
Euler Diagram-based Notations

John Howse, Richard Bosworth, Andrew Fish, Gem Stapleton, John Taylor

Visual Modelling Group, University of Brighton, Brighton, UK
http://www.cmis.brighton.ac.uk/research/vmg/

John.Howse@brighton.ac.uk, Richard.Bosworth@brighton.ac.uk,

Andrew.Fish@brighton.ac.uk, g.e.stapleton@brighton.ac.uk,

John.Taylor@brighton.ac.uk

Peter Rodgers, Simon Thompson

Computing Laboratory, University of Kent, Canterbury, UK
http://www.cs.kent.ac.uk/projects/rwd/ p.j.rodgers@kent.ac.uk,

s.j.thompson@kent.ac.uk

Abstract. Euler diagrams have been used for centuries as a means for
conveying logical statements in a simple, intuitive way. They form the
basis of many diagrammatic notations used to represent set-theoretic
relationships in a wide range of contexts including software modelling,
logical reasoning systems, statistical data representation, database search
queries and file system management. In this paper we survey notations
based on Euler diagrams with particular emphasis on formalization and
the development of software tool support.

Keywords Visual formalisms, diagrammatic reasoning, automated rea-
soning, software specification, information visualization

1 Introduction

Euler diagrams [7] are a simple and familiar visual language for expressing logical
or set-theoretic statements. They exploit topological properties of enclosure,
exclusion and intersection to represent subset, disjoint sets and set intersection
respectively. For example, the Euler diagram d1 in figure 1 asserts that C is a
subset of A and that B and C are disjoint.
An Euler diagram consists of a collection of contours (closed curves, usually

considered to be simple). A zone (sometimes called a minimal region) is a set of
points in the plane that can be described by a two-way partition of the contour
set. For example, in d1 in figure 1, the set of points in the plane inside A and C

but outside B is a zone. Zones in Euler diagrams represent sets and the union
of all the sets represented by the zones in a diagram is the universal set. A
“missing” zone represents the empty set. For example, in d1 in figure 1 the zone
that is inside B and C but outside A is missing and hence no element is in B

and C but not in A. Some semantic interpretations of Euler diagrams specify
that each zone in a diagram represents a non-empty set [44], whereas others do



2

A B

C

A B

C

d 1 d 2

Fig. 1. Euler and Venn diagrams

not impose this restriction [27]. A discussion of the semantics of Euler diagrams
can be found in [28].

Venn diagrams [73] are a special case of Euler diagrams. However, instead of
using missing zones to express that a set is empty, shading is used. All possible
set intersections are represented in Venn diagrams. The Venn diagram d2 in
figure 1 represents the same information as the Euler diagram d1 in figure 1. A
survey of work on Venn diagrams can be found at [53].

Given certain well-formedness conditions on Euler diagrams (such as contours
must be simple), there are statements involving set intersections that Euler dia-
grams cannot express, identified in [43, 75], because there is no drawable diagram
with a specified zone set. Venn proposed a constructive method for drawing any
Venn diagram on n contours [74] which More proved to be valid [45].

Work on reasoning about diagrams expressing logical or set-theoretical prop-
erties has a long history, which has been reinvigorated in the last decade. In sem-
inal work, Shin [57] demonstrated that diagrammatic reasoning systems could be
provided with the logical status of sentential systems. Many other diagrammatic
reasoning systems have since been developed and in section 2 we discuss some
of them.

Euler diagrams form the basis of many diagrammatic notations used to rep-
resent set-theoretic relationships in a wide range of contexts including software
modelling, logical reasoning systems, statistical data representation, database
search queries, file system management and representing ontologies. In section 3
we discuss some of these applications. For formal diagrammatic modelling and
reasoning to be taken up in industry, good tool support is essential. In section 4
we review the state of the art in software tool support.

2 Notations

In this section, we consider some of the notations developed from Euler and
Venn diagrams. Reasoning systems have been developed for many of these sys-
tems and in some cases expressiveness results have been obtained. A survey of
reasoning systems based on Euler diagrams can be found at [58].



3

Basic Euler diagrams A simple sound, complete and decidable reasoning sys-
tem based on Euler diagrams is given by Hammer in [27]. The system has just
three reasoning rules: the rule of erasure (of a contour), the rule of introduction

of a new contour and the rule of weakening (which introduces a zone).
Projections Further syntax, in the form of dashed contours called projections,
can be added to Euler diagrams (or notations based on Euler diagrams) that
enables them to make statements more concisely in a less cluttered manner [23–
25]. A reasoning system with projections has been developed [38]. A measure
of clutter in Euler diagrams is suggested in [39], in which a clutter reducing
algorithm is presented.

Extensions of Venn diagrams Venn diagrams cannot assert the existence of
elements nor express disjunctive information. To overcome this, Peirce modified
Venn diagrams by introducing the symbol x into the system to represent the
existence of an element in a set and o to represent emptiness instead of shad-
ing [49]. Peirce also uses lines to connect x’s and o’s, to represent disjunctive
information.
Shin [57] adapted Venn-Peirce diagrams by reverting back to Venn’s shading

to represent the emptiness of a set rather than using o-sequences, making her
Venn-I language less expressive than the Venn-Peirce language. The Venn-I dia-
gram d1 in figure 2 asserts that there is an element that is a student or a teacher
but not both, and the set of Teachers is empty. Shin defines six sound reason-
ing rules for Venn-I and proves completeness. Venn-I cannot express statements
of the form A ⊆ B ∨ A * C, so Shin extends it to a more expressive system,
called Venn-II, by allowing Venn-I diagrams to be connected by straight lines
to represent disjunction. Shin defines ten reasoning rules for Venn-II and shows
that they form a sound and complete set. The Venn-II system is equivalent to
monadic first order logic (without equality) [57]. Recently the Venn-II system
has been extended to include constants [1].

S t u d e n t s T e a c h e r s

d 1

S t u d e n t s T e a c h e r s

d 2

b o b b o b

S t u d e n t s T e a c h e r s

d 3

Fig. 2. Venn-I, Euler/Venn and spider diagrams

Euler/Venn Diagrams Euler/Venn diagrams [66] are similar to Venn-I dia-
grams but are based on Euler diagrams rather than Venn diagrams, and constant

sequences are used instead of ⊗-sequences. The Euler/Venn diagram d2 in fig-
ure 2 asserts that bob is a student or a teacher but not both and that there are



4

no teachers. In [66], Swoboda gives a set of sound reasoning rules for Euler/Venn
diagrams. These rules are extensions of those given by Shin and Hammer [27,
57]. In [69] Swoboda and Allwein give an algorithm that determines if a given
Euler/Venn monadic first order formula is ‘observable’ from a given diagram[70].
Information is observable from a diagram if it is explicitly represented in the di-
agram. Observable formulae are consequence of the information contained in the
diagram.

Spider diagrams Euler diagrams form the basis of spider diagrams [21, 32,
34, 35, 37]. Spiders are used to represent the existence of elements and distinct
spiders represent the existence of distinct elements. Thus spider diagrams allow
finite lower bounds to be placed on the cardinalities of sets. In a shaded region,
all of the elements are represented by spiders. So shading, together with spiders,
allows finite upper bounds to be placed on the cardinalities of the sets. The
spider diagram d3 in figure 2 asserts that there is an element that is a student
or a teacher but not both, and there are no other teachers.

The expressiveness of spider diagrams has been determined to be equivalent
to that of monadic first order logic with equality (MFOLe) [61, 65]. To show this
equivalence in one direction, for each diagram a semantically equivalent MFOLe
sentence is constructed. For the significantly more challenging converse it can
be shown that for any MFOL sentence S there exists a finite set of models that
can be used to classify all the models for S. Using these classifying models,
a diagram expressing the same information as S can be constructed. Spider
diagrams are, therefore, more expressive than Shin’s Venn-II system which is
equivalent to monadic first order logic (without equality) [57]. Augmenting the
spider diagram language with constants does not increase expressiveness [62].

Several sound, complete and decidable reasoning systems [31–33, 37] have
been developed for spider diagrams. The strategy for proving soundness is straight-
forward: individual reasoning rules are proved to be valid and then a simple
induction argument shows that the application of any finite sequence of rules is
valid; however, proving that individual rules are valid is, in some cases, hard.
The proof strategy for completeness is to convert the premise and conclusion
diagrams to a normal form and then reason about that normal form. This proof
strategy can be used for other reasoning systems based on Euler diagrams. An
algorithm can be easily extracted from the completeness proof to prove the de-
cidability of the proof.

Constraint diagrams Constraint diagrams [20, 22, 40] extend spider diagrams
by incorporating additional syntax to represent relations and explicit universal
quantification. Figure 3 shows an example of a constraint diagram [36], from
which one can infer that “a member cannot both rent and reserve the same
title”.

Constraint diagrams have been formalized [10]. The semantics are defined by
translating them into first order predicate logic (FOPL) sentences. Constraint
diagrams contain explicit existential quantification and universal quantification;



5

T i t l e
M e m b e rR e n t a l

R e s e r v a t i o n

*

Fig. 3. Modelling with Constraint diagrams

it is not always possible to determine the order in which to read the quantifiers,
sometimes rendering a diagram ambiguous. This ordering problem was solved
by augmenting the language with reading trees, essentially a partial order on the
quantifiers, to disambiguate the diagrams [9, 10]. The tree provide additional
information that is essential for the construction of the FOPL sentence deter-
mining where the brackets are placed and, in conjunction with the diagram, the
scope of the quantifiers. Figure 4 shows two augmented diagrams with the two
interpretations: “For each teacher there is a student who attends only courses
taught by that teacher” and “There is a student who attends only courses taught
by all teachers”, respectively.

T e a c h e r s S t u d e n t s
C o u r s e s

t e a c h e s a t t e n d s

*x
s

T e a c h e r s S t u d e n t s
C o u r s e s

t e a c h e s a t t e n d s

*x
s

* xP T C s* x sP T C

Fig. 4. Augmented constraint diagrams

A constraint diagram may have many reading trees, which can be automati-
cally generated [11]. A set of sound rules for constraint diagrams augmented with
reading trees has been developed [8] and a default reading has been proposed [12]
and tested [13].
Two sound, complete and decidable fragments of the constraint diagram lan-

guage have been defined [59, 60]. The diagrams in these fragments do not require
reading trees, but still include arrows (representing two-place predicates) and one
of them includes explicit universal quantification [59]. Some of the reasoning rules
for these two systems extend those defined for spider diagrams and additional
rules are also defined to give complete systems. The proofs of completeness for
these systems are complex.

Hybrid systems A hybrid language, called visual first order logic (VFOL),
which mixes textual and diagrammatic notations, has been defined [64]. VFOL



6

modifies the constraint diagram language. A sound and complete reasoning sys-
tem for VFOL has been developed and the language has been shown to be
equivalent in expressive power to FOPL. There is an algorithmic method for
converting a statement made in VFOL into a statement made in FOPL and
vice versa. This algorithm can be used to provide a sound and complete hybrid
system based on VFOL and FOPL.

Swoboda and Allwein have developed a heterogeneous Euler/Venn diagram
and first order logic reasoning system [67, 68].

Abstract syntax In reasoning systems based on spider diagrams and constraint
diagrams a distinction is made between the concrete syntax (the drawn dia-
grams) and the abstract syntax (a mathematical abstraction of concrete dia-
grams) [30]; this distinction is not evident in purely textual logics. Reasoning
takes place at the abstract level; a motivation for this is that well-formedness
conditions may cause problems with the applications of some of the rules at the
concrete level; see [56] for an example of this from Shin’s Venn II system. Using
an abstract syntax brings with it, importantly, a level of precision and rigour
that is not always present in diagrammatic systems.

3 Applications

In this section we discuss applications in the following areas: software modelling,
visualizing genetic set relations, statistical data representation, database search
queries, file system management, hardware specification and representing on-
tologies.

Software modelling The standard notation for modelling software systems is
the Unified Modelling Language (UML) [47]. Diagrammatic notations pervade
the UML. Some of these notations are based on Euler diagrams such as Class
diagrams and State diagrams. The principal tool for the UML modeller to add
constraints to a model is the Object Constraint Language (OCL) [76]. How-
ever, OCL is a fusion of navigation expressions and traditional logical notation,
rendered in textual form. Constraint diagrams were designed to be a formal di-
agrammatic alternative to the OCL and can also be used to specify software
systems independently of the UML. In [36] a case study is developed which uses
a schema notation, developed from a Z -like notation [54, 55], to specify opera-
tions. Constraint diagrams are used within this schema notation, showing that
they can handle dynamic constraints. An event (a state-changing operation) is
specified in terms of a pre-condition (above the double line) and a post-condition
(below the double line). The following schema specifies the addition of a new
member m with associated information i:



7

NewMember(m, i)

I

i
;

M e m b

m

M

M e m b ' I n f o '

m i

The pre-condition ensures that argument i has type I, and that argument m

has type M and is not in Memb (is not already a member). The semi-colon is
a separator; the two diagrams in the pre-condition are conjoined. In the post-
condition, dashed names denote entities that are changed. The post-condition
ensures that m is now in Memb and has associated information i.

Statistical data representation To enable the visualization of statistical data,
area-proportional Venn or Euler diagrams [2, 3] may be used, where the area of
a region is proportional to the size of the set it represents. Figure 5 shows two
Venn diagrams representing weighted data sets, where the right hand diagram
is area proportional.

Fig. 5. Statistical Data representations

Visualizing genetic set relations The diagram in figure 6 shows an Euler
diagram with a large number of curves being used to visualize complex genetic
set relations [41].

Database search queries figure 7 shows two Euler diagrams being used in
library environments [71]. The diagram on the left uses numbers to indicate the
cardinality of each set, including 0 to represent emptiness. The diagram on the
right uses “missing” zones to represent empty categories, and allows the curves
to be concurrent. This application is based on theoretical work in [75], where an



8

Fig. 6. Visualizing genetic set relations

Fig. 7. Traditional Library Environments

existence proof of the drawability of (a slight variant of) any Euler diagram rep-
resenting less than nine sets is given; an example of an undrawable diagram on
nine sets is also presented. This is an extension of work by Lemon and Pratt [44]
and is based on Kuratowski’s theorem for planar graphs [42].

File system management Euler diagrams have been used to represent non-
hierarchical directories, replacing the traditional hierarchical structure of file-
systems with an Euler diagram based approach [5, 6]. An example from the
VENNFS system may be seen in figure 8, where the dots placed within a region
of overlap of the contours represent files that are in more than one directory.

Hardware specification Spider diagrams have been used in the specification of
boiler systems [4]; an example related to the safety of power supply components
can be seen in figure 9.



9

Fig. 8. VennFS2

Fig. 9. Safety critical boiler systems

Ontology representation Euler-based diagrams have been used to represent
ontologies in semantic web applications [50, 29]. Figure 10 shows an example
representing specified values in OWL, theWeb Ontology Language. This diagram
is a variant of a constraint diagram. Another example can be seen in figure 11
from a new environment COE, the Collaborative Ontology Environment, for
capturing and formally representing expert knowledge for use in the Semantic
Web [29].

4 Software Tools

An open source tool for drawing and manipulating Euler diagrams and their
extensions can be downloaded from SourceForge.net and at [51]. The editor pro-



10

Fig. 10. web ontology language example

Fig. 11. Collaborative Ontology Environment example

vides diagram drawing facilities such as editing, cut and paste, and zooming
functionality. Diagrams can be laid out automatically and stored in XML for-
mat. Associated software tools produced include diagrammatic theorem provers,
translators and automatic diagram generators.

Users can access the reasoning functionality from the editor. The interface
provides access to theorem provers and allows users to write their own proofs.
Tableaux [48] give users a way of visualizing the meaning of a particular dia-
gram, by showing the ways that a diagram can be satisfied. In particular tableaux



11

provide decision procedures for diagram satisfiability and validity. In order to
support this varied functionality the software provides sophisticated support for
representing and modifying both abstract diagrams (without layout informa-
tion) and concrete diagrams (with layout information). In addition, translations
between diagrammatic and textual representations have been implemented.

The layout of diagrams is of fundamental importance to diagrammatic rea-
soning systems. Their automatic layout poses several non-trivial challenges. For
example, the problem of automatically generating concrete Euler diagrams from
abstract descriptions is hard. Algorithm exist to generate concrete diagrams
subject to some well-formedness conditions [14, 3]. The mechanisms have been
integrated to produce an enhanced diagram generation framework [51, 72]. The
theory developed on nested diagrams [15] has been integrated into this frame-
work.

Automatically generated Euler diagrams are typically not very readable and
can be visually unattractive. A function has been implemented to make the dia-
grams more usable by modifying their layout, whilst maintaining their abstract
syntax [18]. Further work introduced a force based method for laying out graphs
in Euler diagrams [46], enabling the drawing of spider and constraint diagrams.
Furthermore, a key application of the layout work is to visualize sequences of
diagrams, such as proofs. For this application (and others), it is desirable to
make subsequent diagrams look as similar as possible to previous diagrams. A
mechanism to achieve this has been implemented [52].

Gil and Sorkin have also developed an effective but slightly limited editor for
drawing and manipulating constraint diagrams [26].

Automated theorem proving An automated theorem prover has been im-
plemented and evaluated that uses four different Euler diagram reasoning sys-
tems [63]. It uses heuristics to guide it through the search space to find shortest
proofs. The theorem prover has been empirically evaluated in terms of time taken
to find a shortest proof, using each of the four rule sets. The conclusion from this
evaluation is that in order to find a shortest proof most quickly, the rule set used
is dependent on the proof task [63]. This work on automated reasoning lays the
foundations for efficient proof searches to be conducted in many diagrammatic
systems.

For spider diagrams, a direct proof writing algorithm can be extracted from
the completeness proof strategy given in [37]. An improved version of this algo-
rithm includes functionality to produce counter examples whenever there is no
proof [19]. The proofs produced by this algorithm can sometimes be unnecessar-
ily long. In [17] the A∗ search algorithm is utilized to produce shortest proofs in
a fragment of the spider diagram language and the work has been extended to
the full spider diagram language [16].



12

5 Conclusion

This paper has reviewed and discussed some of the notations based on Euler dia-
grams that have been developed recently. Whilst we have not given an exhaustive
review, due to space constraints, we have presented an informative overview of
current Euler diagrams research. We have concentrated on notations that have
been formalized and tried to give a flavour of the applications of these notations
which include data representation and database search queries. A growing appli-
cation area which will become increasingly important is the application of Euler
diagrams to visualize information in the context of the semantic web, including
OWL and description logic.
Euler diagram based modelling notations have been developed that are suf-

ficiently expressive to be used in software specification on an industrial scale.
The development of good software tools, some of which has been described in
this paper, is a major advance towards providing sufficient support for the use
of these notations in industry.
Research into Euler diagram based notations could be beneficial in other

areas. For example, the investigation of decidable fragments of the constraint
diagram notation may well deliver previously unknown decidable fragments of
first order predicate logic, because “natural” fragments of the diagrammatic no-
tation may not coincide with “natural” fragments of traditional logic.

Acknowledgements Much of the authors’ work described in this paper was
developed on the Reasoning with Diagrams project [51, 72] funded by the UK
EPSRC under grants GR/R63509 and GR/R63516. Gem Stapleton is supported
by a Fellowship from the Leverhulme Trust. We would like to thank Marie-Luce
Viaud, Stirling Chow, Hans Kestler, Rosario De Chiara and Robin Clark for
permission to use figures from their work.

References

1. L. Choudhury and M. Chakraborty. On Extending Venn Diagrams by Augmenting
Names of Individuals. Proc. Diagrams 2004, LNAI 2980, pp 142–146, 2004.

2. S. Chow and F. Ruskey. Drawing Area Proportional Venn and Euler Diagrams.
Proceedings of Graph Drawing 2003. LNCS 2912, pp. 466-477, 2004.

3. S. Chow and F. Ruskey. Towards a General Solution to Drawing Area-Proportional
Euler Diagrams. Proceedings of Euler Diagrams 2004. Electronic Notes in Theo-
retical Computer Science 134, pp. 3-18, 2005.

4. R.P. Clark. Failure mode modular de-composition using spider diagrams. Proc.
Euler Diagrams 04, ENTCS 134 pp 19–31, 2005.

5. U. Erra, R. De Chiara and V. Scarano. VENNFS: A venn diagram file manager.
Proc. Information Visualisation, pp 120–126. IEEE, 2003.

6. U. Erra, R. De Chiara and V. Scarano. A system for virtual directories using euler
diagrams. Proc. Euler Diagrams 04, ENTCS 134, pp 33-53, 2005.

7. L. Euler. Lettres a une princesse dallemagne sur divers sujets de physique et de
philosophie. Letters, 2:102–108, Berne, Socit Typographique, 1775.



13

8. A. Fish and J. Flower. Investigating reasoning with constraint diagrams. In Visual
Language and Formal Methods, ENTCS 127 pp 53–69, Elsevier, 2004.

9. A. Fish, J. Flower and J. Howse. A reading algorithm for constraint diagrams. Proc.
Human Centric Computing Languages and Environments, pp 161–168. IEEE, 2003.

10. A. Fish, J. Flower and J. Howse. The semantics of augmented constraint diagrams.
Journal of Visual Languages and Computing, 16:541–573, 2005.

11. A. Fish and J. Howse. Computing reading trees for constraint diagrams. Proc.
AGTIVE ’03, Applications of Graph Transformations with Industrial Relevance,
pp 260–274. Springer, 2003.

12. A. Fish and J. Howse. Towards a default reading for constraint diagrams. IProc.
Diagrams 2004, LNAI 2980, pp 51–65. Springer, 2004.

13. A. Fish and J. Masthoff. An experimental study into the default reading of con-
straint diagrams. Proc. Visual Languages and Human Centric Computing, pp
287–289, 2005.

14. J. Flower and J. Howse. Generating Euler diagrams. Proc. Diagrams 2002, pp
61–75. Springer 2002.

15. J. Flower, J. Howse and J. Taylor. Nesting in Euler diagrams: syntax, semantics
and construction. Journal of Software and Systems Modelling, 3:55–67, 2004.

16. J. Flower, J. Masthoff and G. Stapleton. Generating proofs with spider diagrams
using heuristics. Proc. Visual Languages and Computing, pp 279–285. Knowledge
Systems Institute, 2004.

17. J. Flower, J. Masthoff and G. Stapleton. Generating readable proofs: A heuristic
approach to theorem proving with spider diagrams. Proc. of Diagrams 2004, pp
166–181. Springer, 2004.

18. J. Flower, P. Rodgers and P. Mutton. Layout metrics for Euler diagrams. Proc. 7th
International Conference on Information Visualisation, pp 272–280. IEEE, 2003.

19. J. Flower and G. Stapleton. Automated theorem proving with spider diagrams.
Proc. Computing: The Australasian Theory Symposium (CATS’04), ENTCS 91,
pp 116–132. Science Direct, 2004.

20. Gil J, Howse J and Kent S. Constraint Diagrams: a step beyond UML, Proc.
TOOLS USA 1999, IEEE, 453-463, 1999.

21. J. Gil, J. Howse and S. Kent. Formalising spider diagrams. Proc. Symposium on
Visual Languages (VL99), pp 130–137. IEEE, 1999.

22. Gil J, Howse J and Kent S. Towards a Formalization of Constraint Diagrams, Proc.
Human-Centric Computing (HCC 01), IEEE, 72-79, 2001.

23. J. Gil, J. Howse and S. Kent, and J. Taylor. Projections in Venn-Euler diagrams.
Proc. Visual Languages 2000, pp 119–126. IEEE, 2000.

24. J. Gil J. Howse and E. Tulchinsky. Positive semantics of projections in Venn-Euler
diagrams, Proc. Diagrams 2000, LNAI 1889, Springer, 7-25, 2000.

25. J. Gil, J. Howse, and E. Tulchinsky. Positive semantics of projections. Journal of
Visual Languages and Computing, 13(2):197–227, 2001.

26. J. Gil and Y. Sorkin. The constraint diagrams editor. Available at
www.cs.technion.ac.il/Labs/ssdl/research/cdeditor/.

27. E. Hammer. Logic and Visual Information, CSLI Publications, 1995.
28. E. Hammer and S. J. Shin. Euler’s Visual Logic, History and Philosophy of Logic,

pp 1-29, 1998.
29. P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer, M. Mehrotra and D. Bo-

brovnikoff. Collaborative Knowledge Capture in Ontologies. Proc. K-CAP05, 2005.
30. J. Howse, F. Molina, S-J. Shin, and J. Taylor. On diagram tokens and types. Proc.

Diagrams 2002, pp 146–160. Springer, 2002.



14

31. Howse J, Molina F and Taylor J. A sound and complete diagrammatic rea-
soning system, Proc. Artificial Intelligence and Soft Computing (ASC 2000),
IASTED/ACTA Press 402-408, 2000.

32. J. Howse, F. Molina and J. Taylor. On the completeness and expressiveness of
spider diagram systems. Proc. Diagrams 2000, pp 26–41, 2000. Springer, 2000.

33. Howse J, Molina F and Taylor J. SD2: A sound and complete diagrammatic rea-
soning system, Proc. Visual Languages (VL2000), IEEE, 127-136, 2000.

34. J. Howse, F. Molina, J. Taylor and S. Kent. Reasoning with spider diagrams. Proc.
Visual Languages (VL99), pp 138–147, IEEE, 1999.

35. J. Howse, F. Molina, J. Taylor, S. Kent and J. Gil. Spider diagrams: A diagram-
matic reasoning system. Journal of Visual Languages and Computing, 12(3):299–
324, 2001.

36. J. Howse and S. Schuman. Precise visual modelling. Journal of Software and
Systems Modeling, 4:310–325, 2005.

37. J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS J. Computation and
Mathematics, 8:145–194, 2005.

38. C. John. Reasoning with projected contours. Proc. Diagrams 2004, pp 147–150.
Springer, 2004.

39. C. John. Projected contours in Euler diagrams. Proc. Euler Diagrams 2004,
ENTCS 134, pp 103–126, 2005.

40. S. Kent. Constraint diagrams: Visualizing invariants in object oriented modelling.
Proc. OOPSLA97, pp 327–341. ACM Press, 1997.

41. H. Kestler, A. Muller, T.M. Gress, M. Buchholz. Generalized Venn diagrams: a
new method of visualizing complex genetic set relations. Journal of Bioinformatics
21:8, pp. 1592-1595, 2005.

42. K. Kuratowski Sur le probleme des courbes gauches en topologie. Fundamenta
Mathematicae, 15, pp. 271-283, 1930.

43. O. Lemon. Comparing the efficacy of visual languages. In D. Barker-Plummer,
D. I. Beaver, J. van Benthem, and P. Scotto di Luzio, editors, Words, Proofs and

Diagrams, pp 47–69. CSLI Publications, 2002.
44. O. Lemon and I. Pratt. Spatial logic and the complexity of diagrammatic reasoning.

Machine GRAPHICS and VISION, 6(1):89–108, 1997.
45. T. More. On the Construction of Venn Diagrams. Journal of Symbolic Logic 23,

303–304, 1959.
46. P. Mutton, P. Rodgers and J. Flower. Drawing graphs in Euler diagrams. Proc.

Diagrams 2004, LNAI 2980, pp 66–81. Springer, 2004.
47. OMG UML Specification, Version 2.0, available from www.omg.org. 2005.
48. O. Patrascoiu, S. Thompson and P. Rodgers. Tableaux for diagrammatic reasoning.

Proc. Visual Languages and Computing, pp 279–286. Knowledge Systems Institute,
2005.

49. C. Peirce. Collected Papers Vol. 4, Harvard Univ. Press, 1933.
50. A. Rector. Representing Specified Values in OWL: “value partitions” and “value

sets”. W3C Editors Draft 02 March 2005.
51. Reasoning with Diagrams website. www.cs.kent.ac.uk/projects/rwd/, 2006.
52. P. Rodgers, P. Mutton and J. Flower. Dynamic Euler diagram drawing. Proc.

Visual Languages and Human Centric Computing, pp 147–156. IEEE, 2004.
53. F. Ruskey. A survey of Venn diagrams. Electronic Journal of Combinatorics,

www.combinatorics.org/Surveys/ds5/VennEJC.html, 2001.
54. S. Schuman and D. Pitt. Object-oriented subsystem specification, in

L.G.L.T. Meertens (ed.) Program Specification and Transformation, Proc. IFIP
Working Conference, 313–341, North–Holland, 1987.



15

55. S. Schuman, D. Pitt and P. Byers. Object-oriented process specification, in Rat-
tray (ed.) Specification and Verification of Concurrent Systems, Proc. BCS FACS
Workshop, 21–70, Springer, 1990.

56. P. Scotto di Luzio. Patching up a logic of Venn diagrams. Proc. 6th CSLI workshop
on Logic, Language and Computation. CSLI Publications, 2000.

57. S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.
58. G. Stapleton. A survey of reasoning systems based on Euler diagrams. Proc. Euler

Diagrams 2004, ENTCS 134, pp 127–151, 2004.
59. G. Stapleton, J. Howse, and J. Taylor. A constraint diagram reasoning system.

Proc. Visual Languages and Computing, pp 263–270. Knowledge Systems Institute,
2003.

60. G. Stapleton, J. Howse, and J. Taylor. A decidable constraint diagram reasoning
system. Journal of Logic and Computation. 15(6) 975-1008, 2005.

61. G. Stapleton, J. Howse, J. Taylor, and S. Thompson. What can spider diagrams
say? Proc. Diagrams 2004, pp 112–127. Springer, 2004.

62. G. Stapleton, J. Howse, J. Taylor, and S. Thompson. The expressiveness of spider
diagrams augmented with constants. Proc. Visual Languages and Human Centric
Computing, pp 91–98, 2004.

63. G. Stapleton, J. Masthoff, J. Flower, A. Fish, and J. Southern. Automated theorem
proving in Euler diagrams systems. Submitted to Journal of Automated Reasoning,
2006.

64. G. Stapleton, S. Thompson, A. Fish, J. Howse, and J. Taylor. A new language
for the visualization of logic and reasoning. International Workshop on Visual
Languages and Computing, pp 263–270. Knowledge Systems Insitute, 2005.

65. G. Stapleton, S. Thompson, J. Howse, and J. Taylor. The expressiveness of spider
diagrams. Journal of Logic and Computation, 14(6) pp 857–880, 2004.

66. N. Swoboda. Implementing Euler/Venn Reasoning Systems. In M. Anderson, B.
Meyer and P. Olivier (eds), Diagrammatic Representation and Reasoning, pp371–
386. Springer, 2001.

67. Swoboda, N. and Allwein, G. A case study of the design and implementation of
heterogeneous reasoning systems, In Logical and Computational Aspects of Model-
Based Reasoning, Manani, L., and Nersessian, N.J., eds, Kluwer Academic. 2002.

68. Swoboda, N. and Allwein, G. Heterogeneous reasoning with Euler/Venn diagrams
containing named constants and FOL. Proc. Euler Diagrams 2004, ENTCS 134,
pp 153–187, 2004.

69. N. Swoboda and G. Allwein. Using DAG transformations to verify Euler/Venn
homogeneous and Euler/Venn FOL heterogeneous rules of inference. Proc. GT-
VMT, ENTCS, 2002.

70. N. Swoboda and J. Barwise. The information content of Euler/Venn diagrams.
Proc. LICS workshop on Logic and Diagrammatic Information, 1998.

71. J. Thievre, M. Viaud and A. Verroust-Blondet. Using Euler Diagrams in Tradi-
tional Library Environments. Proceedings of Euler Diagrams 2004. ENTCS 134,
pp. 189-202, 2005.

72. Visual Modelling Group: www.cmis.bton.ac.uk/research/vmg, 2006.
73. J. Venn. On the diagrammatic and mechanical representation of propositions

and reasonings. The London, Edinburgh and Dublin Philosophical Magazine and

Journal of Science, 9:1–18, 1880.
74. J. Venn. Symbolic Logic. Burt Franklin, 1971.
75. A. Verroust and M. Viaud. Ensuring the Drawability of Extended Euler Diagrams

for up to eight Sets. Proc. Diagrams 2004. LNAI 2980, pp.128-141, 2004.



16

76. Warmer J, Kleppe A. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1999.


