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Abstract  
There are many essential applications for quorum systems 
in ad-hoc networks, such as that of location servers in 
large-scale networks.  Existing research proposes many 
approaches to the problems, many of which are incomplete, 
cumbersome, or incur significant cost.  We describe and 
analyse a self-organising quorum system that creates an 
emergent intelligence to minimize overhead and maximize 
survivability.  We then examine the quorum’s performance 
as a location server and suggest improvements to the query 
mechanism and to the routing algorithm using the 
information. 
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Introduction 

Ad-hoc networks are a means of networking computing 
devices together without requiring any setup or existing 
infrastructure.  We define an ad-hoc network as a graph of a 
set of nodes, V, and a set of communication paths, E, that 
vary through time as nodes move and fail. 
 

),( ttt EVG =  (1) 

 
Multi-hop ad-hoc networks allow nodes to communicate 
with each other without being within the transmission range 
by relaying their messages through intermediate nodes.  
Routing in small networks is usually achieved through an 
optimal broadcast mechanism; however, when the network 
increases in size over 200 nodes, this form of discovery 
becomes extremely expensive.   
 
Mainly, location-based routing in large-scale ad-hoc 
networks can be achieved through using location 
information from a GPS device.  Nodes can address each 
other using their locations, by routing packets to neighbours 
that are closer than they are.  However, before a node can 
route packets in this fashion, it will need to know an 
accurate location for the destination.  Many routing 
protocols propose a function that maps a node’s ID to its 
location. While this is ideal for networks that are static, it is 
not the case when nodes are mobile and networks span 
many kilometres.  Location servers solve this problem by 
maintaining somehow up-to-date locations of nodes that 
sends frequent updates.   

 
Several types of location server have been proposed to 
provide this information.  Li et al [1]  divided the area into 
grid-squares of different orders.  Starting with the grid-
square that the node currently occupies, an order-one 
square. An order-two square is the grid-square containing 
four of the order-one squares.  Li proposed that a number of 
nodes in each order-n square should host the location 
information. Therefore, information about a node’s location 
becomes less densely available the further you are from its 
location.  
 
Giordano proposed [2] the most promising approach to 
location servers by allocating nodes within a specific region 
to the role of location server.  However, they did not 
address issues such as node mobility, fault tolerance and 
query success. 
 
Finally, Stojmenovic proposed [3] that all nodes to the 
north and south in a fixed-width column assume the role of 
a location server.  Location searches are then performed by 
routing packets in a horizontal fashion that will eventually 
intersect the vertical column.  This approach is not feasible 
for a ad-hoc network of large scale.  For a more complete 
review of approaches to location servers, the reader is 
referred to Camp et al [4]. 
 
The approach shown in this paper expands Giordano’s 
work on home-regions and develops a technique to provide 
a low-cost quorum that handles node mobility and failure.  
Also addressed are means of querying the quorum and ways 
of mitigating the problem of incomplete quorum updates 
along with a method to improve routing success in the face 
of out-dated information.   

Quorum-systems in ad-hoc networks 

In this paper, we propose an approach that is similar to that 
of the home region but that addresses many of the problems 
associated with it.  Instead of allocating a circular region of 
nodes as the hosts of a location server, we say that nodes 
directly adjacent to a particular geographic point should be 
responsible.  As a result, only a small number of nodes are 
imposed upon rather than a large number in situations of 
high node density, or none in low-density scenarios.   
 
A node sets up a location server by sending an initiation 
packet toward its home location.  This packet will be 
received by the node closest to the point, which will then 



assume the role of master of the server.  As the host node 
moves, the role will be transferred to the node that is closest 
to the home location.  Migration is the term referring to the 
process of quorum components moving from node-to-node 
to remain close to a geographic point.   
 
Presently, with only a master, failure of the node hosting it 
could result in failure of the server so it is important that the 
datum is replicated.  Immediate neighbours of the master 
are sent a duplication packet from the master and assume 
the role of a slave; however, the server as a whole needs to 
make sure that enough replicated copies are kept in the 
event of node failures so that the data is not lost.   
 
Formally, we define our quorum or location server as a set 
Qt where Mt and St are the sets of nodes that host master 
and slave components respectively: 
 

tttt SMVQ ∪=⊆  (2) 
 
Such maintenance of what is essentially a quorum [5] is 
very costly process in wired networks let alone wireless and 
as a result, a novel approach is needed.  We draw our 
inspiration from ants in a colony who find their way to food 
by laying pheromones for each other to follow [6].  These 
pheromones serve to modify the environment so that other 
ants may detect these modifications avoiding the need for 
directed communication.  Drawing upon this to develop a 
location server, we suggest that instead of components of a 
quorum communicating with each other they modify their 
environment   As every node has to beacon its location to 
its neighbours for routing to occur, we add to this beacon 
packet (the environment) a list of location server 
components held at that particular node.  A node’s itinerary, 
Iv,t, is simply a list of identifiers for quorums which it hosts 
a component of.  Therefore, a beacon frame can be 
described as the n-tuple containing the node’s location (vx, 
vy) and the itinerary: 
 

},,{ ,, tvyxtv IvvB =  (3) 
 
Each node maintains a set of all received beacons so that 
each component of the quorum is able to examine a list of 
which nodes hold which components. 
 
We allocate the duplication task solely to the master to 
avoid the situation of excess replication by ill-informed 
slaves who are only able to see the beacons of the outskirt 
components.  As the master is always the closest 
component (center), it is best placed to monitor the contents 
of its neighbours.  When the number of neighbours hosting 
components falls below a threshold, the master will begin a 
replication phase to raise this number. 
 
We now have a set of quorum components who do not 
directly communicate with each other, but who act in a self-
organising manner forming an emergent intelligence (like 
ants).  Each attempts to get as close as possible to the home 
location by moving from node to node (except where a 

destination node is already in possession of one).  Each 
component assumes the role of master and responsibility 
for duplicating if it finds itself, through observing its 
environment, to be on the closest node to the home 
location.  If it realises it is not the closest then it will 
automatically remove its responsibility and assume the role 
of a slave.  We illustrate the master and slaves, along with 
migration in Figure 1, where the master is held on the 
closest node to the point and has duplicated its data to 
several slaves on adjacent nodes. 

 
Figure 1: Illustration of quorum and component migration 

In addition to the duplication task, the components perform 
one more tasked based upon information gathered from the 
beacons.  The components self prune the quorum to stop a 
large number of replicated components consuming 
resources.  They do this by each monitoring the number of 
replicas, and if they rise above a threshold then that 
component will die.   
 
This process is performed on each node, for each 
component held, at regular intervals as described by the 
ManageComponent function below. 
 
MANAGECOMPONENT(c) 
1 n = closerNeighbour(homeLocation) 
2 if exists(n) and hasComponent(n) 
3 then crole = slave 
4 Else crole = master 
5 if exists(n) and !hasComponent(n) 
6 then c.migrate(n) 
7 else if crole=master and hasComponent(all) < 

threshold 
8 then replicate(c) 
9 else if crole=slave and hasComponent(all) > threshold 
10 then delete(c) 
 
The replicate(c) function has several definitions 
representing several variations of the algorithm.  The 
unicast variant sends a replica to the first node in its 
neighbour database without a component.  Replicating one 
item at a time, like the unicast approach, is not expected to 
survive well due to the time taken to recover from a 
significant number of losses. 
. 
 
REPLICATE(C)     - UNICAST 
1 for all n in neighbours 
2 if !hasComponent(n) 
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3 then unicast(c) 
4 exit forloop 
5 end for 
 
The broadcast variant sends replicas to all neighbours in the 
vicinity and is expected to survive better due to it being 
able to recover from a number of lost components with just 
one packet. 
 
REPLICATE(C)     - BROADCAST 
1 broadcast(c) 
 
The broadcast algorithm should perform better in the face 
of high failure rates: however, if just one component is lost 
from the quorum then a broadcast could increase the 
number of components significantly over the threshold 
which would then require pruning, causing an expand and a 
collapse scenario to occur.  Therefore, we also inroduce a 
hybrid approach that uses broadcast when the number of 
components is low and unicast when it is nearer the 
threshold. 
 
REPLICATE(C)    - HYBRID 
1 if hasComponent(all) > 50% of threshold 
2 then unicast(c) 
3 else broadcast(c) 
 
We can define the setup cost, CSetup, as the number of hops 
to the home location, h, plus one for a broadcast duplication 
packet (eq. 4) or threshold packets for the unicast (eq. 5).  
The maintenance cost of the quorum, CMaintenance, is defined 
(eq. 6) as the number of migrations of components due to 
node mobility, m, plus the number of replication packets, r, 
to maintain the threshold. 
 

1+= hC Setup  (4) 

thresholdhC Setup +=  (5) 

rmC enanceMa +=int  (6) 
 
Keeping with the simplicity of the current algorithm, we 
follow the same philosophy here to develop a quorum query 
mechanism.  When a packet’s destination location is not 
known, it is routed towards the home location and upon 
encountering a node containing a quorum component for 
the destination, it updates the packet with the node location 
and routes it towards.  We describe this in the RoutePacket 
function below. 
 
ROUTEPACKET(p) 
1 c = component(pdest) 
2 if exists(c) 
3 Then plocation = clocation 
4 if exists(plocation) 
5 Then route to closestNeighbour(plocation) 
6 if !exists(plocation) 
7 then route to 

closestNeighbour(homeLocation(pdest)) 
 

The mechanism to update the quorum is equally simple and 
based upon a zero knowledge approach to minimise 
overhead.  When receiving a new update packet, a node 
simply updates itself if it holds a component and then 
rebroadcasts it.  This way, each element of a quorum should 
receive a copy and the number of overhead packets will be 
equal to the number of components present, qcomponent, as 
shown in equation 7.   
 

componentsupdate qhC +=  (7) 
 
Of course, this approach does not guarantee a complete 
quorum update and so we examine this in our results. 
 
RECVUPDATEPACKET(p) 
1 c = Component(pnodeID) 
2 if !exists(c) or seenBefore(p) then ignore 
3 if prevision ≤ crevision then ignore 
4 cdata = pdata 
5 broadcast(p) 

 
Quorum systems are traditionally analysed based upon their 
performance in terms of load [7], fault-tolerance [8] and 
failure probability [9, 10].  Therefore, we measure the 
survivability or failure probability of the quorum over 30-
minutes.  The overhead or load in packets per minute of any 
one quorum, and the memory overhead per node in our 
scenario is measured.  Finally, the fault-tolerance of the 
quorum by querying it and measuring the number of out-of-
date results returned. 
 
In addition to analysing the performance as a quorum, we 
need to look at the ability of this approach to act as a 
location server for large-scale ad-hoc networks.  The 
metrics we will measure are update cost, query success and 
routing success.  As it is possible that the location 
information received could be out-of-date, we analyse the 
effect this has on a geodesic routing algorithm.  We also 
propose that if a packet reaches the last known location of a 
node to find it is not there, then the algorithm switches to 
using DSR [11] to find the destination with a search radius 
of three hops  We therefore examine the effect out-of-date 
data has on routing and how this simple DSR-aided 
modification improves. 

Methodology 

Simulation is widely accepted as a means for analysing ad-
hoc networking protocols due to the mathematical 
complexity of the scenario.  Here we use the Glomosim 
(v2.03) simulator [12] that provides models of all the layers 
experienced in a real experiment.  We configure simulator 
with the parameters shown in Figure 2 to represent that of a 
kilometre-squared section of a large-scale ad-hoc network. 
 
 
 
 



Figure 2: Simulation parameters 

Parameter Value Parameter Value 

Terrain 1000x1000 Number of 
nodes 200 

Propagation 
Model Two-ray Number of 

quorums 50 

Tx/Rx 
Range 140.5m 

threshold 
(number of 

slaves) 
5 

Mobility 
Model 

Random 
Waypoint 

vmin = 0.1m/s 
vmax = 3.0m/s 

Beacon rate 
Every 5 
seconds 
+ jitter

Simulation-
time 30 minutes 

Manage 
Component call 

rate 

Every 6 
seconds 
+ jitter

 

Results 

Firstly, we examine (in Figure 3) the ability of the 
algorithm to survive over a 30-minute simulation given 
various node failure rates. 
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Figure 3: Survivability 

All three versions of the algorithm survive exceptionally 
well even given extremely high failure rates with up to 20% 
of the quorums surviving despite every node in the network 
failing once per minute.   
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Figure 4: Overhead (packets/min) 

The overhead (Figure 4) is less than 10 packets per minute 
despite node mobility and node failures.  Interestingly, the 
hybrid version of the algorithm incurs less overhead and we 
explain this as due to the reduction of several duplication 
packets into one when near the threshold, and the 
avoidance of the compaction and expansion problem 
explained earlier. 
 
Figure 5 shows the overhead in terms of memory used per 
node.  Fifty quorums are distributed across the network and 
each node incurs a memory overhead of approximately 6.5-
9 components per node given zero node failures. 
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Figure 5: Memory overhead (components/node) 

 
Figure 6 shows the number of queries returned by the 
quorum that were out-of-date due to an incomplete update 
of all components.  We then also show how this can be 
improved by querying at least two components and taking 
the most up-to-date result.  This simple technique halves 
the number of old-results returned. 
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Figure 6: Out-of-date results returned 

The overhead incurred to update the quorum wholly 
depends on the number of components present in the 
quorum.  Figure 7 clearly shows the unicast algorithm 
maintains the lower number of components while the 
broadcast version maintains almost twice as many. 
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Figure 7: Update cost (packets) 

 
Figure 8 shows the results obtained when the information 
from the quorum is out-of-date by varying degrees.  With 
update intervals of two minutes, almost a third of packets 
do not reach their destination.  However, when we add the 
DSR module to the routing algorithm, less than 3% of 
packets fail to reach their destination.   
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Figure 8: DSR-aided geodesic routing 

Conclusion 

The results show that the broadcast algorithm performs 
better in terms of survivability while the hybrid provides 
lower overhead.  Maximising survivability is the main 
priority and all the algorithms cope with failure rates 
significantly higher than those expected to occur in real-
life.  Therefore, we recommend the use of the hybrid 
algorithm due to the avoidance of the expand-collapse 
problem and the ability to recover quicker than the unicast 
approach to a number of node failures. 
 
In terms of ability to query the quorum, the approach used 
to maintain the quorum had little effect of the results.  We 
found that approximately 4% of queries returned out of date 
results, but that this is halved by querying at least two 
components.  Further improvements could be made if 
elements of the quorum communicate with each other, or 
revision information is added to the beacon packet. 
 
Routing using a simple geodesic algorithm performs poorly 
in networks of less than 200 nodes per square kilometre.  
We showed that by aiding the algorithm with DSR when 
the packet was unable to make any further progress 
forward, with a search radius of just three hops, increased 
the routing success by up to a factor of 10 even when the 
location information is up to two minutes old. 

Our work demonstrates that it is possible to implement 
reliable quorum systems in ad-hoc networks with negligible 
overhead.  The technique used is a self-organising system 
relying on an intelligent behaviour emerging from the 
individual actions of each component.  We demonstrated 
the performance of the quorum for obtaining location 
information and measured the percentage of out-of-date 
data returned.  Location information does not necessarily 
have to be up-to-date as long as the node has not moved too 
far and the routing algorithm is able to recover.  One way to 
improve geodesic routing algorithms to cope with incorrect 
information would be to aid the algorithm with a limited 
DSR search when the node is not at the given location.  
Undertaking this simple improvement increased the routing 
success by up to a factor of ten; however, this will of course 
incur a higher routing overhead. 
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