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Notes:

1. A version of this paper, radically abridged to meet a
four-page limit, was presented at the IEEE Nonlin-
ear Statistical Signal Processing at Cambridge, UK in
September 2006 (NSSPW2006).

2. In earlier publications by the author and coworkers, the
IGMARP algorithm is referred to simply as IGMAP.
Both acronyms refer to the same algorithm.

1. INTRODUCTION

IGMARP (Iterative Gaussian Mixture Approximation of the
Reduced-Dimension Posterior) is a data fusion algorithm for
handling non-linear measurements, particularly ambiguous
measurements (i.e. measurements for which the likelihood
function may be multimodal), in conjunction with a linear or
linearisable system model. It is particularly well suited to sys-
tem models of high dimensionality, and applications where
it is desired to interoperate with existing approaches using a
Kalman Filter or multi-hypothesis Kalman Filter.

The algorithm has been developed over the period since
2001 as a means of integrating data from terrain-referenced
navigation systems into a multiway integrated navigation so-
lution also comprising an inertial navigation system (INS) and
GPS. An example of a terrain-referenced navigation system
is terrain-contour navigation (TCN), in which an air vehicle
uses a radio altimeter or similar sensor to take measurements
of the height above sea level of the terrain being overflown.

The paper describes the mathematical foundations of the
algorithm, and illustrates its application to an integrated
TCN/INS system. Sec. 2 introduces the motivating applica-
tion, TCN. Sec 3 reviews the measurement update equations
for the multi-hypothesis Kalman filter (MHKF), which repre-
sents an application of Bayes’ Theorem to the case in which
the prior distribution is a Gaussian mixture, and the likeli-
hood function also has the form of a (slightly generalised)
Gaussian mixture. Sec. 4 then discusses how the likelihood
function can be computed for TCN, and gives the flavour of
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the resulting functions, which are by no means of a Gaussian
mixture form; this motivates Sec. 5, which discusses how the
MHKF approach can be adapted to handle more general like-
lihood functions, and introduces the key theorems on which
the IGMARP method depends. Then Sec. 6 describes the al-
gorithm itself, and Sec. 7 illustrates the results of applying the
algorithm to TCN/INS flight data. Finally Sec. 8 discusses
conclusions and possible further work.

2. TERRAIN-CONTOUR NAVIGATION

An inertial navigation system (INS) operates continuously
and provides a high bandwidth (>50 Hz) navigational output
with low short term noise. It also provides effective attitude,
angular rate and acceleration measurements as well as posi-
tion and velocity. However, its navigation accuracy degrades
with time as the noise and biases on its inertial instrument
outputs are mathematically integrated through the navigation
equations that generate the final output.

The Global Positioning System (GPS), and similar satel-
lite navigation systems, provide a high accuracy position
solution—of the order of 10 m (2σ) in each axis—that does
not degrade with time. The GPS navigation solution is noisier
than that of an INS, has a lower bandwidth (∼1 Hz) and does
not normally include attitude. GPS and INS are thus comple-
mentary. Consequently, many aircraft and guided weapons
use an integrated INS/GPS navigation system. The INS pro-
vides the core navigation solution, whilst the GPS measure-
ments are used to correct and calibrate the INS via an integra-
tion algorithm.

However, satellite navigation signals are extremely vul-
nerable to interference. Unintentional interference sources
include broadcast television, mobile satellite services, ultra-
wide-band communications, over-the-horizon radar and cel-
lular telephones [1]. In military applications, deliberate jam-
ming is highly likely, and must be planned for. Interfer-
ence can be mitigated using a controlled reception pattern an-
tenna (CRPA) system (e.g. [2, 3, 4]), together with advanced
INS/GPS integration techniques. These techniques enable
satellite navigation signals to be tracked under higher levels
of interference. However, they do not eliminate the effects
of jamming and interference completely. The cost and com-
plexity of jamming technology that can defeat them is signif-



icantly less than that of the CRPA systems themselves, and
this technology is being communicated across the internet.

As soon as GPS measurements are lost, the INS begins
to drift out of calibration. Aircraft-grade INS can maintain
a horizontal position accuracy within 100 m through GPS
outages of more than 10 minutes. However, the lower cost
INS common in guided weapons, unmanned air vehicles and
general aviation (private) aircraft can only maintain this ac-
curacy for 2 to 3 minutes. To attain robust navigation in a
GPS jamming environment, reversionary navigation systems
are required.

Terrain-referenced navigation (TRN) techniques offer a
solution. The most established TRN technique, terrain con-
tour navigation (TCN), began to be developed in the 1970s
and a number of systems have been produced commercially
over the years. Conventionally, such systems estimate the
height of the terrain below the air vehicle by subtracting radio
altimeter height from INS or barometric/INS altitude. Mea-
surements are typically taken around once a second. These
are then compared with a terrain height database, such as Dig-
ital Terrain Elevation Data (DTED) [5]. Performance may be
enhanced by using a laser range-finder as the sensor [6, 7].

A range of different processing techniques have been de-
veloped to obtain position fixes from the comparisons of mea-
sured and database terrain heights [8]. These may be divided
into two broad categories: batch and sequential.

2.1. Batch processing

In batch processing, a series of terrain height measurements,
known as a transect, are processed together; this was the ap-
proach taken in the original TERCOM system [9], and in
early work of the present author [10]. The transect is com-
pared to the terrain height database at different offsets in lati-
tude, longitude and height from the current estimated aircraft
position. The residuals of each comparison are used to calcu-
late what, in the context of the present paper, we can consider
to be the likelihood function.

If the transect is sufficiently long—spanning several kilo-
metres, say—then the observed terrain profile over long dis-
tances will usually be effectively unique within the area of
navigational uncertainty. Consequently the resulting likeli-
hood function will have a single sharp peak: early TCN sys-
tems would simply take the position of this peak as the basis
of a position fix to be input to a Kalman filter.

The disadvantage with this ‘long transect’ approach is
there there is a considerable delay before the navigational es-
timate is updated. If this delay could be reduced, there would
be less time for residual navigational drifts to accumulate be-
fore the TCN update becomes available. This in turn may
allow the air vehicle to fly at lower altitude, since the posi-
tion of terrain features and obstacles in relation to the aircraft
will be better known. This consideration is particularly strong
for applications such as unmanned air vehicles and guided

weapons, where the use of lower grade INS will result in high
rates of navigational drift.

2.2. Sequential processing

In sequential processing, each measurement is processed sep-
arately. The difference between the radalt generated and
database indicated terrain height is input as a measurement
to a data fusion algorithm. Typically this data fusion algo-
rithm is an extended Kalman filter (EKF): the terrain gradient
at the current best estimate of position is used to attribute the
observed height difference to a linear combination of the lati-
tude, longitude and height components of the INS position er-
ror. Sequential processing is well established in commercial
TCN systems such as BAE Systems’ TERPROM [11] and the
American SITAN [12, 13, 14].

The principal advantage of the EKF sequential approach
is relative simplicity and comparatively low processor load.
However, it relies on accurate knowledge of the terrain gradi-
ent below the aircraft, which is a demanding requirement on
existing low resolution, low accuracy databases like DTED.
To a certain extent, the limitations of terrain height databases
may be overcome by using sophisticated linearisation algo-
rithms [15]. However, a fundamental problem remains in that
the gradient is calculated below the aircraft’s position as in-
dicated by the navigation system, not its true position. Thus,
if the horizontal position error exceeds about 250 m, main-
stream sequential processing does not work and a ‘recovery’
mode must be instigated, for example batch processing.

Particle-filtering approaches [16, 8] also take a sequen-
tial approach, but without the linear/Gaussian assumptions of
the extended Kalman filter. There are, however, some disad-
vantages with MCMC (including particle filter) approaches to
integrated navigation:

• For relatively straightforward integrated navigation
tasks, such as INS/GPS integration, MCMC methods
are an overkill: as compared with a Kalman filter, they
require much greater computational loads, but offer lit-
tle or no performance advantage.

• Consequently, for multiway integration, e.g.
INS/GPS/TRN, it would seem to be desirable for
the overall integration to be carried out using Kalman
filtering techniques, leaving MCMC approaches to deal
with the non-linearities and ambiguities of TRN, and
somehow feeding the MCMC output into the overall
Kalman filter. Unfortunately, the output of MCMC
methods is not in a form which readily lends itself to
use as a Kalman filter input.

• Typical INS models often have 15 or more elements in
the state vector. Such high dimensionality may cause
problems for MCMC approaches.



2.3. IGMARP objectives

The IGMARP algorithm described in this paper arose from
a need for a data fusion algorithm suited to multiway inte-
grated navigation with terrain-referenced navigation as one
(or more) of the inputs. There were three primary objectives
in developing the algorithm:

1. The algorithm should be capable of updating the sys-
tem’s navigation solution quickly—e.g. within a few
seconds—in response to newly-gathered terrain data.

2. The algorithm should be capable of handling the
position ambiguities that often arise using terrain-
referenced navigation, in such a way as to make maxi-
mum and timely use of the terrain data.

3. The algorithm should be directly compatible with Kal-
man filter approaches to multiway integrated naviga-
tion, including in particular the multi-hypothesis Kal-
man filter (MHKF).

3. THE MHKF MEASUREMENT UPDATE

3.1. Prior distribution and likelihood

Let g(x;µ, P ) represent the multivariate Gaussian density for
a d-dimensional r.v. x, with mean vector µ and positive defi-
nite covariance matrix P . In general, if P—adorned perhaps
with subscripts and other diacritical marks—represents a co-
variance matrix, we shall use I—similarly adorned—to rep-
resent the corresponding information matrix I = P−1.

Suppose that a linear dynamical system has a d-
dimensional state vector x, and that our information about
x can be represented as a Gaussian mixture distribution with
n components, as follows:

f(x) =
n∑

i=1

wig(x;µi, Pi)

=
n∑

i=1

wi

√
det Ii

(2π)d
exp−1

2
(x− µi)

TIi(x− µi) (1)

where
∑n

i=1 wi = 1 and all of the information matrices Ii

are positive definite.
Suppose further that a measurement z becomes available,

where the distribution of z depends on x only via Hx, where
H is d′ × d matrix of full rank, with d′ ≤ d. In many cases,
d′ is much smaller than d, and it is to these cases that the
IGMARP algorithm is particularly applicable.

In a Bayesian formulation, the information provided by z
about x is entirely encapsulated within the likelihood func-
tion L(x|z), which we assume to have the form of a linear
combination of m d′-dimensional components as follows:

L(x|z) =
m∑

j=1

λj exp−1
2
(Hx− ζj)

T Λj(Hx− ζj) (2)

where ζj defines the location of the jth component, λj is its
weight, and Λj is a d′ × d′ symmetric matrix describing its
shape. For the time being we shall assume that Λj is non-
negative definite, but we shall relax this condition at the end
of Sec. 3.

By Bayes’ Theorem, the posterior density f(x|z) is pro-
portional to the product of the prior distribution (1) and the
likelihood function (2).

3.2. Terms of the posterior distribution

In this section we examine the form of a typical term of the
posterior distribution. Let:

φ =

√
det I
(2π)d

exp−1
2

[
(x− µ)TI(x− µ)

+ (Hx− ζ)T Λ(Hx− ζ)
]

(3)

Consider the expression in square brackets. We have:

(x−µ)TI(x− µ) + (Hx− ζ)T Λ(Hx− ζ)

= xT (I + HT ΛH)x− xT (Iµ + HT Λζ)

− (µTI + ζT ΛH)x + (µTIµ + ζT Λζ) (4)

Now define
I ′ = I + HT ΛH (5)

Since I is positive definite, I ′ is also, and therefore has an
inverse. Further define:

µ′ = I ′−1(Iµ + HT Λζ) (6)

= µ + I ′−1HT Λ(ζ −Hµ) (7)

On substituting from (5) and (6) into (4), the square-
bracketed expression in (3) becomes:

xTI ′x− xTI ′µ′ − µ′TI ′x + (µTIµ + ζT Λζ)

= (x− µ′)TI ′(x− µ′) + (µTIµ + ζT Λζ − µ′TI ′µ′)

Note that the last term, (µTIµ+ζT Λζ−µ′TI ′µ′), does not
depend on x.

If we now substitute this result back into (3), we get:

φ =

√
det I
det I ′

exp−1
2
(µTIµ + ζT Λζ − µ′TI ′µ′)

× g(x;µ′, I ′−1) (8)

In (8) it is possible to represent the subexpression

S = µTIµ + ζT Λζ − µ′TI ′µ′ (9)

as a quadratic form: by substituting from (7) into (9) it is
straightforward to show that

S = (ζ −Hµ)T (Λ− ΛHI ′−1HT Λ)(ζ −Hµ) (10)



3.3. Posterior distribution

When the prior density has the Gaussian mixture form of (1),
the corresponding posterior density can be expressed in the
form:

f(x|z) ∝
n∑

i=1

wiφi(x|z) (11)

where
φi(x|z) = g(x;µi, Pi)L(x|z) (12)

and the constant of proportionality in (11) is such that the
left-hand side integrates to unity. We shall refer to the posi-
tive measures defined by the density functions φi(x|z) as the
unnormalised posterior components (UPCs).

In the case where the likelihood function is itself of the
Gaussian mixture form (2), it follows from (8) and (10) that
the UPCs are given by:

φi(x|z) =
m∑

j=1

λjcijg(x;µ′
ij , P

′
ij) (13)

where

P ′
ij = (I ′ij)−1 (13a)

I ′ij = Ii + HT ΛjH (13b)

µ′
ij = µi + Kij(ζj −Hµi) (13c)

Kij = P ′
ijH

T Λj (13d)

cij =

√
det Ii

det I ′ij
× exp−1

2
(ζj −Hµi)T Λ′

ij(ζj −Hµi)

(13e)

Λ′
ij = Λj − ΛjHP ′

ijH
T Λj (13f)

We now observe that for (11) to represent a well-defined
Gaussian mixture of positive-definite components, it is not
strictly necessary for the matrices Λj to be non-negative def-
inite: all that is required is that I ′ij given by (13b) is positive
definite for each i and j.

4. THE TCN LIKELIHOOD FUNCTION

As applied to TCN, IGMARP has been implemented as
a batch processing algorithm, processing short transects of
TCN data spanning a few hundred metres of terrain with the
radio altimeter sampled at 1–2 Hz, so as to achieve a horizon-
tal separation of about 100 m between the samples. Closer
sampling than this would increase the processing load but
yield little accuracy benefit, owing to the limited resolution
both of the radio altimeter and the DEM.

Using short transects avoids the latency problems noted
above for long transects, and helps to meet the first design
objective. (It is straightforward to configure the algorithm
so that these ‘batches’ each comprise a single radio-altimeter

reading, thus turning it into a fully sequential algorithm,
but experience to date indicates that this fully-sequential ap-
proach does not offer best performance, and it substantially
increases the computational load.)

To motivate the discussion in the following sections, we
now take a look at the characteristics of the likelihood func-
tion that arise from processing a short transect of TCN data.
The transect data are processed by subtracting the height
above ground measured by the radio altimeter from the air-
craft height measured by the INS (as corrected by the inte-
grated navigation system) to yield a sensed terrain profile.
Fig. 1(a) shows the sensed terrain profile measured during a
transect of 4 seconds’ duration, with the radio altimeter sam-
pled at 2 Hz, yielding 9 samples in all. Notice that sensed
terrain profile plotted here will be offset from the true terrain
profile—the section of terrain profile that was actually being
overflown while the transect data were gathered—because of
residual position errors in the INS, both horizontal and ver-
tical. In the initial stages of the operation of the algorithm,
this absolute offset may be of the order of many hundreds of
metres horizontally, and many tens of metres vertically. How-
ever, the relative positions of the points along the sensed ter-
rain profile will normally be in much better agreement with
the relative positions of the points along the true terrain pro-
file, although they will still be affected by residual velocity
errors in the INS, radio altimeter errors, and errors in the dig-
ital elevation map (DEM).

The next stage is therefore to search for horizontal and
vertical position offsets that will bring the sensed profile into
good agreement with the terrain profile given by the DEM.
Fig. 1(b) shows the form of the terrain surface within the area
of navigational uncertainty, as given by the DEM. This search
proceeds by working through a series of hypotheses about
the true position of the aircraft, both vertically and horizon-
tally, at the time of the mid-transect point: the time when
the fifth of the nine radio altimeter readings forming the tran-
sect was sampled. (Working from the middle of the transect
helps to minimise the effects of residual INS velocity errors.)
For each hypothesis about the mid-transect point, we examine
the DEM to determine the terrain profile that would have been
overflown during the transect if that hypothesis were true, and
compare that DEM terrain profile with the (appropriately off-
set) sensed terrain profile. This comparison is performed us-
ing a statistical model characterising the errors arising from
the radio altimeter, and from inaccuracies in the DEM itself,
and yields the likelihood of the mid-transect point hypothesis.

The resulting likelihood function (reduced for presenta-
tional clarity to two dimensions) is shown in Fig. 1(c). The
reader will observe that there are three areas of relatively high
likelihood towards the north of the area shown, and further
such regions to the south and to the west of the centre of the
region. There is generally rather poor agreement elsewhere,
for example towards the south-west corner. (In fact, the true
position of the aircraft lies within one of the peaks to the west
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Fig. 1. (a) The sensed terrain profile observed during a tran-
sect; the aircraft was flying approximately south-west while
the transect data were gathered. (b) The terrain topography as
given by the Digital Elevation Map (DEM). (c) The resulting
likelihood function. The horizontal graticule comprises 1 km
squares, and in panels (a) and (b), heights are in metres. Note
that the vertical scale is exaggerated by a factor of about 17.5
in comparison with the horizontal scale.

of the region’s centre.)

5. HANDLING MORE GENERAL LIKELIHOODS

We now consider how the results of Sec. 3 might be adapted
to handle measurements z which give rise to likelihood func-
tions that do not conform to the Gaussian mixture pattern of
(2), for example the likelihood function seen in Fig. 1(c). We
shall however assume that the likelihood function is bounded
above, i.e. that there exists ` such that L(x|z) < ` for all x.

One approach would be directly to approximate the like-
lihood function as a mixture of Gaussians. This is not the
approach we shall take. This is partly because, in the ap-
plication for which IGMARP was developed, the likelihood
value is not well localised, and may have substantial peaks
well away from the region of the state space where the prior
distribution is concentrated. This is true, for example, of the
case illustrated in Fig. 1(c), where the peaks are by no means
confined to the horizontal area included in the figure.

Indeed, the likelihood function may well be bounded be-
low by a positive value: this would for example rule out the
use of the Redner-Walker algorithm [17] for Gaussian mixture
approximation, since the required integrals would not con-
verge.

When faced with poorly localised likelihood functions
such as these, we should perhaps think not about approxi-
mating the likelihood function as a whole, but only within
the region where the prior density is non-negligible. Indeed,
we may think about approximating the likelihood function
weighted by the prior density. But of course, the likelihood
weighted by the prior is (but for a normalisation constant) ex-
actly the same thing as the posterior density.

This points to the approach we shall take, which is to ap-
proximate the posterior distribution as a Gaussian mixture. As
an intermediate step, we shall approximate the UPCs φi(x|z)
as Gaussian mixtures. However, these UPCs (like the full
posterior itself) span Rd, where d is the full dimension of the
state space. Fortunately, as we shall now show, the numeri-
cally intensive part of the approximation can be carried out in
merely d′ dimensions.

Let φ̆i(x̆|z) be the (unnormalised) density function over
Rd′

induced by φi(x|z) under the mapping H . Here we have
introduced the convention of using a breve (superposed ˘ )
to denote a quantity defined over the d′-dimensional space
spanned by the columns of H; x̆ (= Hx) is a variable ranging
over this space. We shall refer to the density functions φ̆i(x̆|z)
as the projected UPCs.

In the case where a UPC has the form given in (13), the
corresponding projected UPC is clearly given by:

φ̆i(x̆|z) =
m∑

j=1

λjcijg(x̆; µ̆′
ij , P̆

′
ij) (14)



where

µ̆′
ij = Hµ′

ij (14a)

P̆ ′
ij = HPijH

T (14b)

Here we have derived the parameters of the projected UPC
from the parameters of the unprojected UPC. However, it is
possible to convert in the opposite direction, provided that we
know the parameters of the corresponding component of the
prior distribution. This is shown by the following theorem:

Theorem 1 Suppose that for a particular i and j (which
we shall leave implicit in what follows, by omitting the sub-
scripts), P ′, I ′, µ′, µ̆′ and P̆ ′ are given by (13a), (13b), (13c),
(14a) and (14b) respectively. Then:

µ′ = C(µ̆′ − µ̆) (15)

P ′ = P + PHT (P̆−1P̆ ′P̆−1 − P̆−1)HP (16)

where
C = PHT P̆ ′−1 (17)

and µ̆ and P̆ are the parameters of the projected prior com-
ponent, as follows:

µ̆ = Hµ

P̆ = HPHT

Proof: From (13c) and (13d) we have

µ′ = µ + P ′HT Λ(ζ −Hµ) (18)

and therefore
µ̆′ = µ̆ + P̆ ′Λ(ζ −Hµ)

Since I′ is positive definite and H is of full rank, P ′ and P̆ ′ will
also be positive definite (check this!) and therefore nonsingular.
Consequently:

Λ(ζ −Hµ) = P̆ ′−1(µ̆′ − µ̆)

Substituting this back into (18) establishes (15).
Now let us turn our attention to (16). If Λ = 0 then I′ = I

and (16) follows trivially. Otherwise, Λ will have d′′ ≥ 1 non-
zero eigenvalues, and Λ can (check this!) be expressed in the form
GT DG, where D is a d′′ × d′′ diagonal matrix comprising the non-
zero eigenvalues, and G is a d′′ × d′ matrix.

Using (13b) and the Woodbury matrix identity, we now have:

P ′ = (I + HT GT DGH)−1

= P − PHT GT (D−1 + GP̆GT )−1GHP (19)

Consequently

P̆ ′ = P̆ − P̆GT (D−1 + GP̆GT )−1GP̆

which can be rearranged to yield:

GT (D−1 + GP̆GT )−1 = P̆−1 − P̆−1P̆ ′P̆−1

Substituting this back into (19) yields (16).

Computationally, it is preferable to recast (16) in the fol-
lowing equivalent form:

P ′ = (I − CH)P (I − CH)T + CP̆ ′CT (20)

since it avoids subtracting one positive definite matrix from
another and relying on the result being positive definite. (20)
is comparable to (and was inspired by) the Joseph form of the
standard Kalman filter covariance update equation (cf. [18,
p. 305]).

Note that the proof of Theorem 1 did not assume that Λ
is non-negative definite: only that is symmetric. How can we
be sure that the matrix P ′ given by (16) is positive definite?
Here we are assisted by the following theorem:

Theorem 2 Suppose that P and P̆ ′ are positive definite.
Then the matrix P ′ given by (16) is also positive definite.

Proof: By inspection of (20) it is clear that P ′ is at least non-negative
definite.

First recast (16) in the following form:

P ′ = (P − PHT P̆−1HP ) + PHT P̆−1P̆ ′P̆−1HP (21)

and note, by comparison with (20), that both terms on the right-hand
side are at least non-negative definite.

Now suppose (contrary to what we wish to establish) that there
exists a non-zero d-vector x such that xT P ′x = 0. This implies:

xT (P − PHT P̆−1HP )x = 0 (22)

xT PHT P̆−1P̆ ′P̆−1HPx = 0 (23)

since neither of these terms can be negative. Now, since P̆−1P̆ ′P̆−1

is positive definite, the only way in which (23) can be satisfied is if
HPx = 0. But in that case (22) reduces to xT Px = 0, which is
impossible since P is positive definite. The supposition that P ′ is
not positive definite therefore leads to a contradiction.

So, to recap, P ′ will be positive definite provided P̆ ′ is.
This leads to some possibilities not embraced by the standard
Kalman filter formulation: in particular, we can have ‘nega-
tive updates’ in which some of the diagonal elements of P ′

are larger than the corresponding elements of P .

6. THE ALGORITHM

A schematic diagram of the IGMARP method is given in
Fig. 2, which is cross-referenced to the description that fol-
lows. The IGMARP method works by iterating through the
following steps:

1. For each component i, i = 1, . . . n, of the prior distri-
bution (1):

(a) Determine the projection of the distribution com-
ponent g(x|µi, Pi) under the mapping H . This
will be the p-dimensional Gaussian distribution
ğ(x̆|µ̆i, P̆i), with mean

µ̆i = Hµi



Fig. 2. Schematic diagram of the IGMARP method, for n = 2 and m = 3. Gaussian components of full dimension (d)
are represented as shaded ellipses, while Gaussian components projected to the measurement space are represented as hollow
ellipses.

and covariance matrix

P̆i = HPiH
T

(b) Approximate the projected UPC given by

φ̆′i(x̆) = f(z|x̆)ğ(x̆|µ̆i, P̆i) (24)

as a mixture of some number m of Gaussian com-
ponents:

φ̆′i(x̆) =
m∑

j=1

wij ğ(x̆; µ̆′
ij , P̆

′
ij)

This approximation can be accomplished using
the now well-known Redner-Walker algorithm
[17] (often known as the EM algorithm). No-
tice that this will involve numerical integrations
in only d′ dimensions, rather than the full dimen-
sionality d of the state vector.

(c) For each j, j = 1, . . . m, use Theorem 1 to deter-
mine the parameters µ′

ij , P ′
ij of the corresponding

unprojected UPC φ′i(x̆).

2. Assemble together all the Gaussian components result-
ing from Step 1c and normalise the result, to obtain our

first-round Gaussian mixture approximation to the pos-
terior:

f ′(x) ≈
n∑

i=1

m∑
j=1

w′
ijg(x;µ′

ij , P
′
ij) (25)

where
w′

ij = kwiwij

with the constant k being chosen so that:

m∑
i=1

m∑
j=1

w′
ij = 1

3. Unfortunately, the mixture in (25) contains nm com-
ponents, rather than the n components we started with.
Obviously, if this procedure is to be used recursively,
we cannot permit the number of components to increase
on each iteration, so it is necessary to bring the number
of components back down to n.

Various methods have been discussed in the literature
for performing Gaussian mixture reduction, i.e. ap-
proximating a Gaussian mixture with another mixture
with fewer components: see for example [19, 20, 21].



However the method favoured for IGMARP is that de-
scribed in [22], which is specially adapted to merging
mixtures of high dimensionality.

The method works by repeatedly choosing a pair of
components and fusing them, i.e. replacing them by
a single component whose weight is the sum of the
weights of the two fused components, and whose first
and second moments are equal to the (joint) first and
second moments of the components being fused. This
pairwise fusing continues until the number of compo-
nents is reduced back down to n.

[22] puts forward a criterion, based on Kullback-
Leibler divergence, for choosing which pair of compo-
nents to fuse at each stage. This criterion has a strong
tendency to select low-weighted components as candi-
dates for fusing, either with other low-weighted com-
ponents, or with more heavily weighted nearby com-
ponents. This means that the ‘dynamic range’ of the
weights in the eventual n-component mixture is likely
to be considerably smaller than that in the original nm-
component mixture, which is probably desirable.

4. Allow for the passage of time before the next measure-
ment data become available by applying the Kalman fil-
ter time update equations to each of the new n compo-
nents, leaving their weights unchanged. Alternatively,
if the system dynamics are appreciably nonlinear, each
component can by time-updated using the method of
the unscented Kalman filter [23].

7. THE IGMARP ALGORITHM IN ACTION

A previous paper [24] used simulation to compare a number
of different techniques for integrating TCN with INS, and for
the three-way integration of TCN with INS and GPS. The
techniques considered for integrating TCN data included a
best-fix (effectively, maximum likelihood) method, a proba-
bilistic data association filter (PDAF), and IGMARP. It con-
cluded that a weighted fix integration technique—of which
PDAF and IGMARP are examples—makes the navigation so-
lution more robust against false TCN fixes than a simple best-
fix integration. The simulation results obtained indicated that
IGMARP performs sufficiently better than the PDAF algo-
rithm to justify the greater complexity and processor load that
it entails.

In this section, we describe the results, first reported in
[25], of applying IGMARP not to simulated data, but to real
flight data recorded during a sortie of a QinetiQ Tornado GR1
aircraft over southern Britain. The equipment for the trial in-
cluded a Honeywell H764G Embedded GPS/INS (EGI) and a
BAE Systems AD1990 radio altimeter, both mounted in a pod
fitted under the fuselage of the aircraft. The H764G incorpo-
rates a GPS receiver and a ring-laser gyro INS, and provides
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Fig. 3. Position errors during the first 45 seconds after terrain-
aided navigation begins. (Time is measured as seconds after
midnight.)

both a blended GPS/INS navigation output and a pure iner-
tial output (with barometric damping of the vertical channel).
GPS signals were obtained via a typical fixed reception pat-
tern antenna (FRPA). The IGMARP algorithm was applied to
combine data from the AD1990 with the pure inertial output
from the H764G, using DTED Level 1 [5] (compiled circa
1986) as the digital elevation map. The blended INS/GPS
output from the H764G was used as the ‘truth’ measure with
which the IGMARP output is compared.

Although the INS in this trial was of aircraft grade, the
model of the INS incorporated in the Kalman filter system
model was very pessimistic, particularly as regards the initial
conditions: the initial position was assumed to be accurate
only to within ±2 km (2σ) in each horizontal axis, and to
within ±200 m (2σ) in height. The initial velocity was as-
sumed to be accurate only to within ±20 m/s (2σ) in each
horizontal axis, and ±2 m/s (2σ) vertically. Although the
H764G was barometrically aided, the height channel in the
Kalman filter model does not assume this.

The data from this sortie, of duration just over 1 1
2 hours,

were analysed using the IGMARP algorithm, with the system
state estimated as a mixture of n = 4 Gaussian components.
(In fact, Fig. 1 is based on data from the third transect of this
sortie.)

First consider the initial capture phase, immediately af-
ter terrain data becomes available. The position errors during
the first 45 seconds are shown in Fig. 3. In the figure the
black lines represent the components of position error, based
on comparing the overall mean of the 4-component Gaus-
sian mixture with the ‘true’ position given by the INS/GPS
blended data. The green band represents a 2σ tolerance band
based on the overall standard deviation of the Gaussian mix-



ture.
It will be noted that already after the first 4 second transect

has been analysed, there has been a substantial reduction the
horizontal position uncertainty, particularly in the east-west
axis, as well as in the vertical position uncertainty. After just
22.5 seconds (five transects), the position uncertainty is of the
order of ±220 m (2σ) in each horizontal axis, ±6 m (2σ)
vertically. After 45 seconds these uncertainties are further
reduced to ±48 m and ±2.6 m respectively.

Now let us consider the sortie as a whole. A characteristic
of the sortie was the high level of manoeuvre, with the aircraft
making numerous sharp turns and climbs and dives. Conse-
quently, for a large proportion of the flight, the radio altime-
ter could not provide usable data, either because the aircraft’s
height above ground was too great (i.e. above about 500 m),
or its bank angle too great (i.e. greater than about 30◦). Fig. 4,
which shows the components of position error throughout the
sortie, indicates these parts of the sortie by colouring the 2σ
tolerance bands red. Yellow coloration indicates that the ra-
dio altimeter was usable, but that the terrain roughness was
no greater than 1%. (Terrain roughness is here measured as
the RMS terrain gradient along the true path of the aircraft
during a transect, with the true path measured by INS/GPS.)
The remaining periods are when the radio altimeter was us-
able and the terrain roughness exceeded 1%; these periods
together accounted for about a quarter of the sortie duration,
and are indicated by green colour.

Obviously, during the ‘red’ periods, the horizontal and
vertical position uncertainties increase continuously as a re-
sult of INS drift, though the rate of drift decreases as the sortie
progresses because the INS becomes better calibrated, partic-
ularly the velocity errors. During the yellow periods, hori-
zontal uncertainties normally continue to grow, but vertical
errors are kept in check. Only during the green periods is the
horizontal navigation materially assisted by the TCN data.

Fig. 4 clearly indicates the ability of the IGMARP algo-
rithm quickly to recover accurate navigation once ‘green’ data
comes along following a period of drift. Taking all the green
periods together, the radial horizontal position error had a me-
dian value of just under 28 m.

The RMS height error during these periods works out as
5.4 m; however, it is noticeable in Fig. 4 that the height er-
ror appears to have a slowly varying bias: this is believed to
be due to GPS errors influencing the measurement of ‘true’
height. Consequently the height accuracy is probably better
than this.

8. CONCLUSIONS AND PROSPECTS

In this paper we have described the design objectives that
led to the development of the IGMARP algorithm: in a nut-
shell, this was to have a data fusion algorithm that could cope
with the ambiguities inherent in terrain-referenced navigation
data, but at the same time make efficient use of the avail-

able data, in a manner compatible with the use of a Kalman
filter (or MHKF) architecture for multiway integrated navi-
gation. The paper has described the foundations of the IG-
MARP algorithm, and described its performance when ap-
plied to recorded data from a fast-jet sortie with some chal-
lenging characteristics. The results illustrated the algorithm’s
ability rapidly to acquire and reacquire accurate navigation
from high initial position and velocity uncertainties.

The following are some areas for possible exploration in
the future:

• The studies of the use of IGMARP with medium- and
low-grade IN systems reported in [24] were based on
simulated data. It would be desirable to corroborate
its conclusions using real data, particularly real radio
altimeter data, or—better still—laser rangefinder data.

• All studies of IGMARP applied to TRN have so far
been based on terrain-contour navigation (TCN): it
would be interesting to apply it to an imaging-based
technique such as continuous visual navigation (CVN)
[26].

• IGMARP may also be applicable to some target-
tracking problems.
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