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Abstract. The Cell Broadband Engine is a hybrid processor which consists of a Pow-
erPC core and eight vector co-processors on a single die. Its unique design poses a
number of language design and implementation challenges. To begin exploring these
challenges, we have ported the Transterpreter to the Cell Broadband Engine. The
Transterpreter is a small, portable runtime for concurrent languages and can be used
as a platform for experimenting with language concepts. This paper describes a pre-
liminary attempt at porting the Transterpreter runtime to the Cell Broadband Engine
and explores ways to program it using a concurrent language.
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Introduction

Multi-core processors are becoming commonplace in desktop computers, laptops and games
consoles [Rat05,BDK+05,KAO05]. Traditionally programming such concurrent systems has
been considered difficult [Lee06,Boe05]. We believe that creating and designing software that
makes use of concurrency provided by hardware can be easy, given a language and runtime
that provide support for concurrency. With a compiler that can check for certain errors in
concurrent code, and a runtime that gracefully reports error conditions surrounding program
deadlock, developing such software can become simpler.

The Sony PlayStation III [Son06], a consumer games console which will be released at
the end of 2006, is an example of a readily available and affordable multi-core system. At its
heart, the PlayStation III will be powered by the Cell Broadband Engine [ea05b], commonly
referred to as the Cell processor. The Cell, as seen in Figure 1, has a complicated architecture
consisting of a PowerPC (PPC) core surrounded by eight vector processors, called Synergistic
Processing Units [ea05a] (SPUs). These nine processors are connected by a high-speed bus
that provides fast inter-processor communication and access to system memory.

The Transterpreter [JJ04,JJ05] is a small and highly portable runtime for concurrent lan-
guage research and is used as the platform for the implementation described. The Cell edi-
tion of the Transterpreter aims to address architectural issues that need to be overcome for
the runtime to function in a useful manner. occam-π, a language supported on the Transter-
preter, has built in semantics for concurrency, and provides a compiler which supports the
programmer in developing safe concurrent software [BW04]. occam-π provides language
level facilities for safe interprocess communication and synchronisation, and is derived from
a formal model of concurrency that can be used to reason about programs [Hoa85,MPW92].

The long-term goals of this project are to address the difficulties of programming the
Cell processor and other concurrent systems which require a more involved design, such as
a pipeline of processes or mulitple instruction multiple data (MIMD) type problems, and
cannot be effectivley parallelised through the use of preprocessor directives and loop level
concurrency. This paper describes the implementation of a prototype concurrent runtime for
the Cell processor, a first attempt at reaching our goals.
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We begin this paper with an overview of the Cell processor’s architecture, and the steps
taken to port the Transterpreter to the Cell. We then present an overview of what programming
the Cell using occam-π could involve, and close with a discussion of future work.

1. An Overview of the Cell Broadband Engine

The Cell Broadband Engine consists of a PowerPC core that is connected to eight vector pro-
cessing units which are connected via a high speed bus. This architecture provides a number
of challenges for language designers and programmers. While it was not possible to purchase
a Cell processor at this time of writing, a cycle accurate simulator for the Cell was avail-
able [sys06]. The simulator, available for Linux, lets programmers begin developing software
for the Cell Broadband Engine. What follows presents background information on the Cell
architecture which should help clarify some of the implementation details given later. This
section closes with an overview of the challenges that this architecture presents and discusses
IBM’s attempt at addressing them.

1.1. PowerPC Core (PPC)

The PowerPC core was designed to be binary compatible with existing PowerPC based pro-
cessors, allowing the execution of pre-existing binaries on the Cell’s PPC core without mod-
ification. The core has built-in hardware support for simultaneous multithreading, allowing
two threads to execute in parallel on the processor. An AltiVec [DDHS00] Single-Instruction-
Multiple-Data (SIMD) vector-processing unit is also present.

SPU8 SPU7 SPU6 SPU5

SPU1 SPU2 SPU3 SPU4

Element Interconnect Bus (EIB)

PPU System
Memory

Figure 1. A diagram of the Cell BE.

1.2. Synergistic Processing Units (SPU)

The SPU processors are dedicated vector processing units. Each SPU is equipped with a
256KB local store for program and data, and each unit has a dedicated memory controller
attached to it. The memory controller, and hence memory access, is programmed explicitly
from the SPU to manage data flow between system memory and its local store. The memory
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controllers are able to move chunks of data up to 16KB in size to and from the SPU units’
local stores without interrupting computation.

The memory controllers also coordinate most of the inter-processor synchronisation.
Synchronisation and communication are achieved by reading from and writing to special-
purpose memory-mapped registers designated for this task. Each SPU is equipped with a
set of three 32-bit mailboxes (registers) for communication/synchronisation with the PPC.
Two are outbound, blocking mailboxes, one of which interrupts the PPC when a message is
sent. The third, inbound mailbox, is for receiving messages from the PPC. Each SPU is also
equipped with two inbound 32-bit registers, called SigNotify1 and SigNotify2, which any
SPU or PPC can write to, with either overwriting or blocking behaviours.

1.3. The Cell’s Element Interconnect Bus

A key component of the Cell Processor is the high-speed Element Interconnect Bus (EIB)
through which all of the processing units and main memory are connected. The EIB is an
on-chip bus which allows all the processing units to communicate with each other directly,
without requiring access to main memory. A diagram of the Cell processor and how the Cell
interconnects all of the elements can be seen in Figure 1 on the facing page.

1.4. The Cell’s Challenges

The Cell processor contains two different processor types, and nine independent processor
segments. This means that programs wishing to exploit all processors have to be effectively
written as two or more separate programs, one of which is compiled for and executes on the
PPC, and another which is compiled for and executes on the SPU. These separate programs
have to be able to synchronise and share data. This and the need to manage the SPU memories
explicitly make programming for the Cell considerably more difficult than programming for
traditional processors.

IBM, being aware of these difficulties has chosen to address them by developing an auto-
parallelising compiler [ea06] for the Cell processor. It attempts to address these issues by
relying on the concurrency inherent in loops, and by using preprocessor directives [DM98]
that instruct the compiler about transformations that are safe in order to create parallel code.
Such auto-parallelisation provides a fast mechanism for making use of the additional proces-
sor power available on a concurrent system without the need for rewriting existing code. Un-
fortunately not all code can be modified or annotated easily to gain performance advantages
from auto-parallelising compilers. An alternative method to automatic parallelisation could
provide the ability to make use of the Cell without requiring expert programming.

2. The Transterpreter on the Cell Broadband Engine

The Transterpreter is a highly portable interpreter for concurrent languages. It provides a
means for running a concurrent language on a new platform in a short amount of time, cir-
cumventing the need to write a new compiler backend for a given language. With the port of
the Transterpreter to the Cell, we hope to explore how we can use occam-π, a language de-
signed with concurrency in mind, in the context of the Cell processor and gain understanding
of what would be required in order to port the language to the Cell processor.

The core of the Transterpreter is portable across platforms because it has no external
dependencies, and it builds using any ANSI compliant C compiler. For the Transterpreter
runtime to be useful on a given architecture, a platform specific wrapper needs to be written
which provides an interface to the underlying hardware. In the case of the Cell two separate
wrappers where needed, one for the PPC core, and one for the SPUs.
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Porting the Transterpreter to the Cell required careful thought regarding occam-π chan-
nels and scheduling. One of the things that had to be taken into account when writing the
wrappers was the mapping of occam-π channels to the Cell’s communication hardware.
This was difficult because the underlying hardware does not map directly to the semantics of
CSP/occam-π channels. Furthermore, the Transterpreter’s scheduler needed to be extended
to support the handling of interrupts generated by the Cell.

2.1. Program Distribution

The Transterpreter for the Cell consists of a PPC executable which is programmed to load
and start SPU Transterpreter executables. Once the PPC and the SPUs are all running, the
program bytecode designated for execution is loaded into main memory. A pointer to the
program bytecode is passed to all the SPUs which then copy the program bytecode into
their local stores from system memory. Once the copy is complete all the Transterpreters
begin executing the bytecode. Currently all Transterpreter instances receive the same copy
of the bytecode. In order for program flow to differ on processors, a program must query the
Transterpreter about it’s location in order to determine what to do. A program’s location can
be determined by the unique CPU ID, a number from 0 to 9, that each Transterpreter instance
gets assigned at startup.

2.2. Inter-Processor Communication

occam-π channels are unidirectional, blocking, and point-to-point. The individual SPUs of
a Cell processor are not so limited in their communications; therefore, both the compiler and
the wrappers must provide support for making our mapping from occam-π to the Cell hard-
ware consistent and safe. The blocking nature of channel communications provides explicit
synchronisation points in a program. While the compiler provides checks for correct direc-
tional usage of channels when compiling, the Transterpreter wrappers must ensure such that
that channel communications between processors are blocking and unbuffered.

2.2.1. SPU to PPC Communication

The SPU-to-PPC mailbox registers are word-sized (32-bit), unidirectional non-overwriting
buffers. When empty, a mailbox can be written to, and execution can continue without waiting
for the mailbox to be read. When a mailbox is read, it is emptied automatically. When a
mailbox is full, the writing process will stall until the previous message has been read. The
SPU can receive interrupts when one of its mailboxes is read from, or written to.

The mailbox registers are used to implement channel communications in occam-π be-
tween the PPC and the SPU. In order to preserve the channel semantics of occam-π, a writ-
ing process is taken off the run queue and set to wait for the “mailbox outbound read” in-
terrupt to occur. The communication only completes when the mailbox is read by the PPC.
The SPU is able to quickly pass multi-word messages by continuously writing to the mailbox
while the PPC continuously reads. The PPC does not receive interrupts when its outbound
message is read and must poll the mailbox to check if it has been read.

2.2.2. Inter-SPU Communication

For SPU-to-SPU communications, two inbound registers SigNotify1 and SigNotify2, are
provided on each SPU. The registers are programatically configured by the Transterpreter
to be non-overwriting and, like the mailbox registers, can only be cleared by a read. The
Transterpreter provides facilities for sending both large messages and short, word-size mes-
sages between SPUs.

On Transterpreter startup, space is reserved in main memory for the sending of large
messages. Eight 16KB chunks of memory are allocated for each SPU to receive data in.
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Each SPU then receives a list of pointers to the memory locations that they can write to. For
example, SPU 2 will receive pointers to the second 16KB chunk of memory of each SPU’s
receiving memory. This ensures that when two SPUs are sending data to a third SPU, no
portion of memory is overwritten accidentally.

When a write to another SPU is initiated, the data to be sent is copied into the appropriate
16KB chunk of memory. Once the copy completes, the writer SPU puts its CPU ID into
SigNotify1 on the destination SPU. The writer process is then moved to the interrupt queue
in the scheduler and waits for confirmation of the read.

Once SigNotify1 has been written to on the reader SPU, an interrupt is generated on the
it, informing the SPU about the write. If a process is waiting on the interrupt queue awaiting
data, it copies the message in main memory into its local store, using the ‘read-only’ pointer
that it was provided with at startup. Once the copy is completed the reader SPU acknowledges
completion of the read by putting a flag value into SigNotify1 on the writer SPU to confirm
that the read has been completed. At this point the reading SPU process can be taken off the
interrupt queue and can continue execution. The writer SPU process which had been waiting
on the interrupt queue checks that it has received a read confirmation from the reader SPU,
and can continue executing once it is rescheduled.

Alternatively, for short messages, or synchronisation it is possible to send word-sized
messages between SPUs. This capability is useful since it allows for communication and
synchronisation without taxing the memory bus. In this case the SigNotify2 register is used
for sending data and SigNotify1 for the sender’s CPU ID. In order to determine the length
and type of message being sent, the program must be written such that each SPU may only
send one message at a time to another SPU. Furthermore, the reader and the writer have to
agree on the size of the message at compile-time. These factors determine if a memory copy
or the SigNotify2 register is used for sending data.

2.3. Scheduling

The Transterpreter uses a co-operative scheduler with three queues: the run queue, the timer
queue and the interrupt queue. Process rescheduling only occurs at well defined points during
execution. This implies that the interrupt queue is only checked when the scheduler is active.
If interrupts are ready, processes waiting on them are moved from the interrupt queue to the
back of the run queue.

This behaviour strongly encourages programmers to make use of occam-π’s concur-
rency features so as not have a processor stalling whenever a process needs to wait on an in-
terrupt. occam-π processes have a very low overhead in terms of memory usage and context
switching. This allows a programmer to develop programs with many concurrent processes
executing that will make use of the processor while some processes are waiting on external
communication to complete.

Should a programmer wish to write programs using a more sequential paradigm, buffer
processes could be used to handle communications. Figure 2 illustrates how a writing buffer
process can be used when communicating with another processor. This way, only the buffer
process stalls while waiting for communication to complete, allowing other processes to con-
tinue executing. Similarly, a dedicated reading buffer process can ensure that data is read in
as soon as it is available reducing potential stalls in the network and keeping all the proces-
sors busy. This can be made particularly effective by running the buffer processes at higher
priority than other processes.
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Figure 2. The read and write buffers allow computation to continue with less interruption.

3. Programming the Cell Using the Transterpreter

The Transterpreters that are executing on the SPUs are each assigned a unique CPU ID. A
native function call mechanism in occam-π allows the programmer to call C functions that
are a part of the Transterpreter. Using the native call TVM.get.cpu.id, the program can
determine on which processor it is executing. A CPU ID value of 0 is returned if the bytecode
is running on the PPC, and a value between 1 and 8 if it is on one of the SPUs. An example
of how an occam-π startup process on the Cell could be written is shown in Listing 1.

PROC startup(CHAN BYTE kyb, err, src)
INT id:
SEQ

TVM.get.cpu.id(id) −−check where we are running
IF

id = 0
... −− execute PPC code.

id > 0
... −− execute SPU code.

:

Listing 1. An example of a startup process on the Cell Transterpreter.

In order to send and receive messages between processors, the native functions
TVM.read.mbox and TVM.write.mbox are provided. These native functions behave similarly
to occam-π channels in that they block until the communication has completed. An example
of their use is shown below in a program where nine Transterpreters are running concurrently
and are connected in a ring. All the processes in the pipeline do is increment a value as it
propagates through. The result of the incrementing is printed each time it comes back to the
process that originated the value.

The process run.on.spu in Listing 2 reads values from the previous processor in the
pipeline. The value is then incremented and sent on to the next processor. Because of the “\”
- the modulo operator, when the process is running on the processor with CPU ID 8, it sends
the value back to the PPC who’s CPU ID is 0.

VAL INT stop IS 95:
PROC run.on.spu(VAL INT cpuid)

INITIAL INT value IS 0:
INT status:
WHILE value < stop

SEQ
TVM.read.mbox((cpuid − 1), value, status)
value := value + 1
TVM.write.mbox((cpuid + 1) \ 8, value)

:

Listing 2. A process running on an SPU.
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The process run.on.ppu in Listing 3 is executed only on the PPC core. The process
header denotes that a CHAN BYTE must be passed to it as a parameter. This is a channel of type
BYTE, the equivalent of a char in C. In this program it is connected to the screen channel that
is used as a method of output. The “!” is used to denote a write to a channel, where the RHS
contains the value to be written, and the LHS the name of the channel to write to. It starts
propagating a value down the pipeline by writing to the first SPU. It waits for the value to
complete going through the pipeline and it outputs the modified value, followed by a return
character by writing to the scr channel.

PROC run.on.ppc(CHAN BYTE scr!)
INITIAL INT value IS 65:
INT status:
WHILE value < stop

SEQ
TVM.write.mbox(1, value)
TVM.read.mbox(8, value, status)
scr ! (BYTE value)
scr ! ’∗n’

:

Listing 3. The process which runs on the PPC and outputs data to the screen.

Listing 4 shows the startup process, startup. This gets the CPU ID using the
TVM.get.cpu.id function and runs the appropriate process depending on the value of cpuid.
In this process, the kyb, scr and err channels are obtained ‘magically’ by the starting
process much like command line parameters are obtained in C’s main function. When the
run.on.ppu process is started, the scr channel is passed to it as a parameter so that it can
output to the screen. The run.on.spu process receives the CPU ID as a parameter.

PROC startup(CHAN BYTE kyb?, scr!, err!)
INT cpuid:
SEQ

TVM.get.cpu.id(cpuid)
IF

cpuid = 0
run.on.ppu(scr!)

cpuid > 0
run.on.spu(cpuid)

:

Listing 4. The startup process which starts the correct process depending where the code is running.

In future, a library can be created which will wrap around the native TVM calls to pro-
vide a channel interface for communicating between processes. This is desirable because it
reflects the more common occam-π programming methodology, where processes communi-
cate through channels to achieve synchronisation and send data.

4. Future Work

In the simplest case there are obvious improvements that can be made to the Transterpreter
for running occam-π programs on the Cell. The most obvious are infrastructure modifica-
tions that will allow for using the channel abstraction for communication between proces-
sors. Further improvements could leverage the vector processing capabilities of the Cell BE
architecture more effectively. Finally, we would like to explore code generation possibilities
using the Transterpreter.
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4.1. Infrastructure

The current implementation of the Transterpreter on the Cell does not provide a means for
channel communications to occur between processors. Currently, sending data using the
TVM.write.mbox in parallel would result in unpredictable behaviour. Direct support for chan-
nel communications would allow compile-time checking which could ensure a degree of
safety.

Furthermore a method for abstracting the channel connections between processors, akin
to pony’s [SBW03] virtual channels would allowing for multiple channels to exist between
processors. This would enable a much more flexible mode of programming by multiplexing
channels automatically.

4.2. Vector processing

While C does not have good concurrency primitives, some implementations have extended
the language to include vector processing functionality. A C-based vector processing library
could be embedded in the SPU wrappers for the Transterpreter, and an interface to it could
be created using the occam-π extension for SWIG [DJ05], a foreign-function interface gen-
erator.

The occam-π language could also be extended to support vector primitives using the
languages’ support for operator overloading [DJ99]. To support vector primitives at a byte-
code level, a compiler that provided a means for easily adding new syntax would be needed.
The Transterpreter bytecode would need to be extended and the runtime modified accordingly
to allow the updated bytecode to function.

4.3. Code Generation

While being able to run occam-π and the Transterpreter on a platform like the Cell is inter-
esting [occ06], it is impractical. Even though the runtime has a small memory footprint in
comparison with other virtual machines, the limited amount of local store available on the
SPUs becomes even smaller when it needs to be shared by bytecode and the Transterpreter.
Additionally, the current implementation of the Transterpreter replicates the same bytecode to
each processor, meaning that unused code is being carried around, wasting further resources.

Furthermore, the overhead of running a bytecode interpreter is particularly large since
the SPU is only capable of 128-bit-sized loads and stores, and a penalty is paid on all scalar
operations due to the masking and unmasking necessary for processing 32-bit values.

Because of the high memory consumption, and the overhead caused by bytecode inter-
pretation, occam-π and the Transterpreter become unattractive to developers who need the
specialised processing power that the Cell offers. In order to address these issues, we have
begun exploring the idea of generating native code from occam-π [JDC06] using parts of the
Transterpreter runtime and gcc [GCC06]. Such a solution will allow us to combine the speed
associated with C, and the safe concurrency that occam-π have to offer.

A manner of either automatically inferring, or specifying through annotation, which
parts of the code are required on which processor would allow for dead code elimination and
hence, smaller binaries on the SPUs.

The current implementation of the Transterpreter for the Cell provides a basis for code
generation for the Cell. It has shown that a language like occam-π is usable on a platform
such as the Cell. The lessons learned, and parts of the code written, during the implementation
of the Cell Transterpreter can be reused in the generation of C from occam-π for the Cell.
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5. Conclusions

Our long term goals aim to address the difficulties of programming the Cell processor and
other concurrent systems which cannot be parallelised through the use of preprocessor di-
rectives and loop level concurrency. We want to establish what a modern, highly concurrent
language must provide to be an effective tool for solving modern day computational prob-
lems. Using the Transterpreter and occam-π as our starting point, we plan to extend the lan-
guage to provide direct support for modern hardware. The prototype implementation of the
Transterpreter for the Cell has shown that it is possible to use this type of a runtime on an
architecture like the Cell and it is a first step in achieving our future goals.
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