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ABSTRACT 
There are many essential applications for quorum systems 
in ad-hoc networks, such as that of location servers in 
large-scale networks.  Existing research proposes many 
approaches to the problems, many of which are 
incomplete, cumbersome, or incur significant cost.  We 
describe and analyse a self-organising quorum system that 
creates an emergent intelligence to minimise overhead 
and maximise survivability.  We then examine the 
quorum’s performance as a location server and suggest 
improvements to the query mechanism and routing 
algorithm using the information. 
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1.  Introduction 
 
Ad-hoc networks are a means of networking computing 
devices together without requiring any setup or existing 
infrastructure.  We define an ad hoc network as a graph of 
a set of nodes, V, and a set of communication paths, E, 
that vary through time as nodes move and fail. 
 

),( ttt EVG =  (1) 

 
Multi-hop ad-hoc networks allow nodes to communicate 
with each other without being in transmission range by 
relaying their messages through intermediate nodes.  
Routing in small networks is usually achieved through an 
optimal broadcast mechanism; however, when the 
network becomes large (>200 nodes), this form of 
discovery becomes extremely expensive.   
 
Routing in large-scale ad hoc networks can be achieved 
through using location information from a GPS device.  
Hou [1] describes Most-Forward-within-Radius (MFR) 
whereby nodes are aware of their geographical position 
(from GPS) and progressively route packets closer to the 
location of the destination.  Before a node can route 
packets in this fashion, it will need to know an accurate 
location for the destination.  Many routing protocols 
propose a function that maps a node’s ID to its location, 
but whilst this is ideal when networks are static and such 

a function can be defined, it is not when nodes are mobile 
and networks span many kilometres.  Location servers 
solve this problem by maintaining location information of 
a node that sends it frequent updates.   
 
Several types of location server have been proposed to 
provide this information.  Li [2] divides the area into grid-
squares of different orders.  Starting with the grid-square 
that the node currently occupies, an order-one square, an 
order-two square is the grid-square containing four of the 
order-one squares.  Li proposes that a number of nodes in 
each order-n square should host the location information.  
Therefore, information about a node’s location becomes 
less densely available the further one is from its location.  
 
Giordano proposed [3] the most promising approach to 
location servers by allocating nodes within a specific 
radius of a geographical point to serve as a location 
server.  Their work suggested modifying the radius 
depending upon the node density so that a minimum 
number of nodes participate; however, they did not 
address issues such as node mobility, fault tolerance and 
query success. 
 
Finally, Stojmenovic proposed [4] that all nodes to the 
north and south in a fixed-width column assume the role 
of a location server.  Location searches are performed by 
routing packets horizontally so that they will eventually 
intersect the vertical column.  This approach is not 
feasible for large-scale ad hoc networks because of the 
large number of nodes.  For a more complete review of 
approaches to location servers, the reader is referred to  
[5]. 
  
The approach shown in this paper is most similar to 
Giordano’s work on home-regions but we further develop 
the quorum system we proposed in [6] by looking at 
alternative methods of replication and analysing its 
performance as a location server.  Methods of querying 
the quorum and ways of mitigating the problem of 
incomplete quorum updates, along with a method to 
improve routing success in the face of out-dated 
information are also addressed.   
 
2.  Quorum systems in ad hoc networks 
 



In this paper, we propose an approach that is similar to 
that of the home region but that addresses many of the 
problems associated with it.  Instead of allocating a 
circular region of nodes as the hosts of a location server, 
we say that nodes directly adjacent to a particular 
geographic point should be responsible.  This permits a 
small number of nodes to be used without knowledge of 
node density. 
 
A node sets up a location server by sending an initiation 
packet toward its home location that will be received by 
the node closest to the home location.  This node will then 
assume the role of master of the server, and as it moves 
the role is transferred to a node that is closer to the home 
location.  Migration is the term we call this process of 
quorum components moving from node-to-node to remain 
close to a geographic point.   
 
Presently, with only a master, failure of the node hosting 
it could result in failure of the server so it is important that 
the data is replicated.  Immediate neighbours of the 
master are sent a duplication packet from the master and 
assume the role of a slave; however, the server as a whole 
needs to make sure that enough replicated copies are kept 
in the event of node failures so that the data is not lost.   
 
Formally, we define our quorum or location server as a 
set Qt where Mt and St are the sets of nodes that host 
master and slave components respectively: 
 

tttt SMVQ ∪=⊆  (2) 
 
Such maintenance of what is essentially a quorum  [7] is 
very costly process in wired networks let alone wireless, 
and so a novel approach is needed. 
 
We draw our inspiration from ants in a colony who find 
their way to food by laying pheromones for each other to 
follow [8].  These pheromones serve to modify the 
environment so that other ants may detect these 
modifications avoiding the need for directed 
communication.  Drawing upon this to develop a location 
server, we suggest that instead of components of a 
quorum communicating with each other they modify their 
environment.  As every node has to beacon its location to 
its neighbours for routing to occur, we add to this beacon 
packet (which we call the environment) an itinerary of 
location server components held at that particular node.  
A node’s itinerary, Iv,t, is simply a list of identifiers for 
quorums which it hosts a component of.  Therefore, a 
beacon frame can be described as the n-tuple: 
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Each node maintains a list of all received beacons so that 
each component of the quorum is able to examine a list of 
which nodes hold which components.  Beacons stored in 
the list expire after twice the beacon interval. 

 
The master is the only node permitted to duplicate as it is 
most likely to be in the center of the quorum and so able 
to correctly count the number of components.  When the 
number of neighbours hosting components falls below a 
threshold, the master will begin a duplication phase to 
raise this number. 
 
We now have a set of quorum components who do not 
directly communicate with each other, but who act in a 
self-organising manner forming an emergent intelligence 
(like ants).  Each attempts to get as close as possible to 
the home location by moving from node to node (except 
where a destination node is already in possession of one).  
Each component assumes the role of master and 
responsibility for duplicating if it finds itself, through 
observing its environment, to be on the closest node to the 
home location.  If it realises it is no longer the closest then 
it will automatically remove its responsibility and assume 
the role of a slave.  We illustrate the master and slaves, 
along with migration in Figure 1, where the master is held 
on the closest node to the point and has duplicated its data 
to several slaves on adjacent nodes. 
  

 
Figure 1: Illustration of quorum and component 

migration 

 
In addition to the duplication task, the components 
perform one more tasked based upon information 
gathered from the beacons.  The components self delete 
the quorum to stop a large number of replicated 
components consuming resources.  They do this by each 
monitoring the number of replicas, and if they rise above 
a threshold then that component will delete itself.   
 
This process is performed on each node at regular 
intervals for each component held, as described by the 
ManageComponent(c) function: 
 
MANAGECOMPONENT(c) 
1 n ← closerNeighbor(homeLocation) 
2 if exists(n) and hasComponent(n) 
3 then crole ← slave 
4 else crole ← master 
5 if exists(n) and !hasComponent(n) 
6 then c.migrate(n) 
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7 else if crole=master and  
hasComponent(all) < threshold 

8 then replicate(c) 
9 else if crole=slave and  

hasComponent(all) > threshold 
10 then delete(c) 
 
The Replicate(c) function has several definitions 
representing several variations of the algorithm.  The 
unicast variant sends a replica to the first node in its 
neighbour database without a component already.  It is 
expected this approach will not survive well due to the 
period it would take to replace a number of components. 
 
REPLICATE(C)     - UNICAST 
1 for all n in neighbors 
2 if  not hasComponent(n) then 
3 unicast(c) 
4 exit forloop 
5 endif 
6 end for 
 
The broadcast variant sends replicas to all neighbours in 
the vicinity and is expected to survive better due to it 
being able to recover from a number of lost components 
with just one packet. 
 
REPLICATE(C)     - BROADCAST 
1 broadcast(c) 
 
The broadcast algorithm should perform better in the face 
of high failure rates; however, if just one component is 
lost from the quorum then a broadcast could increase the 
number of components significantly over the threshold, 
which would then require pruning causing an expand and 
collapse scenario to occur.  Therefore, we also produce a 
hybrid approach that uses broadcast when the number of 
components is low and unicast when it is nearer the 
threshold. 
 
REPLICATE(C)    - HYBRID 
1 if hasComponent(all) > 50% of threshold 
2 then unicast(c) 
3 else broadcast(c) 
 
Finally, we also examine using multicast for replication of 
the data.  When a node senses that there is less than the 
threshold of slaves, then it will create a multicast packet 
to a number of neighbours defined by the threshold minus 
the number of slaves.  The neighbours chosen will be 
those who do not all ready have a component.  
 
REPLICATE(C)     - MULTICAST 
1 needed ← threshold – hasComponent(all) 
2 destcount ← 0 
3 while needed > 0 and neigh not equal null 
4 if not hasComponent(neigh) then 
5 cdests[destcount++] = neigh 
6 needed-- 

7 endif 
8 neigh ← neighnext 
9 endwhile 
 
We can define the setup cost, CSetup, as the number of 
hops to the home location, h, plus one for a broadcast 
duplication packet (eq. 4) or threshold packets for the 
unicast (eq. 5).  The maintenance cost of the quorum, 
CMaintenance, is defined (eq. 6) as the number of migrations 
of components due to node mobility (m) plus the number 
of replication packets (r) to maintain the threshold. 
 

 1+= hC Setup  (4) 
thresholdhC Setup +=  (5) 

rmC enanceMa +=int  (6) 
 
Keeping with the simplicity of the current algorithm, we 
follow the same philosophy here to develop a quorum 
query mechanism.  When a packet’s destination location 
is not known, it is routed towards the home location and 
upon encountering a node containing a quorum 
component for the destination, it updates the packet (p) 
with the node location and routes it towards.  We describe 
this in the RoutePacket(p) function below. 
 
ROUTEPACKET(p) 
1 c ← component(pdest) 
2 if exists(c) 
3 then plocation ← clocation 
4 if exists(plocation) 
5 then route to closestNeighbor(plocation) 
6 if  not exists(plocation) 
7 then route to 

closestNeighbor(homeLocation(pdest)) 
 
2.1  Query and update mechanisms 
 
The mechanism to update the quorum is equally simple 
and based upon a zero knowledge approach to minimise 
overhead.  When receiving a new update packet, a node 
simply updates itself if it holds a component and then 
rebroadcasts it.  This way, each element of a quorum 
should receive a copy and the number of overhead 
packets will be equal to the number of components 
present (qcomponent) as shown in equation 7.   
 

 componentsupdate qhC +=  (7) 
 
This approach does not guarantee a complete quorum 
update however due to its self-organising approach.  
Therefore, we examine the age of the data returned and 
propose a technique that we call Multi-query (MQuery) to 
try to reduce the likelihood of retrieving old data.  
MQuery requires every quorum query to attempt to query 
at least two quorum components and take the most up-to-
date result.  Simply, if a query is received first by a 
component, then the packet will be routed to the next 



closer node to the home location.  Hopefully, this node 
will also be a participant in the quorum and therefore 
could have more correct data.  In our results, we examine 
the effect this has on the age of data. 
 
RECVUPDATEPACKET(p) 
1 c ← Component(pnodeID) 
2 if not exist(c) or seenBefore(p) then ignore 
3 if prevision ≤  crevision then ignore 
4 cdata ← pdata 
5 broadcast(p) 
 
Quorum systems are traditionally analysed based upon 
their performance in terms of load [9], fault-tolerance  
[10] and failure probability  [11].  Therefore, we measure 
the survivability or failure probability of the quorum over 
30-minutes and the overhead in packets per minute of one 
quorum.   
 
In addition to analysing the performance as a quorum, we 
need to look at the ability of this approach to act as a 
location server for large-scale ad hoc networks.  The 
metrics we will measure are update cost, query success, 
age of results and routing success. 
 
2.2  DSR-aided MFR to improve routing success 
 
It is possible that the location information received could 
be out-of-date and so we analyse the effect this has on a 
routing and ways to improve it.  For comparison, we use 
the MFR approach used in RoutePacket(p) and compare it 
with the technique proposed here.  It is worth noting that 
several other techniques have been examined to improve 
routing success (recursive search [12], GRA [13], and a 
planar sub-graph [14]); however, these do not examine 
success in the face of incorrect location information.  
Here, we propose a technique to handle not only small 
voids but also out-of-date location information.  
 
We also propose that if a packet reaches a node in which 
the MFR algorithm is unable to recover, then the node 
initiates a DSR [15]  search (with limited TTL) to find a 
node that is closer.  Upon finding one, the packet is 
source routed there and then resumes using MFR to 
continue to the destination.  If the DSR discovered path 
becomes invalid before the packet is routed completely, 
then the node will reinitiate discovery.  This is described 
in the DsrMfrRoutePacket function below. 
 
DSRMFRROUTEPACKET(P) 
1 if not routePacket(p) then 
2 if routes.exist(plocation) then 
3 use existing route 
4 else 
5 initiateDSRdiscovery(plocation, pdest) 
6 queuePacket(p) 
 endif 
  

A density of 200 nodes per square kilometre with 140.5m 
TX range almost guarantees connectivity.  Therefore, we 
set the TTL of the DSR search to three hops as we expect 
that routing failures will be due to a locally poor node 
arrangement rather than large voids.  The TTL could be 
varied depending on the node density but we do not 
examine this here. 
 
3. Methodology 
 
Simulation is widely accepted as a means for analysing ad 
hoc networking protocols due to the mathematical 
complexity of the scenario.  Here we use the GloMoSim 
(v2.03) simulator [16] that provides models of all the 
layers experienced in a real experiment.  We configure the 
simulator with the parameters shown in Figure 2 to 
represent that of a kilometre-squaed section of a large-
scale ad-hoc network. 
 
Figure 2: Simulation parameters 

Parameter Value Parameter Value 

Terrain 1000x1000 Number of 
nodes 200 

Propagation 
Model Two-ray Number of 

quorums 50 

Tx/Rx 
Range 140.5m 

threshold 
(number of 

slaves) 
5 

Mobility 
Model 

Random 
Waypoint 

vmin = 0.1m/s 
vmax = 3.0m/s 

Beacon rate 
Every 5 
seconds 
+ jitter

Simulation-
time 30 minutes 

Manage 
Component call 

rate 

Every 6 
seconds 
+ jitter

 
4.  Results 
 
Firstly, we examine (in Figure 3) the ability of the 
algorithm to survive over a 30-minute simulation given 
various node failure rates. 
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Figure 3: Survivability 



All four versions of the algorithm survive exceptionally 
well even given the exceptionally high failure rates, with 
up to 20% of the quorums surviving. 
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Figure 4: Overhead (packets/min) 

The overhead (Figure 4) is less than 10 packets per 
minute despite node mobility and node failures.  
Interestingly, the hybrid version of the algorithm incurs 
less overhead and we explain this as due to the reduction 
of several duplication packets into one when near the 
threshold, and the avoidance of the compaction and 
expansion problem explained earlier.  Perhaps even more 
interesting is that the multicast version has higher 
overhead than the hybrid given that one would expect this 
to provide the ideal solution.  This is explained as due to 
the hybrid algorithm maintaining an optimum between 
replication and quorum size.   
 
Figure 5 shows the overhead in terms of memory used per 
node.  Fifty quorums are distributed across the network 
and each node incurs a memory overhead of 
approximately 6.5 to 9.0 components per node given zero 
node failures. 
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Figure 5: Memory overhead (components/node) 

Figure 6 shows the number of queries returned by the 
quorum that were out-of-date due to an incomplete update 
of all components.  We then also show how this can be 
improved by querying at least two components and taking 
the most up-to-date result.  This simple technique halves 
the number of old-results returned. 
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Figure 6: Out-of-date results returned 

The overhead incurred to fully update the quorum 
depends on the number of components present.  Figure 7 
clearly shows the unicast algorithm maintains the lower 
number of components while the broadcast version 
maintains almost twice as many. 
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Figure 7: Update cost (packets) 

Figure 8 shows the results obtained when the information 
from the quorum is out-of-date by varying degrees.  With 
update intervals of two minutes, almost a third of packets 
do not reach their destination.  However, when we use the 
DSR-aided MFR routing algorithm, less than 3% of 
packets fail to reach their destination.   
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Figure 8: DSR-aided geodesic routing 

5.  Conclusion 
 
Existing algorithms are not comparable with the 
approaches we have presented here, as they do not 
address node mobility and failure that are the key 
motivation to our work.  Therefore, we present our results 
without comparison with them. 
 
The results show that the broadcast algorithm performs 
better in terms of survivability while the hybrid provides 



lower overhead.  Maximising survivability is the main 
priority and all the algorithms cope with failure rates 
significantly higher than expected.  Therefore, we 
recommend the use of the hybrid algorithm due to the 
avoidance of the expand-collapse problem and the ability 
to recover quicker than the unicast approach to a number 
of node failures. 
 
In terms of ability to query the quorum, the approach used 
to maintain the quorum had little effect of the results.  We 
found that approximately 4% of queries returned out of 
date results, but that this is halved by querying at least 
two components.  Further improvements could be made if 
elements of the quorum communicate with each other, or 
revision information is added to the beacon packet. 
 
We showed that by aiding the routing algorithm with 
DSR when the packet was unable to make any further 
progress forward, with a search radius of just three hops, 
increased the routing success by up to a factor of 10 even 
when the location information is up to two minutes old. 
 
This work demonstrates that it is possible to implement 
reliable quorum systems in ad-hoc networks with 
negligible overhead.  The technique used is a self-
organising system relying on an intelligent behaviour 
emerging from the individual actions of each component.  
We demonstrated the performance of the quorum for 
obtaining location information and measured the 
percentage of out-of-date data returned.  Location 
information does not necessarily have to be up-to-date as 
long as the node has not moved too far and the routing 
algorithm is able to recover.  One way to improve 
geodesic routing algorithms to cope with incorrect 
information would be to aid the algorithm with a limited 
DSR search when the node is not at the given location.  
Undertaking this simple improvement increased the 
routing success by up to a factor of ten; however, this will 
of course incur a higher routing overhead. 
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