

SELF-ORGANISING QUORUM SYSTEMS FOR AD HOC NETWORKS

Gareth Owen and Mo Adda
School of Computing, University of Portsmouth
Buckingham Building, Lion Terrace, Portsmouth

England, PO1 3HE
{gareth.owen, mo.adda}@port.ac.uk

ABSTRACT
There are many essential applications for quorum systems
in ad-hoc networks, such as that of location servers in
large-scale networks. Existing research proposes many
approaches to the problems, many of which are
incomplete, cumbersome, or incur significant cost. We
describe and analyse a self-organising quorum system that
creates an emergent intelligence to minimise overhead
and maximise survivability. We then examine the
quorum’s performance as a location server and suggest
improvements to the query mechanism and routing
algorithm using the information.

KEY WORDS
Ad-hoc networks, quorum systems, self-organising
systems.

1. Introduction

Ad-hoc networks are a means of networking computing
devices together without requiring any setup or existing
infrastructure. We define an ad hoc network as a graph of
a set of nodes, V, and a set of communication paths, E,
that vary through time as nodes move and fail.

),(ttt EVG = (1)

Multi-hop ad-hoc networks allow nodes to communicate
with each other without being in transmission range by
relaying their messages through intermediate nodes.
Routing in small networks is usually achieved through an
optimal broadcast mechanism; however, when the
network becomes large (>200 nodes), this form of
discovery becomes extremely expensive.

Routing in large-scale ad hoc networks can be achieved
through using location information from a GPS device.
Hou [1] describes Most-Forward-within-Radius (MFR)
whereby nodes are aware of their geographical position
(from GPS) and progressively route packets closer to the
location of the destination. Before a node can route
packets in this fashion, it will need to know an accurate
location for the destination. Many routing protocols
propose a function that maps a node’s ID to its location,
but whilst this is ideal when networks are static and such

a function can be defined, it is not when nodes are mobile
and networks span many kilometres. Location servers
solve this problem by maintaining location information of
a node that sends it frequent updates.

Several types of location server have been proposed to
provide this information. Li [2] divides the area into grid-
squares of different orders. Starting with the grid-square
that the node currently occupies, an order-one square, an
order-two square is the grid-square containing four of the
order-one squares. Li proposes that a number of nodes in
each order-n square should host the location information.
Therefore, information about a node’s location becomes
less densely available the further one is from its location.

Giordano proposed [3] the most promising approach to
location servers by allocating nodes within a specific
radius of a geographical point to serve as a location
server. Their work suggested modifying the radius
depending upon the node density so that a minimum
number of nodes participate; however, they did not
address issues such as node mobility, fault tolerance and
query success.

Finally, Stojmenovic proposed [4] that all nodes to the
north and south in a fixed-width column assume the role
of a location server. Location searches are performed by
routing packets horizontally so that they will eventually
intersect the vertical column. This approach is not
feasible for large-scale ad hoc networks because of the
large number of nodes. For a more complete review of
approaches to location servers, the reader is referred to
[5].

The approach shown in this paper is most similar to
Giordano’s work on home-regions but we further develop
the quorum system we proposed in [6] by looking at
alternative methods of replication and analysing its
performance as a location server. Methods of querying
the quorum and ways of mitigating the problem of
incomplete quorum updates, along with a method to
improve routing success in the face of out-dated
information are also addressed.

2. Quorum systems in ad hoc networks

In this paper, we propose an approach that is similar to
that of the home region but that addresses many of the
problems associated with it. Instead of allocating a
circular region of nodes as the hosts of a location server,
we say that nodes directly adjacent to a particular
geographic point should be responsible. This permits a
small number of nodes to be used without knowledge of
node density.

A node sets up a location server by sending an initiation
packet toward its home location that will be received by
the node closest to the home location. This node will then
assume the role of master of the server, and as it moves
the role is transferred to a node that is closer to the home
location. Migration is the term we call this process of
quorum components moving from node-to-node to remain
close to a geographic point.

Presently, with only a master, failure of the node hosting
it could result in failure of the server so it is important that
the data is replicated. Immediate neighbours of the
master are sent a duplication packet from the master and
assume the role of a slave; however, the server as a whole
needs to make sure that enough replicated copies are kept
in the event of node failures so that the data is not lost.

Formally, we define our quorum or location server as a
set Qt where Mt and St are the sets of nodes that host
master and slave components respectively:

tttt SMVQ ∪=⊆ (2)

Such maintenance of what is essentially a quorum [7] is
very costly process in wired networks let alone wireless,
and so a novel approach is needed.

We draw our inspiration from ants in a colony who find
their way to food by laying pheromones for each other to
follow [8]. These pheromones serve to modify the
environment so that other ants may detect these
modifications avoiding the need for directed
communication. Drawing upon this to develop a location
server, we suggest that instead of components of a
quorum communicating with each other they modify their
environment. As every node has to beacon its location to
its neighbours for routing to occur, we add to this beacon
packet (which we call the environment) an itinerary of
location server components held at that particular node.
A node’s itinerary, Iv,t, is simply a list of identifiers for
quorums which it hosts a component of. Therefore, a
beacon frame can be described as the n-tuple:

},,{ ,, tvyxtv IvvB = (3)

Each node maintains a list of all received beacons so that
each component of the quorum is able to examine a list of
which nodes hold which components. Beacons stored in
the list expire after twice the beacon interval.

The master is the only node permitted to duplicate as it is
most likely to be in the center of the quorum and so able
to correctly count the number of components. When the
number of neighbours hosting components falls below a
threshold, the master will begin a duplication phase to
raise this number.

We now have a set of quorum components who do not
directly communicate with each other, but who act in a
self-organising manner forming an emergent intelligence
(like ants). Each attempts to get as close as possible to
the home location by moving from node to node (except
where a destination node is already in possession of one).
Each component assumes the role of master and
responsibility for duplicating if it finds itself, through
observing its environment, to be on the closest node to the
home location. If it realises it is no longer the closest then
it will automatically remove its responsibility and assume
the role of a slave. We illustrate the master and slaves,
along with migration in Figure 1, where the master is held
on the closest node to the point and has duplicated its data
to several slaves on adjacent nodes.

Figure 1: Illustration of quorum and component

migration

In addition to the duplication task, the components
perform one more tasked based upon information
gathered from the beacons. The components self delete
the quorum to stop a large number of replicated
components consuming resources. They do this by each
monitoring the number of replicas, and if they rise above
a threshold then that component will delete itself.

This process is performed on each node at regular
intervals for each component held, as described by the
ManageComponent(c) function:

MANAGECOMPONENT(c)
1 n ← closerNeighbor(homeLocation)
2 if exists(n) and hasComponent(n)
3 then crole ← slave
4 else crole ← master
5 if exists(n) and !hasComponent(n)
6 then c.migrate(n)

M

S

S

S

7 else if crole=master and
hasComponent(all) < threshold

8 then replicate(c)
9 else if crole=slave and

hasComponent(all) > threshold
10 then delete(c)

The Replicate(c) function has several definitions
representing several variations of the algorithm. The
unicast variant sends a replica to the first node in its
neighbour database without a component already. It is
expected this approach will not survive well due to the
period it would take to replace a number of components.

REPLICATE(C) - UNICAST
1 for all n in neighbors
2 if not hasComponent(n) then
3 unicast(c)
4 exit forloop
5 endif
6 end for

The broadcast variant sends replicas to all neighbours in
the vicinity and is expected to survive better due to it
being able to recover from a number of lost components
with just one packet.

REPLICATE(C) - BROADCAST
1 broadcast(c)

The broadcast algorithm should perform better in the face
of high failure rates; however, if just one component is
lost from the quorum then a broadcast could increase the
number of components significantly over the threshold,
which would then require pruning causing an expand and
collapse scenario to occur. Therefore, we also produce a
hybrid approach that uses broadcast when the number of
components is low and unicast when it is nearer the
threshold.

REPLICATE(C) - HYBRID
1 if hasComponent(all) > 50% of threshold
2 then unicast(c)
3 else broadcast(c)

Finally, we also examine using multicast for replication of
the data. When a node senses that there is less than the
threshold of slaves, then it will create a multicast packet
to a number of neighbours defined by the threshold minus
the number of slaves. The neighbours chosen will be
those who do not all ready have a component.

REPLICATE(C) - MULTICAST
1 needed ← threshold – hasComponent(all)
2 destcount ← 0
3 while needed > 0 and neigh not equal null
4 if not hasComponent(neigh) then
5 cdests[destcount++] = neigh
6 needed--

7 endif
8 neigh ← neighnext
9 endwhile

We can define the setup cost, CSetup, as the number of
hops to the home location, h, plus one for a broadcast
duplication packet (eq. 4) or threshold packets for the
unicast (eq. 5). The maintenance cost of the quorum,
CMaintenance, is defined (eq. 6) as the number of migrations
of components due to node mobility (m) plus the number
of replication packets (r) to maintain the threshold.

 1+= hC Setup (4)
thresholdhC Setup += (5)

rmC enanceMa +=int (6)

Keeping with the simplicity of the current algorithm, we
follow the same philosophy here to develop a quorum
query mechanism. When a packet’s destination location
is not known, it is routed towards the home location and
upon encountering a node containing a quorum
component for the destination, it updates the packet (p)
with the node location and routes it towards. We describe
this in the RoutePacket(p) function below.

ROUTEPACKET(p)
1 c ← component(pdest)
2 if exists(c)
3 then plocation ← clocation
4 if exists(plocation)
5 then route to closestNeighbor(plocation)
6 if not exists(plocation)
7 then route to

closestNeighbor(homeLocation(pdest))

2.1 Query and update mechanisms

The mechanism to update the quorum is equally simple
and based upon a zero knowledge approach to minimise
overhead. When receiving a new update packet, a node
simply updates itself if it holds a component and then
rebroadcasts it. This way, each element of a quorum
should receive a copy and the number of overhead
packets will be equal to the number of components
present (qcomponent) as shown in equation 7.

 componentsupdate qhC += (7)

This approach does not guarantee a complete quorum
update however due to its self-organising approach.
Therefore, we examine the age of the data returned and
propose a technique that we call Multi-query (MQuery) to
try to reduce the likelihood of retrieving old data.
MQuery requires every quorum query to attempt to query
at least two quorum components and take the most up-to-
date result. Simply, if a query is received first by a
component, then the packet will be routed to the next

closer node to the home location. Hopefully, this node
will also be a participant in the quorum and therefore
could have more correct data. In our results, we examine
the effect this has on the age of data.

RECVUPDATEPACKET(p)
1 c ← Component(pnodeID)
2 if not exist(c) or seenBefore(p) then ignore
3 if prevision ≤ crevision then ignore
4 cdata ← pdata
5 broadcast(p)

Quorum systems are traditionally analysed based upon
their performance in terms of load [9], fault-tolerance
[10] and failure probability [11]. Therefore, we measure
the survivability or failure probability of the quorum over
30-minutes and the overhead in packets per minute of one
quorum.

In addition to analysing the performance as a quorum, we
need to look at the ability of this approach to act as a
location server for large-scale ad hoc networks. The
metrics we will measure are update cost, query success,
age of results and routing success.

2.2 DSR-aided MFR to improve routing success

It is possible that the location information received could
be out-of-date and so we analyse the effect this has on a
routing and ways to improve it. For comparison, we use
the MFR approach used in RoutePacket(p) and compare it
with the technique proposed here. It is worth noting that
several other techniques have been examined to improve
routing success (recursive search [12], GRA [13], and a
planar sub-graph [14]); however, these do not examine
success in the face of incorrect location information.
Here, we propose a technique to handle not only small
voids but also out-of-date location information.

We also propose that if a packet reaches a node in which
the MFR algorithm is unable to recover, then the node
initiates a DSR [15] search (with limited TTL) to find a
node that is closer. Upon finding one, the packet is
source routed there and then resumes using MFR to
continue to the destination. If the DSR discovered path
becomes invalid before the packet is routed completely,
then the node will reinitiate discovery. This is described
in the DsrMfrRoutePacket function below.

DSRMFRROUTEPACKET(P)
1 if not routePacket(p) then
2 if routes.exist(plocation) then
3 use existing route
4 else
5 initiateDSRdiscovery(plocation, pdest)
6 queuePacket(p)
 endif

A density of 200 nodes per square kilometre with 140.5m
TX range almost guarantees connectivity. Therefore, we
set the TTL of the DSR search to three hops as we expect
that routing failures will be due to a locally poor node
arrangement rather than large voids. The TTL could be
varied depending on the node density but we do not
examine this here.

3. Methodology

Simulation is widely accepted as a means for analysing ad
hoc networking protocols due to the mathematical
complexity of the scenario. Here we use the GloMoSim
(v2.03) simulator [16] that provides models of all the
layers experienced in a real experiment. We configure the
simulator with the parameters shown in Figure 2 to
represent that of a kilometre-squaed section of a large-
scale ad-hoc network.

Figure 2: Simulation parameters

Parameter Value Parameter Value

Terrain 1000x1000 Number of
nodes 200

Propagation
Model Two-ray Number of

quorums 50

Tx/Rx
Range 140.5m

threshold
(number of

slaves)
5

Mobility
Model

Random
Waypoint

vmin = 0.1m/s
vmax = 3.0m/s

Beacon rate
Every 5
seconds
+ jitter

Simulation-
time 30 minutes

Manage
Component call

rate

Every 6
seconds
+ jitter

4. Results

Firstly, we examine (in Figure 3) the ability of the
algorithm to survive over a 30-minute simulation given
various node failure rates.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Node pow er failures per minute

Lo
ss

 p
er

ce
nt

ag
e

 .

Unicast

Broadcast

Hybrid

Multicast

Poly. (Unicast)

Poly. (Broadcast)

Poly. (Hybrid)

Poly. (Multicast)

Figure 3: Survivability

All four versions of the algorithm survive exceptionally
well even given the exceptionally high failure rates, with
up to 20% of the quorums surviving.

0

2

4

6

8

10

12

0 50 100 150 200 250

Node pow er failures per minute

Pa
ck

et
s

pe
r m

in
ut

e

 .

Unicast

Broadcast

Hybrid

Multicast

Linear (Unicast)

Linear (Broadcast)

Linear (Hybrid)

Linear (Multicast)

Figure 4: Overhead (packets/min)

The overhead (Figure 4) is less than 10 packets per
minute despite node mobility and node failures.
Interestingly, the hybrid version of the algorithm incurs
less overhead and we explain this as due to the reduction
of several duplication packets into one when near the
threshold, and the avoidance of the compaction and
expansion problem explained earlier. Perhaps even more
interesting is that the multicast version has higher
overhead than the hybrid given that one would expect this
to provide the ideal solution. This is explained as due to
the hybrid algorithm maintaining an optimum between
replication and quorum size.

Figure 5 shows the overhead in terms of memory used per
node. Fifty quorums are distributed across the network
and each node incurs a memory overhead of
approximately 6.5 to 9.0 components per node given zero
node failures.

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250

Node pow er failures per minute

A
ve

ra
ge

 it
em

s
pe

r n
od

e

. Unicast

Broadcast

Hybrid

Multicast

Linear (Unicast)

Linear (Broadcast)

Linear (Hybrid)

Linear (Multicast)

Figure 5: Memory overhead (components/node)

Figure 6 shows the number of queries returned by the
quorum that were out-of-date due to an incomplete update
of all components. We then also show how this can be
improved by querying at least two components and taking
the most up-to-date result. This simple technique halves
the number of old-results returned.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0 100 200 300 400 500 600 700

Pause time

Pe
rc

en
ta

ge
 o

f q
ue

rie
s UC

BC
UC+MQuery
BC+MQuery
Linear (UC)
Linear (BC)
Linear (UC+MQuery)
Linear (BC+MQuery)

Figure 6: Out-of-date results returned

The overhead incurred to fully update the quorum
depends on the number of components present. Figure 7
clearly shows the unicast algorithm maintains the lower
number of components while the broadcast version
maintains almost twice as many.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Pause time

Pa
ck

et
s

pe
r u

pd
at

e

UC
BC
Linear (BC)
Linear (UC)

Figure 7: Update cost (packets)

Figure 8 shows the results obtained when the information
from the quorum is out-of-date by varying degrees. With
update intervals of two minutes, almost a third of packets
do not reach their destination. However, when we use the
DSR-aided MFR routing algorithm, less than 3% of
packets fail to reach their destination.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0 20 40 60 80 100 120 140

Update interval

R
ou

tin
g

fa
ilu

re

 .

Without DSR
With DSR
Poly. (Without DSR)
Log. (With DSR)

Figure 8: DSR-aided geodesic routing

5. Conclusion

Existing algorithms are not comparable with the
approaches we have presented here, as they do not
address node mobility and failure that are the key
motivation to our work. Therefore, we present our results
without comparison with them.

The results show that the broadcast algorithm performs
better in terms of survivability while the hybrid provides

lower overhead. Maximising survivability is the main
priority and all the algorithms cope with failure rates
significantly higher than expected. Therefore, we
recommend the use of the hybrid algorithm due to the
avoidance of the expand-collapse problem and the ability
to recover quicker than the unicast approach to a number
of node failures.

In terms of ability to query the quorum, the approach used
to maintain the quorum had little effect of the results. We
found that approximately 4% of queries returned out of
date results, but that this is halved by querying at least
two components. Further improvements could be made if
elements of the quorum communicate with each other, or
revision information is added to the beacon packet.

We showed that by aiding the routing algorithm with
DSR when the packet was unable to make any further
progress forward, with a search radius of just three hops,
increased the routing success by up to a factor of 10 even
when the location information is up to two minutes old.

This work demonstrates that it is possible to implement
reliable quorum systems in ad-hoc networks with
negligible overhead. The technique used is a self-
organising system relying on an intelligent behaviour
emerging from the individual actions of each component.
We demonstrated the performance of the quorum for
obtaining location information and measured the
percentage of out-of-date data returned. Location
information does not necessarily have to be up-to-date as
long as the node has not moved too far and the routing
algorithm is able to recover. One way to improve
geodesic routing algorithms to cope with incorrect
information would be to aid the algorithm with a limited
DSR search when the node is not at the given location.
Undertaking this simple improvement increased the
routing success by up to a factor of ten; however, this will
of course incur a higher routing overhead.

References

[1] T.-C. Hou & V. Li, Transmission range control i

multihop packet radio networks, IEEE
Transactions on Communications, 34 (1), 1986,
38-44.

[2] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger & R.
Morris, A Scalable Location Service for
Geographic Ad Hoc Routing. Proceedings of
6th ACM International Conference on Mobile
Computing and Networking (MobiCom), 2000.

[3] S. Giordano & M. Hamdi Mobility Management: The
Virtual Home Region, EPFL, Lausanne,
Switzerland(1999).

[4] I. Stojmenovic A scalable quorum based location
update scheme for routing in ad hoc wireless
networks, University of Ottawa(1999).

[5] T. Camp, J. Boleng & L. Wilcox, Location
Information Services in Mobile Ad Hoc

Networks. Proceedings of IEEE International
Conference on Communications, 2002, 3318-
3324.

[6] G. H. Owen & M. Adda, Quorum based
geographically static data storage in ad-hoc
networks. Proceedings of International Network
Conference, Plymouth, UK, 2006.

[7] D. Malkhi, M. K. Reiter, A. Wool & N. Wright,
Probabilistic Quorum Systems. Proceedings of
Symposium on Principles of Distributed
Computing, 1997, 267-273.

[8] S. Johnson, Emergence: The Connected Lives of Ants,
Brains, Cities and Software (Scribner 2001).

[9] M. Naor & A. Wool, The load, capacity and
availability of quorum systems., SIAM Journal of
Computing, 27 (2), 1998, 423-447.

[10] D. Barbara & H. Garcia-Molina, The vulnerability of
vote assignments, ACM Transactions on
Computer Systems, 4 (3), 1986, 187-213.

[11] D. Peleg & A. Wool, The availability of quorum
systems, Information and Computation, 123 (2),
1995, 210-233.

[12] G. Finn Routing and addressing problems in large
metropolitan-scale internetworks,
USC/Information Sciences Institute(1987).

[13] R. Jain, A. Puri & R. Sengupta, Geographical
Routing Using Partial Information for Wireless
Ad Hoc Networks, Ieee Personal
Communications, 8 (1), 2001, 48-57.

[14] B. Karp & H. T. Kung, GPSR: Greedy Perimeter
Stateless Routing for Wireless Networks.
Proceedings of Mobile computing and
networking; MobiCom 2000, Boston, MA, 2000,
243-254.

[15] D. Johnson & D. Maltz, Dynamic source routing in
wireless ad-hoc networks.in. Mobile Computing.
T. Imelin-sky&H. Korth, Kluwer Academic
Publishers, 1996 153-181.

[16] X. Zeng, R. Bagrodia & M. Gerla, GloMoSim: a
library for parallel simulation of large-scale
wireless networks. Proceedings of 12th
Workshop of Parallell and Distributed
Simulations - PADS '98, 1998.

