
Simulation of quorum systems in ad-hoc networks

Gareth Huw Owen Mo Adda
 School of Computing, University of Portsmouth,

Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, UK.
Tel: +442392 846782, Fax: +442392 846364, E-mail: {gareth.owen, mo.adda}@port.ac.uk

Abstract
There are many essential applications for quorum systems
in ad-hoc networks, such as that of location servers in
large-scale networks. Existing research proposes many
approaches to the problems, many of which are incomplete,
cumbersome, or incur significant cost. We describe and
analyse a self-organising quorum system that creates an
emergent intelligence to minimize overhead and maximize
survivability. We then examine the quorum’s performance
as a location server and suggest improvements to the query
mechanism and to the routing algorithm using the
information.

Keywords:
Ad-hoc networks, quorum systems, self-organising
systems.

Introduction

Ad-hoc networks are a means of networking computing
devices together without requiring any setup or existing
infrastructure. We define an ad-hoc network as a graph of a
set of nodes, V, and a set of communication paths, E, that
vary through time as nodes move and fail.

),(ttt EVG = (1)

Multi-hop ad-hoc networks allow nodes to communicate
with each other without being within the transmission range
by relaying their messages through intermediate nodes.
Routing in small networks is usually achieved through an
optimal broadcast mechanism; however, when the network
increases in size over 200 nodes, this form of discovery
becomes extremely expensive.

Mainly, location-based routing in large-scale ad-hoc
networks can be achieved through using location
information from a GPS device. Nodes can address each
other using their locations, by routing packets to neighbours
that are closer than they are. However, before a node can
route packets in this fashion, it will need to know an
accurate location for the destination. Many routing
protocols propose a function that maps a node’s ID to its
location. While this is ideal for networks that are static, it is
not the case when nodes are mobile and networks span
many kilometres. Location servers solve this problem by
maintaining somehow up-to-date locations of nodes that
sends frequent updates.

Several types of location server have been proposed to
provide this information. Li et al [1] divided the area into
grid-squares of different orders. Starting with the grid-
square that the node currently occupies, an order-one
square. An order-two square is the grid-square containing
four of the order-one squares. Li proposed that a number of
nodes in each order-n square should host the location
information. Therefore, information about a node’s location
becomes less densely available the further you are from its
location.

Giordano proposed [2] the most promising approach to
location servers by allocating nodes within a specific region
to the role of location server. However, they did not
address issues such as node mobility, fault tolerance and
query success.

Finally, Stojmenovic proposed [3] that all nodes to the
north and south in a fixed-width column assume the role of
a location server. Location searches are then performed by
routing packets in a horizontal fashion that will eventually
intersect the vertical column. This approach is not feasible
for a ad-hoc network of large scale. For a more complete
review of approaches to location servers, the reader is
referred to Camp et al [4].

The approach shown in this paper expands Giordano’s
work on home-regions and develops a technique to provide
a low-cost quorum that handles node mobility and failure.
Also addressed are means of querying the quorum and ways
of mitigating the problem of incomplete quorum updates
along with a method to improve routing success in the face
of out-dated information.

Quorum-systems in ad-hoc networks

In this paper, we propose an approach that is similar to that
of the home region but that addresses many of the problems
associated with it. Instead of allocating a circular region of
nodes as the hosts of a location server, we say that nodes
directly adjacent to a particular geographic point should be
responsible. As a result, only a small number of nodes are
imposed upon rather than a large number in situations of
high node density, or none in low-density scenarios.

A node sets up a location server by sending an initiation
packet toward its home location. This packet will be
received by the node closest to the point, which will then

assume the role of master of the server. As the host node
moves, the role will be transferred to the node that is closest
to the home location. Migration is the term referring to the
process of quorum components moving from node-to-node
to remain close to a geographic point.

Presently, with only a master, failure of the node hosting it
could result in failure of the server so it is important that the
datum is replicated. Immediate neighbours of the master
are sent a duplication packet from the master and assume
the role of a slave; however, the server as a whole needs to
make sure that enough replicated copies are kept in the
event of node failures so that the data is not lost.

Formally, we define our quorum or location server as a set
Qt where Mt and St are the sets of nodes that host master
and slave components respectively:

tttt SMVQ ∪=⊆ (2)

Such maintenance of what is essentially a quorum [5] is
very costly process in wired networks let alone wireless and
as a result, a novel approach is needed. We draw our
inspiration from ants in a colony who find their way to food
by laying pheromones for each other to follow [6]. These
pheromones serve to modify the environment so that other
ants may detect these modifications avoiding the need for
directed communication. Drawing upon this to develop a
location server, we suggest that instead of components of a
quorum communicating with each other they modify their
environment As every node has to beacon its location to
its neighbours for routing to occur, we add to this beacon
packet (the environment) a list of location server
components held at that particular node. A node’s itinerary,
Iv,t, is simply a list of identifiers for quorums which it hosts
a component of. Therefore, a beacon frame can be
described as the n-tuple containing the node’s location (vx,
vy) and the itinerary:

},,{ ,, tvyxtv IvvB = (3)

Each node maintains a set of all received beacons so that
each component of the quorum is able to examine a list of
which nodes hold which components.

We allocate the duplication task solely to the master to
avoid the situation of excess replication by ill-informed
slaves who are only able to see the beacons of the outskirt
components. As the master is always the closest
component (center), it is best placed to monitor the contents
of its neighbours. When the number of neighbours hosting
components falls below a threshold, the master will begin a
replication phase to raise this number.

We now have a set of quorum components who do not
directly communicate with each other, but who act in a self-
organising manner forming an emergent intelligence (like
ants). Each attempts to get as close as possible to the home
location by moving from node to node (except where a

destination node is already in possession of one). Each
component assumes the role of master and responsibility
for duplicating if it finds itself, through observing its
environment, to be on the closest node to the home
location. If it realises it is not the closest then it will
automatically remove its responsibility and assume the role
of a slave. We illustrate the master and slaves, along with
migration in Figure 1, where the master is held on the
closest node to the point and has duplicated its data to
several slaves on adjacent nodes.

Figure 1: Illustration of quorum and component migration

In addition to the duplication task, the components perform
one more tasked based upon information gathered from the
beacons. The components self prune the quorum to stop a
large number of replicated components consuming
resources. They do this by each monitoring the number of
replicas, and if they rise above a threshold then that
component will die.

This process is performed on each node, for each
component held, at regular intervals as described by the
ManageComponent function below.

MANAGECOMPONENT(c)
1 n = closerNeighbour(homeLocation)
2 if exists(n) and hasComponent(n)
3 then crole = slave
4 Else crole = master
5 if exists(n) and !hasComponent(n)
6 then c.migrate(n)
7 else if crole=master and hasComponent(all) <

threshold
8 then replicate(c)
9 else if crole=slave and hasComponent(all) > threshold
10 then delete(c)

The replicate(c) function has several definitions
representing several variations of the algorithm. The
unicast variant sends a replica to the first node in its
neighbour database without a component. Replicating one
item at a time, like the unicast approach, is not expected to
survive well due to the time taken to recover from a
significant number of losses.
.

REPLICATE(C) - UNICAST
1 for all n in neighbours
2 if !hasComponent(n)

M

S

S

S

3 then unicast(c)
4 exit forloop
5 end for

The broadcast variant sends replicas to all neighbours in the
vicinity and is expected to survive better due to it being
able to recover from a number of lost components with just
one packet.

REPLICATE(C) - BROADCAST
1 broadcast(c)

The broadcast algorithm should perform better in the face
of high failure rates: however, if just one component is lost
from the quorum then a broadcast could increase the
number of components significantly over the threshold
which would then require pruning, causing an expand and a
collapse scenario to occur. Therefore, we also inroduce a
hybrid approach that uses broadcast when the number of
components is low and unicast when it is nearer the
threshold.

REPLICATE(C) - HYBRID
1 if hasComponent(all) > 50% of threshold
2 then unicast(c)
3 else broadcast(c)

We can define the setup cost, CSetup, as the number of hops
to the home location, h, plus one for a broadcast duplication
packet (eq. 4) or threshold packets for the unicast (eq. 5).
The maintenance cost of the quorum, CMaintenance, is defined
(eq. 6) as the number of migrations of components due to
node mobility, m, plus the number of replication packets, r,
to maintain the threshold.

1+= hC Setup (4)

thresholdhC Setup += (5)

rmC enanceMa +=int (6)

Keeping with the simplicity of the current algorithm, we
follow the same philosophy here to develop a quorum query
mechanism. When a packet’s destination location is not
known, it is routed towards the home location and upon
encountering a node containing a quorum component for
the destination, it updates the packet with the node location
and routes it towards. We describe this in the RoutePacket
function below.

ROUTEPACKET(p)
1 c = component(pdest)
2 if exists(c)
3 Then plocation = clocation
4 if exists(plocation)
5 Then route to closestNeighbour(plocation)
6 if !exists(plocation)
7 then route to

closestNeighbour(homeLocation(pdest))

The mechanism to update the quorum is equally simple and
based upon a zero knowledge approach to minimise
overhead. When receiving a new update packet, a node
simply updates itself if it holds a component and then
rebroadcasts it. This way, each element of a quorum should
receive a copy and the number of overhead packets will be
equal to the number of components present, qcomponent, as
shown in equation 7.

componentsupdate qhC += (7)

Of course, this approach does not guarantee a complete
quorum update and so we examine this in our results.

RECVUPDATEPACKET(p)
1 c = Component(pnodeID)
2 if !exists(c) or seenBefore(p) then ignore
3 if prevision ≤ crevision then ignore
4 cdata = pdata
5 broadcast(p)

Quorum systems are traditionally analysed based upon their
performance in terms of load [7], fault-tolerance [8] and
failure probability [9, 10]. Therefore, we measure the
survivability or failure probability of the quorum over 30-
minutes. The overhead or load in packets per minute of any
one quorum, and the memory overhead per node in our
scenario is measured. Finally, the fault-tolerance of the
quorum by querying it and measuring the number of out-of-
date results returned.

In addition to analysing the performance as a quorum, we
need to look at the ability of this approach to act as a
location server for large-scale ad-hoc networks. The
metrics we will measure are update cost, query success and
routing success. As it is possible that the location
information received could be out-of-date, we analyse the
effect this has on a geodesic routing algorithm. We also
propose that if a packet reaches the last known location of a
node to find it is not there, then the algorithm switches to
using DSR [11] to find the destination with a search radius
of three hops We therefore examine the effect out-of-date
data has on routing and how this simple DSR-aided
modification improves.

Methodology

Simulation is widely accepted as a means for analysing ad-
hoc networking protocols due to the mathematical
complexity of the scenario. Here we use the Glomosim
(v2.03) simulator [12] that provides models of all the layers
experienced in a real experiment. We configure simulator
with the parameters shown in Figure 2 to represent that of a
kilometre-squared section of a large-scale ad-hoc network.

Figure 2: Simulation parameters

Parameter Value Parameter Value

Terrain 1000x1000 Number of
nodes 200

Propagation
Model Two-ray Number of

quorums 50

Tx/Rx
Range 140.5m

threshold
(number of

slaves)
5

Mobility
Model

Random
Waypoint

vmin = 0.1m/s
vmax = 3.0m/s

Beacon rate
Every 5
seconds
+ jitter

Simulation-
time 30 minutes

Manage
Component call

rate

Every 6
seconds
+ jitter

Results

Firstly, we examine (in Figure 3) the ability of the
algorithm to survive over a 30-minute simulation given
various node failure rates.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Node power failures per minute

Lo
ss

 p
er

ce
nt

ag
e

Unicast

Broadcast

Hybrid

Poly. (Unicast)

Poly. (Broadcast)

Poly. (Hybrid)

Figure 3: Survivability

All three versions of the algorithm survive exceptionally
well even given extremely high failure rates with up to 20%
of the quorums surviving despite every node in the network
failing once per minute.

0

2

4

6

8

10

12

0 50 100 150 200 250

Node power failures per minute

Pa
ck

et
s

pe
r m

in
ut

e
 Unicast

Broadcast

Hybrid

Linear (Unicast)

Linear (Broadcast)

Linear (Hybrid)

Figure 4: Overhead (packets/min)

The overhead (Figure 4) is less than 10 packets per minute
despite node mobility and node failures. Interestingly, the
hybrid version of the algorithm incurs less overhead and we
explain this as due to the reduction of several duplication
packets into one when near the threshold, and the
avoidance of the compaction and expansion problem
explained earlier.

Figure 5 shows the overhead in terms of memory used per
node. Fifty quorums are distributed across the network and
each node incurs a memory overhead of approximately 6.5-
9 components per node given zero node failures.

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250

Node power failures per minute

A
ve

ra
ge

 it
em

s
pe

r n
od

e

Unicast

Broadcast

Hybrid

Linear (Unicast)

Linear (Broadcast)

Linear (Hybrid)

Figure 5: Memory overhead (components/node)

Figure 6 shows the number of queries returned by the
quorum that were out-of-date due to an incomplete update
of all components. We then also show how this can be
improved by querying at least two components and taking
the most up-to-date result. This simple technique halves
the number of old-results returned.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

0 100 200 300 400 500 600 700

Pause time

Pe
rc

en
ta

ge
 o

f q
ue

r UC
BC
UC+MQuery
BC+MQuery
Linear (UC)
Linear (BC)
Linear (UC+MQuery)
Linear (BC+MQuery)

Figure 6: Out-of-date results returned

The overhead incurred to update the quorum wholly
depends on the number of components present in the
quorum. Figure 7 clearly shows the unicast algorithm
maintains the lower number of components while the
broadcast version maintains almost twice as many.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Pause time

Pa
ck

et
s

pe
r u

pd
a

UC
BC
Linear (BC)
Linear (UC)

Figure 7: Update cost (packets)

Figure 8 shows the results obtained when the information
from the quorum is out-of-date by varying degrees. With
update intervals of two minutes, almost a third of packets
do not reach their destination. However, when we add the
DSR module to the routing algorithm, less than 3% of
packets fail to reach their destination.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0 20 40 60 80 100 120 140

Update interval

Ro
ut

in
g

fa
ilu

re

Without DSR
With DSR
Poly. (Without DSR)
Log. (With DSR)

Figure 8: DSR-aided geodesic routing

Conclusion

The results show that the broadcast algorithm performs
better in terms of survivability while the hybrid provides
lower overhead. Maximising survivability is the main
priority and all the algorithms cope with failure rates
significantly higher than those expected to occur in real-
life. Therefore, we recommend the use of the hybrid
algorithm due to the avoidance of the expand-collapse
problem and the ability to recover quicker than the unicast
approach to a number of node failures.

In terms of ability to query the quorum, the approach used
to maintain the quorum had little effect of the results. We
found that approximately 4% of queries returned out of date
results, but that this is halved by querying at least two
components. Further improvements could be made if
elements of the quorum communicate with each other, or
revision information is added to the beacon packet.

Routing using a simple geodesic algorithm performs poorly
in networks of less than 200 nodes per square kilometre.
We showed that by aiding the algorithm with DSR when
the packet was unable to make any further progress
forward, with a search radius of just three hops, increased
the routing success by up to a factor of 10 even when the
location information is up to two minutes old.

Our work demonstrates that it is possible to implement
reliable quorum systems in ad-hoc networks with negligible
overhead. The technique used is a self-organising system
relying on an intelligent behaviour emerging from the
individual actions of each component. We demonstrated
the performance of the quorum for obtaining location
information and measured the percentage of out-of-date
data returned. Location information does not necessarily
have to be up-to-date as long as the node has not moved too
far and the routing algorithm is able to recover. One way to
improve geodesic routing algorithms to cope with incorrect
information would be to aid the algorithm with a limited
DSR search when the node is not at the given location.
Undertaking this simple improvement increased the routing
success by up to a factor of ten; however, this will of course
incur a higher routing overhead.

References

[1] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger,
and R. Morris, "A Scalable Location Service for
Geographic Ad Hoc Routing," presented at 6th
ACM International Conference on Mobile
Computing and Networking (MobiCom), 2000.

[2] S. Giordano and M. Hamdi, "Mobility
Management: The Virtual Home Region," EPFL,
Lausanne, Switzerland, 1999.

[3] I. Stojmenovic, "A scalable quorum based location
update scheme for routing in ad hoc wireless
networks," University of Ottawa, 1999.

[4] T. Camp, J. Boleng, and L. Wilcox, "Location
Information Services in Mobile Ad Hoc
Networks," presented at IEEE International
Conference on Communications, 2002.

[5] D. Malkhi, M. K. Reiter, A. Wool, and N. Wright,
"Probabilistic Quorum Systems," presented at
Symposium on Principles of Distributed
Computing, 1997.

[6] S. Johnson, Emergence: The Connected Lives of
Ants, Brains, Cities and Software: Scribner, 2001.

[7] M. Naor and A. Wool, "The load, capacity and
availability of quorum systems.," SIAM Journal of
Computing, vol. 27, pp. 423-447, 1998.

[8] D. Barbara and H. Garcia-Molina, "The
vulnerability of vote assignments," ACM
Transactions on Computer Systems, vol. 4, pp.
187-213, 1986.

[9] D. Peleg and A. Wool, "The availability of quorum
systems," Information and Computation, vol. 123,
pp. 210-233, 1995.

[10] D. Barbara and H. Garcia-Molina, "The reliability
of vote mechanisms," IEEE Transactions on
Computers, vol. 36, pp. 1197-1208, 1987.

[11] D. Johnson and D. Maltz, "Dynamic source
routing in wireless ad-hoc networks," in Mobile
Computing: Kluwer Academic Publishers, 1996.

[12] "GloMoSim - Global Mobile Information Systems
Simulation Library," UCLA Parallel Computing
Laboratory.

