
Precise Regression Benchmarking with Random

Effects: Improving Mono Benchmark Results

Tomas Kalibera and Petr Tuma

Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420-221914232, fax +420-221914323
{kalibera,tuma}@nenya.ms.mff.cuni.cz

Abstract. Benchmarking as a method of assessing software performance
is known to suffer from random fluctuations that distort the observed
performance. In this paper, we focus on the fluctuations caused by com-
pilation. We show that the design of a benchmarking experiment must
reflect the existence of the fluctuations if the performance observed dur-
ing the experiment is to be representative of reality.
We present a new statistical model of a benchmark experiment that
reflects the presence of the fluctuations in compilation, execution and
measurement. The model describes the observed performance and makes
it possible to calculate the optimum dimensions of the experiment that
yield the best precision within a given amount of time.
Using a variety of benchmarks, we evaluate the model within the con-
text of regression benchmarking. We show that the model significantly
decreases the number of erroneously detected performance changes in
regression benchmarking.

Key words: performance evaluation, benchmark precision, random effects,
regression benchmarking.

1 Introduction

Software performance engineering is generally understood as a systematic pro-
cess of planning and evaluating software performance [1]. One of the principal
approaches to evaluating performance is benchmarking, where the system under
test executes a model task, called benchmark, and the observed performance is
used for the evaluation. An important feature of benchmarking is that a choice
of a realistic benchmark and a realistic configuration of the benchmarking ex-
periment makes the observed performance representative of the performance of
a real system. This makes benchmarking an indispensable complement of other
approaches to evaluating performance based on modeling and simulation.

Both the performance of a benchmarking experiment and the performance of
a real system are subject to random fluctuations. Well known causes of these fluc-
tuations include for example the asynchronous device interrupts, whose often un-
predictable occurrence can add the device interrupt service time to the observed

performance. To keep the observed performance representative, benchmarking
experiments typically measure the benchmark multiple times. Averaging over
the multiple measurements is then used to filter out the random fluctuations.
In [2], however, we show that this practice suffers from a lack of understanding
of the causes of random fluctuations. Consequently, even after averaging, the
performance of a benchmarking experiment is not necessarily representative of
the performance of a real system.

In order to correctly understand the causes of random fluctuations in ob-
served performance, a benchmarking experiment must be viewed as a sequence
of steps. This sequence begins with the compilation of the benchmark and pro-
ceeds through booting of the system under test to the execution of the process
implementing the benchmark and the measurement of the benchmark itself as
the final steps. Importantly, each of the steps has the potential to influence the
observed performance, and each of the steps can be subject to nondeterminism
that makes the influence assume the form of random fluctuations. In [2], we il-
lustrate this influence by showing how the choice of physical memory pages used
to store the benchmark impacts the observed performance. This choice cannot
be practically influenced and as such is one of the sources of nondeterminism in
the execution of a benchmark.

The common practice of averaging can still be made to cover all the causes
of random fluctuations. To achieve this, all the steps of the benchmarking exper-
iment would have to be done once for each measurement, rather than just once
for all the measurements. Unfortunately, some of the steps of the benchmarking
experiment can take a long time and repeating them enough times to obtain
enough measurements for a representative average would take a prohibitively
long time. To avoid this problem, we propose a novel statistical model that re-
flects the understanding of the benchmarking experiment as a sequence of steps
that can be repeated starting with any step of the experiment and finishing with
the measurement step (e.g. compiling multiple times, executing each compiled
binary multiple times, collecting multiple measurements for each execution).

The model makes it possible to derive the asymptotic distribution of the
average of the observed performance, and use this distribution to create the
asymptotic confidence interval for the mean observable performance, as well
as determine the optimal ratio of the repetitions of the individual benchmark
experiment steps. The model can describe benchmark experiments where at most
three of the steps influence the observed performance, and is an extension of the
model from [3] that could describe benchmark experiments where at most two
of the steps influenced the observed performance.

As a proof of concept, we apply the statistical model in regression benchmark-
ing. Regression benchmarking [4] is a new methodology for automated tracking
of performance during software development. In our evaluation, we apply the
methodology on omniORB [5] and Mono [6] as large open source projects with
frequent changes. The omniORB platform is an open source implementation of
the CORBA standard, consisting of an IDL compiler, an object request broker
and object services, totaling almost 200k lines of code. The Mono platform is an

open source implementation of the Common Language Infrastructure [7], also
known as Microsoft .NET, consisting of a C# compiler, a virtual machine and
application libraries, totaling almost 3M lines of code. Our evaluation relies on
the Mono Regression Benchmarking Project [8], which tracks performance of
daily Mono versions on several different benchmarks since August 2004, with
the results continuously available on the web [8].

In the proof of concept, we focus on the nondeterminism in the compilation
step of a benchmark experiment, thus complementing [3], where only the nonde-
terminism in the execution and measurement steps of a benchmark experiment
is tackled. The quantification of the benefits is based on the percentage of “false
alarms” in the form of spurious reports of performance changes by the regression
benchmarking methodology, which can be reduced from as high as 50% when
using the model from [3] to as low as 4% when using the proposed model.

The paper follows by analysis and quantification of the random effects of
compilation in Section 2. A new statistical model that describes benchmarking
experiments with random effects of compilation is described in Section 3. The
model is evaluated in the context of the regression benchmarking methodology
in Section 4. The paper is concluded in Section 5.

2 Problem of Random Effects of Compilation

The compilation of benchmarks for complex software is necessarily a complex
task in itself. Using the example of the omniORB platform, compiling a typical
benchmark includes compiling the core libraries, compiling and linking the IDL
compiler, using this IDL compiler to generate stubs and skeletons, compiling the
benchmark itself and linking the benchmark with the core libraries. Similarly,
using the example of the Mono platform, compiling a typical benchmark includes
compiling and linking the virtual machine, compiling the C# compiler using
another bootstrap compiler and using this compiler to compile the core libraries
and the benchmark itself. It is important to note that the process of compilation
is not always entirely reproducible.

In [2], we have identified one particular source of nondeterminism in com-
pilation of C++ code by the GNU C++ compiler [9]. The compiler generates
random names for symbols defined in anonymous namespaces. As a consequence,
the linker places these symbols in different locations within the binary for each
compilation. During execution, a difference in the location of the symbols is
reflected as a difference in the number of cache misses. This source of nondeter-
minism can influence the compilation of the omniORB platform, other sources of
nondeterminism exist that can influence the compilation of the Mono platform.

It should be emphasized that various sources of nondeterminism exist in
various processes of compilation [10]. These are frequently associated with the
internal workings of a particular compiler on a particular platform. An exhaus-
tive search for all sources of nondeterminism in compilation with the goal of
eliminating them from benchmarking experiments is therefore not a feasible ap-
proach. To characterize how much the random effects of compilation impact the

observed performance in a way that is independent of the particular sources
of nondeterminism in compilation, we have introduced a metric called “impact
factor of random effects of compilation” [2]. The metric is defined as a ratio of
the standard deviation of the mean response times from different binaries to the
standard deviation of the mean response times from the same binary. An impact
factor of 1 indicates no impact of random effects on the response time, values
larger than 1 indicate an impact of the random effects. The value of the impact
factor is estimated by simulation (bootstrap). More details can be found in [2].

In Figure 1, we show the impact factors for selected benchmarks that cover a
range of software applications. The Ping and Marshal benchmarks are omniORB
benchmarks that assess remote method invocation, the other benchmarks are
Mono benchmarks that assess remote method invocation, numerical computation
and cryptography, see Appendix C and [8]. The figure also lists the variation of
the results attributed to the random effects in compilation, related to the mean.
Figure 1 shows that random effects of compilation influence results of almost
all of the selected benchmarks. For these benchmarks, ignoring these effects can
therefore mean that the performance of a benchmarking experiment will not
be representative of the performance of a real system. The practical impact of
relying on such benchmarking experiments depends on the particular use of the
experiment. An evaluation in the context of regression benchmarking follows in
Section 4.

Benchmark
Impact Relative (%)
Factor Variation

FFT 1.18 4.1
FFT (NA) 1.08 3.35
FFT (NA,OPT) 1.08 3.42
FFT (OPT) 1.13 4.41
HTTP 1.03 0.19
HTTP (OPT) 1.03 0.23

Benchmark
Impact Relative (%)
Factor Variation

Rijndael 1.01 0.38
Rijndael (OPT) 1. 0.38
TCP 1.05 0.56
TCP (OPT) 1.04 0.56
Marshal 1.05 2.
Ping 1.12 0.81

Fig. 1. Impact factor of random effects in compilation and relative variation caused by
these effects for selected benchmarks.

3 Benchmarking with Random Effects of Compilation

As suggested in Section 1, a simplistic solution to the problem of random effects
of compilation is to repeat all the steps of the benchmarking experiment that
preceed the measurement once for each measurement rather than just once for all
the measurements, and to estimate the response time of the benchmark from the
individual response times collected one in each measurement. Formally, the mean
response time can be estimated by average and the precision of the estimate by
an asymptotic confidence interval. Increasing the number of repetitions improves

the precision, with an obvious drawback – the repetition of the compilation step
takes too long.

In this section, we provide a statistical model of a benchmark experiment,
that covers random effects at all three levels – compilation, execution and mea-
surement. The model allows both to estimate the result precision and to choose
the optimal number of measurements per execution and the optimal number of
executions per binary. These numbers are optimal in respect that they minimize
the time needed for the benchmarking experiment. The model is designed to be
as generic as possible, so that it covers the widest possible range of benchmarks.
In particular, the model works both for benchmarks where repeating measure-
ments or executions helps as well as for benchmarks where it does not help. As
a consequence, the model requires to always repeat the executions and measure-
ments several times to adapt to a particular benchmark. This is not a problem,
since compilation of large projects takes several orders of magnitude longer than
execution or measurement.

3.1 Statistical Model of Benchmark with Random Effects

The intuitive idea behind the model is that the mean of measured response
times in each execution is in fact a realization of a random variable, which is
characteristic for the respective binary (the response times in an execution are
prone to random effects). Similarly, the mean of this random variable is also
in fact a realization of another random variable, which is characteristic for the
respective software version (the execution means are prone to random effects).

We will now formalize the intuitive idea. Let Y ∼ FY

(

µY , σ2
Y

)

denote a
random operation response time in a given software version. The distribution
FY of Y is unknown; we assume that it has finite mean µY and finite variance
σ2

Y . The parameter of interest is the mean response time µY .
We assume that response times in each benchmark execution are indepen-

dent identically distributed (i.i.d.), with a finite variance σ2
E that is fixed for all

executions in a given software version, and with a finite mean µE that differs for
each execution. The parameter µE is in fact a sample from a random variable
ME . For better readability, we will write “µE” and “Y |µE” instead of “ME”
and “Y | [ME = µE]”:

E (Y |µE) = µE , var (Y |µE) = σ2
E . (1)

We assume that the execution mean times µE for each binary are random i.i.d.,
with a finite variance σ2

B that is fixed for all binaries in a given software version,
and with a finite mean µB that differs for each binary:

E (µE |µB) = µB, var (µE |µB) = σ2
B. (2)

We assume that binary mean times µB for each software version are random
i.i.d., with a finite mean µV and a finite variance σ2

V , which are fixed for a given
software version:

E (µB) = µV , var (µB) = σ2
V . (3)

In this model, µY = µV . This can be easily shown using The Rule Of Iterated
Expectations [11], which says that for random variables X and Y , assuming the
expectations exist,

E [E(Y |X)] = E(Y) : (4)

µY = E(Y) =(4) E [E(Y |µE)] =(1) E(µE) =(4)

= E [E(µE |µB)] =(2) E(µB) =(3) µV .

It can also be shown, that σ2
Y = σ2

E + σ2
B + σ2

V , using The Rule Of Iterated
Expectations and a known property of conditional variance [11], which says that
for random variables X and Y ,

var(Y) = E [var(Y |X)] + var [E(Y |X)] : (5)

σ2
Y = var(Y) =(5) E [var(Y |µE)] + var [E(Y |µE)] =(4),(1)

= σ2
E + var(µE) =(5) σ2

E + E [var(µE |µB)] + var [E(µE |µB)] =(4),(2)

= σ2
E + σ2

B + var(µB) =(3) σ2
E + σ2

B + σ2
V .

The parameter of interest µY is unknown, we will estimate it from the data:
let us assume that we have compiled a given software version l times creating
l binaries, and that we have executed each benchmark binary m times, getting
n post–warmup measurements in each execution. In the rest of this section, we
will show that µY can be estimated by average of all the measurements

Y •••
def
=

1

lmn

l
∑

k=1

m
∑

j=1

n
∑

i=1

Yijk ,

and that this estimate is asymptotically normal:

Y ••• ≈ N

(

µY ,
σ2

E

lmn
+

σ2
B

lm
+

σ2
V

l

)

. (6)

Lemma 31 Let X1, ..., Xn be i.i.d. with mean µ and finite positive variance σ2.

Then, X• has asymptotically normal distribution: X• ≈ N
(

µ, σ2

n

)

. Lindeberg–

Levy Central Limit Theorem.

Lemma 32 Let X1, ..., Xn be independent, Xi ∼ N
(

µi, σ
2
i

)

. From the properties

of normal distribution [11], it follows that: X• ∼ N
(

µ•, σ
2
•

)

.

Lemma 33 Let X ∼ N
(

µX , σ2
X

)

and Y | [X = x] ∼ N
(

x, σ2
)

. Then, Y ∼
N

(

µX , σ2
X + σ2

)

. The proof is outlined in Appendix A.

By Lemma 31 we have, from (1),(2),(3):

Y kj•|µEkj ≈ N

(

µEkj
,
σ2

E

n

)

, (7)

µEk•|µBk
≈ N

(

µBk
,
σ2

B

m

)

, (8)

µB• ≈ N

(

µV ,
σ2

V

l

)

. (9)

By applying Lemma 32 on (7),(8), we get by turns (10),(11). Then, by applying
the same lemma again on (10), we get (12):

Y k••|µEk• ≈ N

(

µEk•,
σ2

E

mn

)

(10)

µE••|µB• ≈ N

(

µB•,
σ2

B

lm

)

(11)

Y •••|µE•• ≈ N

(

µE••,
σ2

E

lmn

)

(12)

By applying Lemma 33 on (9) and (11), we get

µE•• ≈ N

(

µV ,
σ2

B

lm
+

σ2
V

l

)

. (13)

Finally, by applying Lemma 33 on (13) and (12), we get (6). ⊓⊔

3.2 Change Detection

In regression benchmarking, we need to detect a performance change between
two consecutive versions of selected software. Currently, we focus only on mean
response time. In terms of the model described above, we want to detect a
change, whenever µY changes between two consecutive versions. Because we
cannot assume to have a long period of versions without a change, we cannot
directly use methods of change–point detection or quality control. The option of
modifying some of these methods for regression benchmarking is left for future
work.

Currently, we use a simple comparison method based on confidence intervals:
we detect a change whenever confidence intervals for the mean from two consec-
utive versions do not overlap. The method is similar to the Approximate Visual
Test described by Jain [12], where t–test is used to detect changes in case the
center of one confidence interval falls into the other confidence interval.

The asymptotic confidence interval for µY can be constructed using (6). We
can estimate the unknown variances σ2

E , σ2
B and σ2

E by S2
E , S2

B and S2
V as follows:

S2
E =

1

lm(n − 1)

l
∑

k=1

m
∑

j=1

n
∑

i=1

(

Ykji − Y kj•

)2
(14)

S2
B =

1

l(m − 1)

l
∑

k=1

m
∑

j=1

(

Y kj• − Y k••

)2
(15)

S2
V =

1

l − 1

l
∑

k=1

(

Y k•• − Y •••

)2
(16)

Since we do not assume normal distributions of µB, µE |µB and Y |µE , we can-
not assume Y ••• to follow the t–distribution. We therefore have to rely on the
asymptotic normality of Y •••, even after the estimates of the variances are used
instead of the unknown variances. The asymptotic (1 − α) confidence interval
for µY used for change detection therefore is

Y ••• ± u1−α
2

√

S2
E

lmn
+

S2
B

lm
+

S2
V

l
, (17)

where u• is the quantile function of the standard normal distribution. Thus, the
probability that µY lies within this interval is asymptotically (1 − α).

3.3 Determining Optimum Number of Executions and

Measurements

When detecting changes using confidence intervals as described above, the shorter
the interval is, the higher is the chance of discovering a performance change. The
width of the confidence interval (17) can be reduced only by proper selection of
the numbers of measurements, executions and binaries – n, m, l, because the
confidence level (1 − α) is fixed and the variance estimates S2

E , S2
B and S2

V are
properties of the given software version.

From (17), it is clear that increasing the number of binaries l always reduces
the interval width. Increasing the number of executions m reduces the width
only partially, because it does not reduce the impact of S2

V (random effects
in compilation). Similarly, increasing the number of measurements n does not
reduce the impact of S2

B (random effects in execution) and S2
V . On the other

hand, increasing the number of measurements n is usually less expensive than
increasing the number of executions m, which is in turn less expensive than
increasing the number of compilations l. Therefore, optimum values of n and m

should exist, that guarantee the shortest confidence interval given a fixed time
for the benchmarking experiment. The optimum values would depend on S2

E ,
S2

B and S2
V . This intuitive idea will be formalized further in this section.

We define the cost c of a benchmarking experiment:

c = (b + (w + n) · m) · l, (18)

where w is the number of measurements in the warm–up stage of each benchmark
execution (price for a new execution) and b is the number of measurements that
could be taken in the time needed for compilation (price for a new binary). The
values of w and b have to be estimated or determined by experience, as discussed

below. Our objective is to find m,n such that for the fixed cost c, f(m, n, l) is
minimal:

f(m, n, l) =
S2

E

lmn
+

S2
B

lm
+

S2
V

l
. (19)

After eliminating l using (18), f(m, n) is

f(m, n) =
mw + mn + b

c
·
(

S2
E

mn
+

S2
B

m
+ S2

V

)

. (20)

It is shown in Appendix B that the minimum is reached in

m0 =

√

b

w
· S2

B

S2
V

, n0 =

√

w · S2
E

S2
B

. (21)

In practice, the length of the warm–up stage w depends on the benchmark
platform and benchmark application and can be set by experience. It is impor-
tant not to understate w in order to get relevant results [13]. The value of b

can be estimated by experiments, it depends on the used compiler, the build
scripts and the code size. From our experience, neither b nor w vary significantly
between software versions. Still, the variances σ2

E , σ2
B and σ2

V do vary between
versions, and we have to collect enough measurements in enough executions for
enough binaries to get variance estimates S2

E , S2
B, S2

V . How much is enough de-
pends on each benchmark and platform. With these estimates, we can calculate
the confidence interval width (17), and if the width is too large, we can run an
additional experiment with the optimum values of m and n using (21).

Some benchmarks measure only the response time of a part of a larger op-
eration, where the whole operation is repeatedly invoked. An example of such a
benchmark is the Marshal benchmark, which in fact repeatedly runs a remote
procedure call, but measures only the marshaling part of the call. Let us assume
that the measured operation takes q times less time than the repeated operation.
The cost of the experiment is then still expressed in the number of measurements
of the measured operation:

c = (b + (w + n) · m · q) · l. (22)

It is shown in Appendix B that the optimum numbers of measurements and
executions are:

m0 =
1√
q
·
√

b

w
· S2

B

S2
V

, n0 =

√

w · S2
E

S2
B

. (23)

The optimum number of executions m0 is smaller than in (21), because the cost
of the execution has been understated compared to the cost of the compilation.
The optimum number of measurements n is the same, because the cost of the
measurement compared to the cost of the execution did not change: both in
warm–up phase and non warm–up phase, the whole operation is repeated. The
value of q can be estimated by experiments. By our experience, it does not vary
significantly between software versions.

4 Evaluation

The evaluation of the proposed statistical model is done in the context of re-
gression benchmarking [4]. The essential part of regression benchmarking is an
automated comparison of observed performance between different software ver-
sions, with the goal of identifying instances of performance changes from version
to version. Regression benchmarking is therefore sensitive to random fluctuations
in the observed performance, which exhibit themselves as “false alarms” – spuri-
ous reports of performance changes that are caused by the random fluctuations
rather than differences between software versions.

The evaluation is made difficult by the fact that deciding whether a change
in observed performance corresponds to a change between software versions re-
quires manual analysis of the software versions in question. Such an analysis
becomes prohibitively expensive when enough data for a statistically significant
evaluation needs to be collected. We overcome this obstacle by comparing multi-
ple benchmarking experiments on the same software version in place of multiple
benchmarking experiments on multiple software versions. Then, all the detected
changes are necessarily false alarms.

In more detail, the evaluation begins with compiling the same software ver-
sion many times into a number of binaries, executing each binary a number of
times and collecting a number of measurements from each execution. The exact
numbers of compilations, executions and measurements are chosen to maximize
the reliability of the evaluation. The evaluation proceeds with simulation (boot-
strap). For each benchmark, the simulation is repeated a number of times, each
time two groups of binaries are chosen by random and compared using the pro-
posed statistical model. The results are shown in Figure 2, contrasted against
the results obtained using the model from [3] with only a single binary per group.

The evaluation suggests that different benchmarks suffer from false alarms to
different degrees. The FFT benchmarks suffer most – this can be explained by the
fact that they use a lot of memory and are therefore sensitive to the performance
of the memory cache. On the other hand, the Rijndael benchmark does not
suffer from false alarms at all – the encryption and decryption is computationally
intensive, but does not need much memory. It is also interesting that in omniORB
benchmarks, the decrease in the number of false alarms with the growing number
of binaries is much faster than in Mono benchmarks. We attribute this to the fact
that the random effects of compilation in Mono benchmarks are more complex
than in omniORB benchmarks.

5 Conclusion

The compilation of large applications is often a non–repeatable process. Com-
piling the same sources with the same compiler under the same settings can and
often does result in different binaries that deliver different performance. As a
result and contrary to the common practice, multiple binaries should be used
for benchmarking. We show on a diverse set of benchmarks how using only a

FFT FFT

(NA)

FFT

(NA,OPT)

FFT

(OPT)

HTTP HTTP

(OPT)

Rijndael Rijndael

(OPT)

TCP TCP

(OPT)

Marshal Ping

Benchmarks

F
a
ls

e
 A

la
rm

s
 [
%

]

0
1
0

2
0

3
0

4
0

5
0

1

10

15

20

25

30

Number of compilations of tested version

Benchmark
False Alarms (%) for Different

Numbers of Compilations
1 10 15 20 25 30

FFT 50.09 20.69 14.09 9.29 5.79 4.15
FFT (NA) 37.80 16.16 10.88 7.13 4.74 3.04
FFT (NA,OPT) 36.88 15.87 10.22 6.96 4.36 3.61
FFT (OPT) 41.35 19.66 13.25 8.46 6.01 3.95
HTTP 1.64 0.95 0.59 0.40 0.27 0.13
HTTP (OPT) 3.29 1.38 0.96 0.72 0.51 0.37
Rijndael 0.03 0.01 0.02 0.02 0.00 0.01
Rijndael (OPT) 0.00 0.00 0.00 0.01 0.01 0.00
TCP 6.01 2.50 1.63 1.36 0.82 0.55
TCP (OPT) 4.03 1.77 1.29 0.84 0.70 0.41
Marshal 4.97 0.29 0.10 0.01 0.02 0.00
Ping 16.68 1.16 0.35 0.08 0.03 0.00

Fig. 2. Reduction of false alarms in regression benchmarking for different numbers of
compilations. The same values are presented both in the graph and in the table.

single binary for benchmarking can lead to severe distortion of the benchmark
results.

We introduce a new statistical model of a benchmark experiment, one which
allows to estimate the precision of benchmark results, taking into account the
random effects in compilation, but also the random effects in benchmark exe-
cution described in [2] and the widely known random effects in individual mea-
surements. In addition to this, the model makes it possible to determine the
optimum number of measurements within each benchmark execution and the
optimum number of executions for each benchmark binary, which allows us to
achieve the best possible precision for a given time limit on the benchmark ex-
periment.

As an application of the model, we demonstrate a significant reduction of the
number of erroneously detected performance changes between different versions
of the same software in the context of regression benchmarking [4]. As a striking
example, with 25 Mono binaries, the number of erroneous detections using a
standard numerical benchmark falls down from 50% to 6%, as illustrated in
Figure 2. This improvement is achieved by incorporating the random effects of
compilation into the precision estimates of the results.

There are numerous related projects that track performance changes during
software development, such as [14, 15]. Although these projects do not attempt
to detect the changes in performance automatically, their results would benefit
from using the proposed statistical model. At the time of this writing, we are not
aware of any other project that would attempt to handle the problems associated
with random effects of compilation in performance.

Acknowledgement. This work was partially supported by the Grant Agency of
the Czech Republic project GD201/05/H014 and the Czech Academy of Sciences
project 1ET400300504.

References

1. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison–Wesley, Reading, MA, USA (2001)

2. Kalibera, T., Bulej, L., Tuma, P.: Benchmark precision and random initial state.
In: Proceedings of SPECTS 2005, SCS (2005) 853–862

3. Kalibera, T., Bulej, L., Tuma, P.: Automated detection of performance regressions:
The Mono experience. In: MASCOTS, IEEE Computer Society (2005) 183–190

4. Bulej, L., Kalibera, T., Tuma, P.: Repeated results analysis for middleware regres-
sion benchmarking. Performance Evaluation 60 (2005) 345–358

5. Lo, S.L., Grisby, D., Riddoch, D., Weatherall, J., Scott, D., Richardson, T., Car-
roll, E., Evers, D., , Meerwald, C.: Free high performance orb. http://omniorb.
sourceforge.net (2006)

6. Novell, Inc.: The Mono Project. http://www.mono-project.com (2006)
7. ECMA: ECMA-335: Common Language Infrastructure (CLI). ECMA (2002)
8. Distributed Systems Research Group: Mono regression benchmarking. http://

nenya.ms.mff.cuni.cz/projects/mono (2005)
9. Free Software Foundation: The gnu compiler collection. http://gcc.gnu.org (2006)

10. Gu, D., Verbrugge, C., Gagnon, E.: Code layout as a source of noise in JVM
performance. In: Component And Middleware Performance Workshop, OOPSLA
2004. (2004)

11. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference.
Springer, New York, NY, USA (2004)

12. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley–Interscience,
New York, NY, USA (1991)

13. Buble, A., Bulej, L., Tuma, P.: CORBA benchmarking: A course with hidden
obstacles. In: IPDPS, IEEE Computer Society (2003) 279

14. DOC Group: TAO performance scoreboard. http://www.dre.vanderbilt.edu/stats/
performance.shtml (2006)

15. Prochazka, M., Madan, A., Vitek, J., Liu, W.: RTJBench: A Real-Time Java
Benchmarking Framework. In: Component And Middleware Performance Work-
shop, OOPSLA 2004. (2004)

16. Weisstein, E.W.: Mathworld–a wolfram web resource. http://mathworld.wolfram.
com (2006)

A Proof of Lemma 33

Let f be the probability density function of the normal distribution with mean
µ and variance σ2:

f(x; µ, σ) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

, exp(z) = ez.

The density functions of X and Y |X from Lemma 33 are:

fX(x) = f(x; µX , σX), fY |X(y|x) = fY |x(y) = f(y; x, σ).

By the definition of conditional density:

fY,X(y, x) = fY |X(y|x) · fX(x).

It follows, that:

fY (y) =

∫

fY,X(y, x) dx =

∫

fY |X(y|x)fX(x)dx =

=

∫

1

σ
√

2π
exp

(

− (y − x)2

2σ2

)

· 1

σX

√
2π

exp

(

− (x − µX)2

2σ2
X

)

dx =

=

∫

1

σ
√

2π
exp

(

− (y − µX − u)2

2σ2

)

· 1

σX

√
2π

exp

(

− u2

2σ2
X

)

du =

=

∫

f(y − u; µX , σ)f(u; 0, σX)du. |u = x − µX

Lemma A1 Let f(t; µ1, σ1),f(t; µ2, σ2) be density functions of normal variates.
Then,

∫

f(τ ; µ1, σ1)f(t − τ ; µ2, σ2))dτ = f

(

t; µ1 + µ2,

√

σ2
1 + σ2

2

)

.

In other words, convolution of Gaussians is also a Gaussian (Convolution, [16]).

By Lemma A1:

fY (y) =

∫

f(y − u; µX , σ)f(u; 0, σX)du = f

(

y; µX ,

√

σ2 + σ2
X

)

,

and thus
Y ∼ N(µX , σ2

X + σ2). ⊓⊔

B Proof of (21) and (23)

We will show only (23), because (21) is a special case of (23), where q = 1. Let
f ,g be defined as follows:

g(l, m, n) = (b + (w + n) · mq) · l − c,

f(l, m, n) =
S2

E

lmn
+

S2
B

lm
+

S2
V

l
.

Our objective is to find a minimum of f(l, m, n), subject to the constraint
g(l, m, n) = 0. Using Lagrange Multiplier Theorem [16], we can find l, m, n

where the minimum must be, provided that the minimum exists. The partial
derivatives are:

(

∂g

∂l
,

∂g

∂m
,
∂g

∂n

)

(l, m, n) = ((w + n) · mq + b, (w + n) · ql, mql) ,

(

∂f

∂l
,

∂f

∂m
,
∂f

∂n

)

(l, m, n) =

(

− S2
E

l2mn
− S2

B

l2m
− S2

V

l2
,− S2

E

lm2n
− S2

B

lm2
,− S2

E

lmn2

)

.

By Lagrange Multiplier Theorem, the local extremum can only be in l, m, n, that
solve the following system of equations:

∂f

∂l
(l, m, n) + λ

∂g

∂l
(l, m, n) = 0 (24)

∂f

∂m
(l, m, n) + λ

∂g

∂m
(l, m, n) = 0 (25)

∂f

∂n
(l, m, n) + λ

∂g

∂n
(l, m, n) = 0 (26)

g(l, m, n) = 0 (27)

We can express m2 and l2 from (26), for λ > 0, q > 0:

m2 =
S2

E

λql2n2
, l2 =

S2
E

λqm2n2
. (28)

By substituting m2 from (28) into (25), we get for n > 0:

n0 = n =

√

wS2
E

S2
B

.

By substituting l2 from (28) into (24), we get for m > 0, w > 0:

m0 = m =

√

bS2
B

qwS2
V

.

We are not interested in the values of l and λ solving the system of equations.
Still, it remains to be shown that there really is a local minimum of f(l, m, n) in
m = m0, n = n0. This can be done directly by checking the first and the second
partial derivatives of f(m, n),

f(m, n) =
mqw + mqn + b

c
·
(

S2
E

mn
+

S2
B

m
+ S2

V

)

,

as described in Second Derivative Test [16]. The procedure is quite straightfor-
ward, but involves some labor algebra. We do not include the details here.

C Description of Used Benchmarks

All benchmarks were run on a single machine, Dell Precision 340, with a single
Pentium 4 processor, 512M RAM. The CORBA benchmarks were run on Fedora
2 operating system, the Mono benchmarks were run on Fedora 4. All benchmarks
were run with a disconnected network interface and with all unnecessary system
services shut down.

The Ping benchmark measures the response time of a simple CORBA remote
procedure call, the Marshal benchmark measures only marshaling part of the
remote call. Both benchmarks comprise of a client and a server process, both
of which are restarted in each execution. The evaluation was done with 100
CORBA/benchmark binaries, each benchmark binary was executed 25 times.
The Ping and Marshal benchmarks are described in [2] in more detail, including
the platform information.

The other benchmarks are from the Mono Regression Benchmarking Project [8].
The TCP Ping and HTTP Ping benchmarks measure response time of a single
remote procedure call using TCP and HTTP channels, both benchmarks com-
prise of two processes. The Rijndael benchmark measures the aggregated time
for encryption and decryption of a constant short text in memory. The FFT
benchmark measures the aggregated time for forward and inverse Fast Fourier
Transformation of a constant vector. There are two versions of the FFT bench-
mark: the original version allocates the memory for computation repeatedly at
the beginning of each measurement, the NA (“no allocation”) version allocates
the memory once at the benchmark process start–up. Each benchmark was run
both with the default virtual machine optimizations turned on, and with all
the implemented virtual machine optimizations turned on (OPT). The evalu-
ation was carried out with 150 binaries, each benchmark binary was executed
100 times. Detailed description of the benchmarks and platform information are
available on the web [8].

