
Concurrency: The Next Generation

Damian Dimmich, Christian Jacobsen and Matthew Jadud
Computing Laboratory

University of Kent
Canterbury, CT2 7NZ

{djd20,clj3,mcj4}@kent.ac.uk

1. INTRODUCTION
Concurrency is needed everywhere. In emerging platforms such

as wireless sensor networks, where a large number of tiny physi-
cally separate computational devices must be able to act as a coher-
ent unit. In the multi-core processors, which are being introduced
in consumer devices[26, 1, 24] in response to the ever growing de-
mand for performance, due to the physical limitations of current
processor architectures[13, 27, 25, 29]. In high-performance scien-
tific computing, where concurrency already plays a large role, and
in teaching, to ensure that future software engineers have the skills
required to use these new technologies. The need for safe and ro-
bust concurrency in all these areas is fundamental.

The Transterpreter[20] is a small portable runtime for occam-
pi [35], which runs on a wide range of devices, from small sensor
nodes to high-performance clusters, diminishing the boundaries be-
tween small and large platforms. occam-pi provides a consistent
set of rich, robust and mathematically backed concurrency primi-
tives which scale well, not only with program complexity, but also
with device size. As concurrent systems become commonplace,
the need for languages supporting these notions of concurrency is
growing rapidly.

2. BACKGROUND
Multi-core processors have finally started permeating desktop

computing, and concurrency must follow suit. Many of today’s ap-
plications are not written to take advantage of the increased pro-
cessing power provided by multiple processors, having previously
relied on the fast paced increase in processor clock frequency. It
is important that new applications are written with concurrency in
mind, as it will be the number of processors, as opposed to clock
frequency, which is going to multiply in the future[10, 7].

Many languages are not well suited for taking advantage of con-
currency, including C and C++, where concurrency is implemented
as a low level library. These libraries require developers to invest a
large amount of energy to manually ensure the correctness of their
code. While this leaves great scope for error, the possibility of more
subtle interactions between the compiler and threaded code as de-
scribed in [6], are perhaps of greater concern. Even modern lan-
guages such as Java, where concurrency has been engineered in, do
not necessary offer great deal of assistance to the developer. The
provided primitives may work at a level that is too low for practi-
cal use, may not scale with complexity, and may in fact provide a
broken implementation[37, 16].

High-performance computing is experiencing a shift towards the
development of application components which are not performance
critical, such as the overall control logic, using high level languages.
Instead of developing an entire application in relatively low level
languages such as C or Fortran, a scripting language such as Python

is used, gluing new or existing high-performance code into an ap-
plication. This can significantly improve development time, while
still allowing the application to leverage highly optimised native
code[4, 5]. Making such a shift does not necessarily have adverse
affects on performance. The use of Java and Common Language
Infrastructure (CLI/.NET) hosted languages is being actively ex-
plored within the high-performance community[34, 31].

Concurrency is not only an important concept in the context
of performance, but can also be used effectively as a program-
ming model, providing a compositional and modular abstraction,
as is the case with CSP[18]. These properties can make concurrent
languages accessible to applications where concurrency is a nat-
ural part of the problem specification. Wireless sensor networks,
robotics and many other areas, such as operating systems, fall into
this category[22, 21, 3].

The introduction of concurrency into languages with referential
transparency is a well explored area. It can be relatively easy to au-
tomatically parallelise such languages by, exploiting the implicitly
available concurrency. In practice, annotations, compile and run-
time measures must be used to ensure reasonable performance, and
to constrain the granularity of computation. Several concurrent im-
plementations of popular languages such as Haskell and Prolog ex-
ist[23, 17, 15]. Erlang, which has firm roots in functional program-
ming, but specifically targets distributed applications, is an exam-
ple of a language designed with concurrency as primary motivator.
New languages such as Fortress[2] also use the notion of side effect
free computations to enable concurrent execution.

In order for concurrency to be safe, scalable and efficient the the
language, compiler and runtime must be able to assist the program-
mer in detecting and avoiding dangerous concurrency practices, as
noted by Tony Hoare in [19]. Therefore, concurrency should be ma-
jor design consideration at all stages of a languages development,
and would do well to have a sound formal and mathematical foun-
dation. The language and runtime should be small and portable,
to facilitate scaling across a wide range of devices, and the imple-
mentation needs to be able to efficiently support the levels of con-
currency offered by the language. In order to meet these demands
we have developed the Transterpreter virtual machine, an execution
environment for the occam-pi language.

3. THE TRANSTERPRETER
The Transterpreter is a small and portable runtime for occam-

pi, an explicitly concurrent programming language with roots in
CSP[18] and the Pi-Calculus[28]. The occam-pi language and its
tools, strive to provide the developer with a practical environment
for the development of concurrent programs, in the spirit of Tony
Hoare’s statements in [19]. Rich synchronisation primitives and
parallel abstraction provides support for extremely fine grained con-



currency, enabling an occam-pi program to have tens of thousands
of interacting processes running concurrently on a single machine.
This machine may well be part of a larger distributed occam-pi
program[30].

To support such large scale concurrency, runtimes for occam-pi
must be able to juggle a large number of processes with an ex-
tremely low overhead. Operating system processes and threads can
not be used directly, as they are generally used to manage in the or-
der of tens of processes, and therefore have overheads which are too
high to support the desired levels of concurrency. A fast runtime,
written explicitly to provide low overhead scheduling and synchro-
nisation for occam-pi processes, is used instead.

Traditionally occam-pi has been compiled directly into native
code, through platform specific assembly, and linked together with
a runtime, using the KRoC toolchain[36]. The runtime has either
been written entirely in assembly for a specific platform, or us-
ing C, with platform dependent portions to enable fast execution.
The Transterpreter parts with this tradition, and instead uses only
portable ANSI C for its implementation[20].

The Transterpreter is a bytecode interpreter, and therefore sacri-
fices some performance in return for portability. Furthermore, the
Transterpreter has not been prematurely optimised, its initial focus
instead being correctness and viability as a platform for future re-
search. Even when considering these constraints, the performance
of the Transterpreter is acceptable for a broad range of applications.

One particular measure of performance of an occam-pi runtime
is the time it takes to switch from one process to another, the con-
text switch time, an important measure when running millions of
processes. Benchmarks run on an unloaded P4 3.2GHz system has
shown that the Transterpreter has a context switch time of approx-
imately 430 nanoseconds. This is factor of 30 away from the con-
text switch time provided by a natively compiled KRoC program,
which can perform a switch in approximately 14 nanoseconds.

Both literature on interpretation[12], and initial JIT experiments
suggest that the Transterpreter can improve its performance to a
state where it is approximately a factor of 2 – 10 away from that
provided by native code. Further experiments, in which the Transter-
preter scheduler has been used as a runtime for natively compiled
occam-pi code, has shown that context switch times of approxi-
mately 8 nanoseconds are possible. The native code compilation
is performed through translation of bytecode to C, and subsequent
compilation by the GCC compiler, using no platform specific code.

4. THE NEXT GENERATION
The Transterpreter has become a mature runtime for the occam-

pi programming language. It is more than this however, it is a vi-
able platform, enabling future research and educational activities
surrounding concurrency.

The Transterpreter has already found use in teaching[21]. It has
been used on the LEGO Mindstorms robotics kit in the extra curric-
ular Cool Stuff in Computer Science course, to introduce concur-
rency to audiences with little prior programming experience. The
use of robotics and concurrency in a teaching environment have
been employed in the Concurrency Design and Practice course at
the University of Kent, and the Extreme Multiprogramming course
at the University of Copenhagen. Both have used the RoboDeb
VMWare Player virtual machine[38], which provides a complete
Linux environment, preconfigured for writing occam-pi programs
using the Player/Stage library and robotics simulator[14].

A large amount of educational material was produced to sup-
port these courses. This material has been made generally available,
but in order to further the Transterpreter’s potential role in educa-
tion, the provision of additional self-supporting teaching materials

is planned. Efforts are also underway to improve the current sup-
port for the LEGO Mindstorms, and to provide support for the soon
to be released LEGO Mindstorms NXT.

The Transterpreter is currently in active use in several research
areas. In the area of wireless sensor networks, it is used to ex-
plore novel approaches to providing concurrency on small, inter-
connected computational devices, which currently seem to only
offer impoverished concurrency support[22]. Originally motivated
by the educational aspects, the use of occam-pi in robotics con-
trol is being examined in terms of Brooks subsumption architec-
ture[8]. The use of the Transterpreter as a sandboxed environment
on the Minimum Intrusion Grid[33] is being actively evaluated,
along with check-pointing support and its use in fault tolerance.
This research has provided the inspiration for the Scientific Byte-
code project, which aims to provide a virtual execution environ-
ment for high-performance computing. This environment will pro-
vide explicit support for accessing high-performance, native library
procedures, while allowing control and distribution logic to be writ-
ten using higher level abstractions.

Concurrent languages, such as occam-pi, must be able to take
advantage of the increasing levels of parallelism found in computer
architectures. SMP support is currently being added to the Transter-
preter, building on existing research in this area[32]. Research into
the use of occam-pi on emerging heterogeneous processor such as
the Cell Broadband EngineTM[11] is also being undertaken. Such
architectures may benefit from programming models which are uni-
fied across the entire device. This research may also apply to more
conventional heterogeneous systems, such as the common combi-
nation of general purpose desktop CPUs with high-performance
specialised graphics GPUs. It may even be possible to leverage this
research in high-performance computing, where mixed FPGA/CPU
systems are being introduced[9]. Of particular research interest is
the topic of code and data distribution across these computational
spaces.

Various strategies are being investigated to improve the perfor-
mance of the virtual machine such as portable native code genera-
tion for specialised processors such as the Cell Broadband EngineTM.
Just In Time compilation, native code compilation through C and
GCC, and direct GCC backending are being evaluated. The feasi-
bility of 8-bit device support for the Transterpreter is also under
investigation.

The Transterpreter is a platform for research in its own right.
It is small, modular, well documented and written to be easy to
understand and extend. It is written to be a vehicle for the imple-
mentation of future ideas within the scope of occam-pi. Currently
the Transterpreter uses the existing KRoC compiler for generating
bytecode, while small exploratory occam-pi compilers targeting
the the Transterpreter natively, have already been demonstrated.
A further open research area focuses on creating a novel micro-
pass architected compiler, providing a language research frame-
work which is as flexible and extensible as the Transterpreter itself.
This is however no small undertaking, and in the first instance, a
small prototype compiler, focused at providing support for specific
research avenues is planned. The fundamental goal is to replace the
aging KRoC tools with a toolchain that can be easily used, under-
stood and extended by researchers, developers and students, while
being used in concurrency and language research, in teaching, and
for solving practical problems.

The future work presented is going to form the bases for grant
applications, and publications to reputable conferences and jour-
nals.

www.transterpreter.org

http://www.transterpreter.org/


5. REFERENCES
[1] Advanced Micro Devices, Inc. Multi-core processors— the

next evolution in computing. White paper, 2005.
[2] Allen, Chase, Luchangco, Maessen, Ryu, Steele, and

Tobin-Hochstadt. The fortress language specification,
version 0.903. Technical report, Sun Microsystems, 2006.

[3] F. Barnes, C. Jacobsen, and B. Vinter. RMoX: A raw-metal
occam experiment. In Communicating Process Architectures
2003, volume 61 of Concurrent Systems Engineering Series,
pages 269–288. IOS Press, September 2003.

[4] D. Beazley and P. Lomdahl. Feeding a large scale physics
application to Python. Proceedings of the 6 th International
Python Conference, October 1997.

[5] D. M. Beazley and P. S. Lomdahl. Lightweight
computational steering of very large scale molecular
dynamics simulations. In Supercomputing ’96: Proceedings
of the 1996 ACM/IEEE conference on Supercomputing
(CDROM), page 50. IEEE Computer Society, 1996.

[6] H. Boehm. Threads cannot be implemented as a library. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 261–268. ACM Press, 2005.

[7] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mulder,
S. S. Pawlowski, and J. R. Rattner. Platform 2015: Intel R©
processor and platform evolution for the next decade.
Technical report, Intel Corporation, 2005.

[8] R. A. Brooks. A robust layered control syste for a mobile
robot. IEEE Journal of Robotics and Automation,
2(1):14–23, March 1986.

[9] Cray, Inc. Cray xd1 supercomputer for reconfigurable
computing, 2006.

[10] M. Creeger. Multicore CPUs for the masses. Queue,
3(7):64–ff, 2005.

[11] D. Pham, et al. The Design and Implementation of a
First-Generation CELL Processor. pages 184–185. IEEE
International Solid-State Circuits Conference, ISSCC 2005,
February 2005.

[12] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen — a
generator of efficient virtual machine interpreters.
Software—Practice and Experience, 32(3):265–294, 2002.

[13] J. Frenkil. A multi-level approach to low-power ic design.
IEEE Spectr., 35(2):54–60, 1998.

[14] B. Gerkey, R. Vaughan, and A. Howard. The player/stage
project: Tools for multi-robot and distributed sensor systems.
In Proceedings of the International Conference on Advanced
Robotics (ICAR 2003), Coimbra, Portugal, June 30 - July 3,
2003, pages 317–323, 2003.

[15] G. Gupta, E. Pontelli, K. A. Ali, M. Carlsson, and M. V.
Hermenegildo. Parallel execution of Prolog programs: a
survey. ACM Trans. Program. Lang. Syst., 2001.

[16] P. B. Hansen. Java’s insecure parallelism. SIGPLAN Not.,
34(4):38–45, 1999.

[17] T. Harris, S. Marlow, and S. P. Jones. Haskell on a
shared-memory multiprocessor. In Haskell ’05: Proceedings
of the 2005 ACM SIGPLAN workshop on Haskell, pages
49–61. ACM Press, 2005.

[18] C. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[19] C. A. R. Hoare. Hints on programming language design.
State of the Art Report 20: Computer Systems Reliability,
pages 505–534, 1974.

[20] C. L. Jacobsen and M. C. Jadud. The Transterpreter: A
Transputer Interpreter. In Communicating Process
Architectures 2004, pages 99–107, 2004.

[21] C. L. Jacobsen and M. C. Jadud. Towards concrete
concurrency: occam-pi on the lego mindstorms. In SIGCSE
’05: Proceedings of the 36th SIGCSE technical symposium
on Computer science education. ACM Press, 2005.

[22] M. C. Jadud, C. L. Jacobsen, and D. J. Dimmich.
Concurrency on and off the sensor network node. SEUC
2006 workshop, 2006.

[23] S. P. Jones, A. Gordon, and S. Finne. Concurrent haskell. In
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
295–308. ACM Press, 1996.

[24] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: a
dual-core multithreaded processor. IEEE Micro, 24(2):40–
47, March 2004.

[25] L. B. Kish. End of Moore’s law: thermal (noise) death of
integration in micro and nano electronics. Physics Letters A,
pages 144–149, September 2002.

[26] G. Koch. Discovering multi-core: Extending the benefits of
Moore’s law. July 2005.

[27] D. Mallik, K. Radhakrishnan, J. He, C.-P. Chiu,
T. Kamgaing, D. Searls, and J. D. Jackson. Advanced
package technologies for high-performance systems. Intel
Technology Journal, 9(4):259–272, November 2005.

[28] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, 1999. ISBN-10:
0521658691, ISBN-13: 9780521658690.

[29] T. N. Mudge. Power: A first class design constraint for future
architecture and automation. In HiPC ’00: Proceedings of
the 7th International Conference on High Performance
Computing, pages 215–224. Springer-Verlag, 2000.

[30] M. Schweigler. Adding Mobility to Networked
Channel-Types. In Communicating Process Architectures
2004, pages 107–126, 2004.

[31] L. A. Smith, J. M. Bull, and J. Obdrz&#225;lek. A parallel
java grande benchmark suite. In Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), pages 8–8. ACM Press, 2001.

[32] K. Vella. Seamless Parallel Computing on Heterogeneous
Networks of Multiprocessor Workstations. PhD thesis,
University of Kent at Canterbury, December 1998.

[33] B. Vinter. The Architecture of the Minimum intrusion Grid
(MiG). In Communicating Process Architectures 2005, 2005.

[34] W. Vogels. Hpc.net - are cli-based virtual machines suitable
for high performance computing? In SC ’03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing,
page 36. IEEE Computer Society, 2003.

[35] P. Welch and F. Barnes. Communicating mobile processes:
introducing occam-pi. In 25 Years of CSP, volume 3525 of
Lecture Notes in Computer Science, pages 175–210.
Springer Verlag, Apr. 2005.

[36] P. Welch and D. Wood. The Kent Retargetable occam
Compiler. In Parallel Processing Developments, Proceedings
of WoTUG 19, pages 143–166, March 1996.

[37] P. H. Welch. Java Threads in the light of occam/CSP. In
Proceedings of WoTUG-21: Architectures, Languages and
Patterns for Parallel and Distributed Applications, pages
259–284, 1998.

[38] http://robodeb.transterpreter.org/.


	Introduction
	Background
	The Transterpreter
	The Next Generation
	REFERENCES -9pt 

