivially satisfy every invariant of lp. We can therefore simplify the original

expression of α(lp) and obtain the equivalent α′(lp) instead, where,

α′(lp) :
∧

z∈Clocks(lp)\Resets(lp) z ≤ cmin(z, lp)

∧
∧

g∈Guards(lp) g

∧
∧

y∈Resets(lp) y = 0

∧ sub(lp)

1The same reduction can be applied to the formula γ(lp) of Section 5.3
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Figure B.6: Example Loop of Figure 5.3(i)

For example, α′(lp) is calculated below for lp = 〈a, b, c, d〉 in Figure 5.3(i) (we recall this loop in

figure B.6).

α′(lp) : (x ≤ 1 ∧ y ≤ 2 ∧ z ≤ 2)

∧ (z > 1 ∧ y = 2)

∧ (t = 0 ∧ w = 0)

∧ ( (x = 1 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (x = 1 ∧ z = 2 ∧ w = 1 ∧ t = 0)∨

(y = 2 ∧ z = 2 ∧ y = 2 ∧ t = 0) ∨ (y = 2 ∧ z = 2 ∧ w = 1 ∧ t = 0) )

A Simpler β(lp). Consider any transition l
a,g,r
−−−→ l′ ∈ Esc(lp) where the guard g is of the form

∧p
k=1 xk ∼ ck, where xk ∈ C, ck ∈ N and ∼∈ {<,>,=,≤,≥}. Consider, in addition, a maximal

valuation v of lp and any conjunct in g, say xk ∼ ck for some 1 ≤ k ≤ n, where xk is reset in

lp. If this conjunct is of the form xk ∼
′ ck, where ∼′∈ {>,=,≥} and ck > 0, then clearly the

transition is not enabled by v (by definition of maximal valuation, v(xk) = 0) and so it does

not need to be considered in β(lp). If, on the other hand, the conjunct is of the form xk ∼
′′ ck,

where ∼′′∈ {<,≤} and ck ∈ N, it is easy to see that it is trivially satisfied by v and so it can be

replaced, in g, by true. For example, for lp = 〈a, b, c, d〉 in Figure 5.3(i),

β(lp) = ¬ (x = 1 ∧ w = 1) ∧ ¬ (x = 1 ∧ w ≤ 1)

However, transition e is not enabled by any maximal valuation of lp, because w is reset in the

loop. The conjunct w ≤ 1 in transition f is trivially satisfied by any maximal valuation of lp,

for the same reason. Therefore, we can simplify β(lp) and obtain the equivalent β′(lp), where

β′(lp) = ¬ (x = 1 ∧ false) ∧ ¬ (x = 1 ∧ true) ≡ ¬ x = 1
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Appendix C

Proofs (Chapter 7)

theorem C.1. For any interval σ and any PITL formula P the following holds:

(Moszkowski’s definition for σ |= P ∗)

|σ| = 0 or exists a sequence k0, k1, . . . , km ∈ N s.t.

k0 ≤ k1 ≤ . . . ≤ km, k0 = 0, km = |σ| and

for all 0 ≤ i < m, ki(σki+1) |= P

iff

(our definition for σ |= P ∗)

|σ| = 0 or exists a sequence r0, r1, . . . , rm ∈ N s.t.

r0 < r1 < . . . < rm, r0 = 0, rm = |σ| and

for all 0 ≤ i < m, ri(σri+1) |= P

Proof. (by induction on |σ|)

Case |σ| = 0:

In both definitions, P ∗ is trivially satisfiable by empty intervals.

Case |σ| = n+ 1, n ∈ N:

We will only prove the “sufficient” condition of the equivalence. The “necessary” condition

trivially holds, because a <-sequence is also a ≤-sequence. If σ is a non-empty interval and

indeed there exists such a ≤-sequence, then there must be an iteration of P holding over a

non-empty suffix of the model. In other words, then, there must exist j, 1 ≤ j ≤ m such that

kj−1 < kj = . . . = km = |σ| and kj−1σ |= P . Otherwise there is no way to link the first and last

state of σ with a joint sequence of models for P . Furthermore,
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exists a sequence k0, k1, . . . , kj ∈ N s.t.

k0 ≤ k1 ≤ . . . ≤ kj−1 < kj , k0 = 0, kj = |σ| and

for all 0 ≤ i < j, ki(σki+1) |= P

As kj−1 ≤ n we can use the induction hypothesis on the ≤-prefix of the previous sequence (i.e.

the points k0, . . . , kj−1), to obtain the required expression:

exists a sequence r0, r1, . . . , rj ∈ N s.t.

r0 < r1 < . . . < rj−1 < rj , r0 = 0, rj = |σ| and

for all 0 ≤ i < j, ri(σri+1) |= P

This concludes the proof of Theorem C.1.

Lemma 7.1. For any σ ∈ I, σ′ a subinterval of σ (not necessarily contiguous), 0 ≤ j′ ≤ |σ′|,

and PITL formula P , the following holds,

(σ′, j′) |= P iff (i, j, n, S,M) |=W P

where S ⊆ {0, 1, . . . , |σ|}, i, j, n ∈ S (i ≤ j ≤ n), subinterval(i, j, n, S, σ) = (σ′, j′) andM = [[ ]]σ.

Proof. We recall, from Section 7.3.2, the definition of the function subinterval(). For σ ∈ I,

S = {s0, s1, . . . , sm}, S ⊆ {0, 1, . . . , |σ|}, i, j, n ∈ S (i ≤ j ≤ n),

subinterval(i, j, n, S, σ) = (σ′, j′)

where

σ′ = σsk
σsk+1

. . . σsk+j′
. . . σsk+|σ′|

for some k ∈ N (0 ≤ k + |σ′| ≤ m), s.t. i = sk, j = sk+j′ and n = sk+|σ′|. Intuitively, σ′ is

a subinterval constructed from those states in σ represented by indices in S between i and n,

and where j points to the current state (i.e., σ′
0 = σi, σ

′
j′ = σj and σ′

|σ′| = σn). The proof of

Lemma 7.1 is by induction on the number of symbols in the formula P , |P | (we use i.h. to refer

to the inductive hypothesis).
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Case |P | = 1:

P , v:

(i, j, n, S,M) |=W v iff [def. of |=W , M = [[ ]]σ]

j ∈ [[h(v)]]σ iff [def. of [[ ]]σ]

v ∈ σj iff [σj = σ′
j′ , by def. of subinterval()]

v ∈ σ′
j′ iff [def. of |=]

(σ′, j′) |= v

P , empty:

(i, j, n, S,M) |=W empty iff [def. of |=W ,M = [[ ]]σ]

j = n iff [σj = σ′
j′ and σn = σ′

|σ′|, by def. of subinterval()]

j′ = |σ′| iff [def. of |=]

(σ′, j′) |= empty

P , false: the proof trivially follows by definition.

Case |P | > 1:

Negation (P , ¬P1):

(i, j, n, S,M) |=W ¬P1 iff [def. of |=W ,M = [[ ]]σ]

(i, j, n, S,M) 2W P1 iff [i.h. on |P1| < |P |]

(σ′, j′) 2 P1 iff [def. of |=]

(σ′, j′) |= ¬P1

Disjunction (P , P1 ∨ P2):

(i, j, n, S,M) |=W P1 ∨ P2 iff [def. of |=W ,M = [[ ]]σ]

(i, j, n, S,M) |=W P1 ∨

(i, j, n, S,M) |=W P2 iff [i.h. on |P1| < |P |, |P2| < |P |]

(σ′, j′) |= P1 ∨

(σ′, j′) |= P2 iff [def. of |=]

(σ′, j′) |= P1 ∨ P2
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Quantification (P , ∃ v. P1):

(i, j, n, S,M) |=W ∃ v. P1 iff [def. of |=W ,M = [[ ]]σ]

exists M′ s.t. M′ ≈h(v) M and

(i, j, n, S,M′) |=W P1 iff [i.h. on |P1| < |P |, |P2| < |P |]

exists σ′′ s.t. M′ = [[ ]]σ′′ , σ′′ ≈v σ
′

and (σ′′, j′) |= P1 iff [def. of |=]

(σ′, j′) |= ∃ v. P1

Next (P , ©P1):

(i, j, n, S,M) |=W
©P1 iff [def. of |=W , M = [[ ]]σ]

j < n and exists k ∈ N s.t.

cons(S, j, k) and (i, k, n, S, [[ ]]σ) |=W P1 iff [i.h. on |P1| < |P |,

σ′
j′ = σj and σ′

j′+1 = σk,

by def. of subinterval()]

j′ < |σ′| and (σ′, j′ + 1) |=W P1 iff [def. of |=]

(σ′, j′) |= ©P1

Chop (P , P1 ; P2):

(i, j, n, S,M) |=W P1 ; P2 iff [def. of |=W ,M = [[ ]]σ]

exists k ∈ S, j ≤ k ≤ n s.t.

(i, j, k, S,M) |=W P1 and

(i, k, n, S,M) |=W P2 iff [i.h. on |P1| < |P |, |P2| < |P |,

σ′
j′ = σj , σ

′
|σ′| = σn and σ′

k′ = σk,

by def. of subinterval()]

exists k′, 0 ≤ k′ ≤ |σ′| s.t.

(σ′k′ , j′) |= P1 and (σ′, k′) |= P2 iff [def. of |=]

(σ′, j′) |= P1 ; P2
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Chop-star (P , P ∗
1 ):

(i, j, n, S,M) |=W P ∗
1 iff [def. of |=W , M = [[ ]]σ]

j = n or exists k0, k1, . . . , km ∈ S s.t.

k0 < k1 < . . . < km, k0 = j, km = n, and

for all r, 0 ≤ r < m, (i, kr, kr+1, S,M) |=W P1 iff [i.h. on |P1| < |P |]

σ′
j′ = σj , σ

′
|σ′| = σn and σ′

k′r
= σkr

,

by def. of subinterval()]

j′ = |σ′| or exists k′0, k
′
1, . . . , k

′
m ∈ N s.t.

k′0 < k′1 < . . . < k′m, k′0 = j′, k′m = |σ′|, and

for all r, 0 ≤ r < m, (σ′k′r+1 , k′r) |=W P1 iff [def. of |=]

(σ′, j′) |= P ∗
1

Until (P , P1 until P2):

(i, j, n, S,M) |=W P1 until P2 iff [def. of |=W ,M = [[ ]]σ]

exists k ∈ S, j ≤ k ≤ n s.t. (i, k, n, S,M) |=W P2 and

for all r ∈ S, j ≤ r < k, (i, r, n, S,M) |=W P1 iff [i.h. on |P1| < |P |, |P2| < |P |]

σ′
j′ = σj , σ

′
|σ′| = σn,

σ′
k′ = σk and σ′

r′ = σr,

by def. of subinterval()]

exists k′, j′ ≤ k′ ≤ |σ′| s.t. (σ′, k′) |= P2 and

for all r′, j′ ≤ r′ < k′, (σ′, r′) |=W P1 iff [def. of |=]

(σ′, j′) |= P1 until P2
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Projection (P , P1 proj P2):

(i, j, n, S,M) |=W P1 proj P2 iff [def. of |=W ,M = [[ ]]σ]

j = n or exists S′ ⊆ S s.t.

S′ = {i, . . . , k0, k1, . . . , km} and

for all t, i ≤ t ≤ k0, t ∈ S ⇔ t ∈ S′ and

k0 < k1 < . . . < km, k0 = j, km = n, and

for all r, 0 ≤ r < m,

(i, kr, kr+1, S,M) |=W P1 and

(i, j, n, S′,M) |=W P2 iff [i.h. on |P1| < |P |, |P2| < |P |]

σ′
j′ = σj , σ

′
|σ′| = σn and σ′

k′r
= σkr

,

by def. of subinterval()]

j′ = |σ′| or exists k′0, k
′
1, . . . , k

′
m ∈ N s.t.

k′0 < k′1 < . . . < k′m, k′0 = j′, k′m = |σ′|, and

for all r, 0 ≤ r < m,

(σ′k′r+1 , k′r) |= P1 and

(σ′
0 . . . σ

′
k′
0

σ′
k′
1

. . . σ′
k′m
, k′0) |= P2 iff [def. of |=]

(σ′, j′) |= P1 proj P2

Chop in the past (P , P1
∼
; P2):

(i, j, n, S,M) |=W P1
∼
; P2 iff [def. of |=W ,M = [[ ]]σ]

exists k ∈ S, i ≤ k ≤ j s.t.

(i, k, n, S,M) |=W P1 and

(k, j, n, S,M) |=W P2 iff [i.h. on |P1| < |P |, |P2| < |P |]

σ′
0 = σi, σ

′
j′ = σj ,

σ′
|σ′| = σn and σ′

k′ = σk,

by def. of subinterval()]

exists k′, 0 ≤ k′ ≤ j′ s.t.

(σ′, k′) |= P1 and

(k
′

σ′, j′ − k′) |= P2 iff [def. of |=]

(σ′, j′) |= P1
∼
; P2
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Since (P , P1 since P2):

(i, j, n, S,M) |=W P1 since P2 iff [def. of |=W , M = [[ ]]σ]

exists k ∈ S, i ≤ k ≤ j s.t.

(i, k, n, S,M) |=W P2 and

for all r ∈ S, k < r ≤ j,

(i, r, n, S,M) |=W P1 iff [i.h. on |P1| < |P |, |P2| < |P |]

σ′
0 = σi, σ

′
j′ = σj ,

σ′
|σ′| = σn and σ′

k′ = σk,

by def. of subinterval()]

exists k′, 0 ≤ k′ ≤ j′ s.t.

(σ′, k′) |= P2 and

for all r′, k′ < r′ ≤ j′,

(σ′, r′) |= P1 iff [def. of |=]

(σ′, j′) |= P1 since P2

Previous (P , ©- P1):

〈i, j, n, S,M〉 |=W
©- P1 iff [def. of |=W ,M = [[ ]]σ]

i < j and exists k ∈ S s.t.

cons(S, k, j) and (i, k, n, S,M) |=W P1 iff [i.h. on |P1| < |P |]

σ′
j′ = σj and σ′

j′−1 = σk,

by def. of subinterval()]

j′ > 0 and (σ′, j′ − 1) |= P1 iff [def. of |=]

(σ′, j′) |= ©- P1

This concludes the proof of Lemma 7.1.
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efficiently. Formal Methods in System Design, 26(3):267–292, 2005.

[160] T. Tsoronis. Formal specification and verification of real time systems with the timed au-

tomata based tools Kronos and Uppaal. Master’s thesis, Computing Laboratory, Univer-

sity of Kent, Canterbury, Kent, UK, September 2001. (Available from Howard Bowman).

222



[161] M.Y. Vardi. Branching vs linear time: Final showdown. In T. Margaria and W. Yi, editors,

TACAS’2001, Tools and Algorithms for the Construction and Analysis of Systems, held

as part of ETAPS’01, LNCS 2031. Springer-Verlag, 2001. invited talk.

[162] C.A. Vissers, G. Scollo, and M. van Sinderen. Architecture and specification styles in for-

mal descriptions of distributed systems. In Protocol Specification, Testing and Verification,

VIII, pages 189–204. North-Holland, 1988.

[163] J. von Wright and T. Langbacka. Using a theorem prover for reasoning about concurrent

algorithms. In Computer-Aided Verification (CAV’92), volume 663 of LNCS, pages 56–68.

Springer-Verlag, 1993.

[164] F. Wang. Efficient verification of timed automata with BDD-like data structures. Inter-

national Journal on Software Tools for Technology Transfer (STTT), 6(1):77–97, 2004.

[165] F. Wang. Model-checking distributed real-time systems with states, events, and multiple

fairness assumptions. In Proceedings of the 10th International Conference on Algebraic

Methodology and Software Technology, AMAST 2004, volume 3116 of LNCS, pages 553–

568. Springer, 2004.

[166] P. Wolper. Temporal logic can be more expressive. Information and Computation,

56(1/2):72–99, 1983.

[167] P. Manolios Y. Yu and L. Lamport. Model checking TLA+ specifications. In CHARME,

volume 1703 of LNCS, pages 54–66. Springer, 1999.

[168] W. Yi. CCS + time = an interleaving model for real-time systems. In Automata, Languages

and Programming 18, LNCS 510, pages 217–228. Springer-Verlag, 1991.

[169] S. Yovine. Kronos: A verification tool for real-time systems. International Journal of

Software Tools for Technology Transfer, 1(1-2):123–133, 1997.

[170] S. Yovine. Model checking timed automata. In Lectures on Embedded Systems, European

Educational Forum, School on Embedded Systems, pages 114–152, London, UK, 1998.

Springer-Verlag.

[171] C. Zhou and M. Hansen. Duration Calculus: A Formal Approach to Real-Time Systems.

EATCS Series of Monographs in Theoretical Computer Science. Springer, 2004.

[172] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information Processing

Letters, 40(5):269–276, 1991.

223


