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Using ε-greedy reinforcement learning methods to further understand
ventromedial prefrontal patients’ deficits on the Iowa Gambling Task
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Abstract

An important component of decision making is evaluating the expected result of a choice, using past experience. The way past experience
is used to predict future rewards and punishments can have profound effects on decision making. The aim of this study is to further understand
the possible role played by the ventromedial prefrontal cortex in decision making, using results from the Iowa Gambling Task (IGT). A number
of theories in the literature offer potential explanations for the underlying cause of the deficit(s) found in bilateral ventromedial prefrontal lesion
(VMF) patients on the IGT. An error-driven ε-greedy reinforcement learning method was found to produce a good match to both human normative
and VMF patient groups from a number of studies. The model supports the theory that the VMF patients are less strategic (more explorative),
which could be due to a working memory deficit, and are more reactive than healthy controls. This last aspect seems consistent with a ‘myopia’
for future consequences.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the decision making literature of the past decade, a
popular paradigm has been the Iowa Gambling Task (IGT)
(Bechara, Tranel, & Damasio, 2000). The IGT was originally
designed to elucidate some of the particular deficits found in
patients with bilateral ventromedial prefrontal cortex lesions
(VMF). The IGT is a reinforcement learning problem, in
that participants must learn from rewards and punishments
to evaluate the most appropriate action. Our aim is to find
valuation functions, which describe the average behaviour
found in VMF patients and normative human groups on the
IGT, using models based on ε-greedy methods (Sutton &
Barto, 1998). The ε-greedy framework was used because of
the simplicity and flexibility it offered in testing a variety of
theories. Our work has a related motivation to other modelling
work on the IGT (Busemeyer & Stout, 2002; Yechiam,
Busemeyer, Stout, & Bechara, 2005). However, our work
differs in two important respects, (1) it attempts to clarify and
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extend current theories; and (2) it tests the models against data
from four versions of the IGT across a number of studies, rather
than the frequently used ABCD version alone. Additionally,
other modelling work has not simulated the time-course of
selections across the task (Wagar & Thagard, 2004), or has
modelled a reduced choice variant of the IGT (Frank & Claus,
2006) that has not been tested on VMF patients.

The IGT attempts to mimic real world decision making,
where the outcome of choices and strategies have an element of
immediate and, particularly, long-term uncertain consequence.
All four versions of the task we consider contain four decks of
cards, two of which are advantageous (decks C and D in the
original ABCD version) and two of which are disadvantageous
(decks A and B in the original ABCD version). Through
selection, players need to learn which decks are best. Initially,
the bad decks seem the best, as they offer higher immediate
reward. However, they also offer higher uncertain losses, which
only becomes evident after a number of selections. Importantly
though, as the task progresses, normal healthy humans learn
that the best decks are those that offer smaller immediate
rewards, but also lower uncertain punishments, whereas VMF
patients seem unable to fully use this distinction. Overall, the
IGT tests a number of aspects of decision making including,
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within task learning, management of reversals in contingencies
and evaluation of regular rewards and punishments over
uncertain ones. It should be noted that in all versions of the
IGT, the disadvantageous decks provide the best regular returns
(outcomes that occur on every selection of a particular deck).

The IGT paradigm has been used as a method for
distinguishing decision making deficits in bilateral VMF
patients compared to normal healthy controls (Bechara,
Damasio, Damasio, & Anderson, 1994; Bechara, Damasio,
Damasio, & Lee, 1999; Bechara, Damasio, Tranel, & Damasio,
1997; Bechara et al., 2000; Fellows & Farah, 2005), and with
various other frontal lesion patient groups (Bechara, Damasio,
Tranel, & Anderson, 1998; Clark, Manes, Antoun, Sahakian,
& Robbins, 2003; Fellows & Farah, 2005; Manes et al.,
2002), including patients with unilateral VMF lesions (Tranel,
Bechara, & Denburg, 2002). For a review of a number of other
studies, with a variety of subject groups see Dunn, Dalgleish,
and Lawrence (2006).

This paper continues by summarizing four different versions
of the IGT, and goes on to consider five theories in the literature,
which each attempt to define the underlying cause of deficits
found in VMF patients’ performance on the IGT. With the
aid of simulations of human normal healthy controls’ (NHCs)’
and VMF patients’ IGT profiles, these theories are considered
in greater depth, and conclusions are drawn about the most
suitable theory. This has allowed the authors to suggest that
VMF patients are less strategic (more explorative), which could
be due to a working memory deficit, and are more reactive
(more influenced by recent results) than healthy controls.

2. Versions of the Iowa Gambling Task (IGT)

We consider four versions of the IGT, ABCD, A′B′C′D′,
EFGH and E′F′G′H′. (For further details of the task see Bechara
et al. (2000).) It is important to note that the bad decks, A(′) and
B(′), in the A(′)B(′)C(′)D(′) versions have the largest variance
in potential wins and losses per card, making them more ‘risky’.
Whereas, in the EFGH and E′F′G′H′ versions the good decks,
E(′) and G(′), have the highest variance.

In the A(′)B(′)C(′)D(′) versions, the good decks, C(′) and
D(′), provide regular wins of $50 and average losses of $25
per selection, giving a mean return of $25. In deck C(′) the
losses are smaller and more frequent than in deck D(′). For
bad decks, A(′) and B(′), regular wins are equal to $100 and
uncertain losses average $125 per selection, giving an average
loss of $25 per selection. In deck B(′) there are occasional
large losses, whereas in deck A(′) there are more frequent
smaller losses. In the A′B′C′D′ and E′F′G′H′ variants, the good
decks become better and the bad decks become worse over the
course of the task. More precisely, in deck A′, the frequency
of punishment is increased by 10% every 10 cards. Whereas
in deck B′, the magnitude rather than the frequency of each
uncertain punishment is increased by 10% every 10 cards.
Parallel decreases in the punishments were applied to decks, C′

and D′, C′ had a 10% decrease in the frequency of punishment
after every 10 cards, and in deck D′ there was a matching
decrease in the magnitude of loss.
A fairly similar adjustment is made to the score card for
EFGH to produce the E′F′G′H′ variant of the task. Here, in deck
F′, there is a 6% decrease in the frequency of delayed/uncertain
reward after every 10 selected cards from that deck. With
a corresponding decrease, in only magnitude, rather than
frequency, in uncertain reward for deck H′. In deck E′, there
is a 6% increase in the magnitude of reward for each win and
a matching increase in total wins in deck G′, but in G′ it is
generated by increasing the frequency of wins.

The measure used to compare participants’ choices
throughout the task are their net scores, which is calculated
by adding up the number of advantageous choices, selections
from decks C and D for the ABCD version, and subtracting the
number of disadvantageous choices, from the other two decks,
A and B (i.e. net score = (C+D)−(A+B) or (E+G)−(F+H)

for the EFGH version). Participants’ net scores are often broken
down into 5 blocks of 20 selections, to show how performance
evolves over the course of the task (Bechara et al., 2000) (i.e.
block 1, selections 1–20; etc.). This is the format that the human
and simulation data will be presented in in the results and
analysis segment (see Section 5) of this paper.

3. Competing theories of VMF patient deficits

The current work considers five theories present in the
literature, that each offer possible underlying causes for the
decision making deficits found in bilateral VMF lesion patients
tested on the Iowa Gambling Task (IGT). We review these five
hypotheses here.

3.1. ‘No preferences’ — A. Sloman

In Sloman (2004), Aaron Sloman suggests that Bechara
and Damasio et al.’s VMF patients have lost their preferences
and emotions. Sloman points out that it is not necessarily
true that because VMF patients have reduced emotions and
decision making deficits that emotions are causally required
for ‘rational’ decision making. He suggests that the VMF
patients have lost their preferences and therefore, have both
reduced emotions and decision making deficits. This view of
‘no preferences’ is supported by anecdotal evidence (Sacks,
1998), where a patient with large bilateral orbitofrontal cortex
lesions professed to no longer having preferences.

One would expect ‘no preferences’ to lead to random
selection on the IGT, and may reflect an inability to retain
information on the results of past selections, potentially a
working memory deficit. The questions remains open whether
an intact working-memory is required for this type of decision-
making (Bechara et al., 1998; Hinson, Jameson, & Whitney,
2002; Maia & McClelland, 2004). In general, working memory,
particularly the retention of information over short delays,
is considered to require dorsolateral prefontal (DLF) regions
(Goldman-Rakic & Leung, 2002), rather than orbital frontal
regions (Stone, Baron-Cohen, & Knight, 1998). Bechara
et al. (1998) found that patients with right dorsolateral/medial
prefrontal lesions had working memory deficits, but not
decision making deficits on the IGT. However, Fellows and
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Farah (2005) and Manes et al. (2002) have found that other DLF
patients were poor at the IGT.

3.2. ‘Risk-seeking’ — Sanfey et al.

In the original ABCD version of the IGT, the riskiest decks
(i.e. with highest variance) were also the disadvantageous
decks. Therefore, Sanfey, Hastie, Colvin, and Grafman (2003)
have suggested that VMF patient behaviour might be caused
by them being overtly attracted to risk. Sanfey et al. (2003)
found, in their own gambling task, that they had risk-VMF
and safe-VMF sub-groups. The two VMF sub-groups had
different behaviour profiles, but there were not obvious lesion
location or volume differences in their VMF damage. In Sanfey
et al. (2003)’s gambling task, there was no pre-set reversal,
but on-line learning was required in the task, each trial was
independent, and the main aim of the task was to test attitudes
towards risk.

In another study, Rogers et al. (1999) introduced the
Cambridge Gamble Task (which requires no online learning,
uses single-shot probabilistic judgements and tests impulsivity),
where they found that orbitofrontal cortex (OFC) lesion patients
did not, as often as normals and dorsolateral prefrontal cortex
lesion (DLF) patients, make the probabilistically most rational
gamble. In addition, OFC patients bet at a reduced rate
compared to normal controls and DLF patients. This suggests
that patients with OFC lesions were risk-seeking in terms
of not picking the most rational gamble, but were more
cautious than normals when it came to the amount they
risked and so were not impulsive. Therefore, these results are
somewhat inconclusive. Although in another study, patients
with aneurysms of the anterior communicating artery (who
often exhibit similar emotional and judgemental deficits to
VMF patients) were found to take greater risks than NHCs on
the Cambridge Gamble Task (Mavaddat, Kirkpatrick, Rogers,
& Sahakin, 2000).

3.3. Frequency vs. magnitude — Frank and Claus

Frank and Claus (2006) have suggested that the OFC is
important in the representation of magnitude and that the
basal ganglia have a greater role in representing the frequency
of rewards and punishments resulting from a choice/stimulus
(with perhaps a limited representation of magnitude). Frank and
Claus (2006) have suggested that complete OFC lesions would
result in a participant relying on the basal ganglia and therefore,
mainly basing their decisions on the frequency of losses and
wins. Bechara et al.’s VMF patients’ IGT net scores simulated
in our present study are from patients with substantial, but not
complete OFC lesions. Frank and Claus (2006) use their model
to predict the behaviour of patients with complete OFC lesions
on a modified version of the IGT (Peters & Slovic, 2000), which
has only been tested on normal healthy controls (NHCs).

3.4. ‘Myopia’ for future consequences — Bechara et al.

Bechara et al. (2000) have described the decision making
behaviour of their VMF patients as displaying a ‘myopia’
for future consequences (insensitivity to future consequences).
This theory was chosen over two other theories: (i)
hypersensitivity to reward, and (ii) insensitivity to punishment,
in Bechara et al. (2000). This choice was made for two
reasons. Firstly, both theories (i) and (ii) would have resulted
in disadvantageous behaviour in the A(′)B(′)C(′)D(′) versions
of the task and advantageous behaviour in the E(′)F(′)G(′)H(′)

versions. This was not found since VMF patients acted
disadvantageously in all versions. Secondly, they found that
when they increased the relative delayed punishment in the
bad decks (A′B′C′D′ version) or increased the relative delayed
reward in the good decks (E′F′G′H′ version) the VMF patients
performance did not improve. This provides support for
the insensitivity to future consequences (‘myopia’) theory.
Anecdotally, the group have, additionally, found that their VMF
patients act in the short term and often make decisions which
are detrimental in the long run to their social and professional
lives (Damasio, 1994). In addition, this group have suggested
that an explanation for this ‘myopia’ is a lack of ‘somatic-
markers’, which are bodily representations of past experience.

3.5. Reversal learning — Rolls, Clark et al. and Fellows and
Farah

In both monkeys and humans, frontal lobe lesions have been
found to cause participants to perseverate in reversal learning
tasks (Clark, Cools, & Robbins, 2004; Fellows & Farah, 2003;
Hornak et al., 2004; Rolls, 2000, 2004; Rolls, Hornak, Wade, &
McGrath, 1994). Although the patients in the Rolls et al. (1994)
study had diffuse ventral prefrontal cortex lesions, Fellows
and Farah (2003, 2005)’s patients had more localised damage,
with a focus in the ventromedial prefrontal cortex, confirmed
by MRI. Therefore, the studies by Fellows and Farah allow
for a better comparison, in terms of lesion location, to the
VMF patients described in Bechara et al.’s studies. Fellows
and Farah (2005) found that when they removed the reversals
in the IGT by re-arranging the score-card, developing the
‘shuffled’ ABCD variant, their VMF patients acted similarly
to their NHCs. However, it should be noted that Bechara et
al.’s VMF patients were originally selected on the basis of their
behavioural deficits as well as their lesion locations, whereas
Fellows and Farah’s VMF patients were selected on lesion
location alone.

4. ε-greedy action-value method

In this paper, we have tried to simulate the human NHCs
(Normal Healthy Controls) and human VMF patients’ data
from Bechara et al. (1999, 2000), Bechara and Damasio (2002),
Bechara, Dolan, and Damasio (2002) and Clark et al. (2003),
using basic reinforcement learning algorithms, based on ε-
greedy action-value methods (see p. 27, Sutton and Barto
(1998)). The ε in the ε-greedy method signifies the probability
of exploration on each trial, where ε can take values from 0 to
1. If ε = 0, then the algorithm is purely exploitative, and will
always select the choice with the highest estimated value (the
greedy action). If ε = 1, then every trial is explorative, where,
in this set-up, each action is equiprobable.
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On exploitation trials, the greedy action is taken. This
selection depends on the valuation function used, which dictates
how reward and punishment information is evaluated. A
number of valuation functions have been used to try to recreate
the human data, test the five theories under consideration and
to compare our models to others in the literature. The choice
of valuation function depends on the version of the ε-greedy
model being used, and only affects the greedy action. However,
in all versions of the model, to decide whether to select a greedy
or explorative action, Eq. (1) is used on each trial.

if (X (t) > ε), {Exploitation}

∀i(1 ≤ i ≤ N ).

if (i ∈ Z), Pr [ai ] =
1

|Z |

otherwise, Pr [ai ] = 0

otherwise, {Exploration} ∀i(1 ≤ i ≤ N ). Pr [ai ] =
1
N

where

Z = { j | 1 ≤ j ≤ N ∧ ∀k(1 ≤ k ≤ N ),

((k 6= j) ⇒ Qt (ak) ≤ Qt (a j ))}

(1)

X (t) is the value of a random variable at time t , that ranges
from 0 to 1. The probability of an action ai during a trial
is Pr[ai ]. N denotes the number of available actions. Qt (ak)

denotes the estimated value of taking action ak at time t . Z is the
set of maximal actions, with |Z | denoting the set’s cardinality
(i.e. the number of elements). Therefore, if a greedy action is
to be taken, the action with the maximum estimated return is
selected. If a number of actions have the joint highest estimated
value, then one of those actions is selected at random with equal
probability (i.e. a member of set Z is selected with probability

1
|Z |

). The estimated reward or punishment is dictated by the
reward schedule experienced so far and the valuation function
used. In an exploration trial, the probability of selecting a
particular choice, Pr [ai ], is only dependent on the number
of available choices, N . Eq. (1) represents the general case;
therefore, in the case of the IGT (which has 4 choices/decks),
Pr [ai ] = 0.25 during an exploration trial.

In the simulations considered here, one of a number of
simple valuation functions are used. If we use the original
ABCD variant of the IGT as an example, then each action
would be a selection of a card from one of the four decks,
A, B, C or D. In addition, in all nine models, the estimations
at the beginning of the task are set to zero for each possible
action as the participants have no prior knowledge of the task
(see IGT participant instructions in the methods section of
Bechara et al. (1999)). Unless otherwise specified, in all the
following valuation functions, if an action is not selected, then
Qt (a) = Qt−1(a).
Sample-averaging. This method simply uses the mean of the
rewards and punishments received, so far. Therefore, through
sufficient exploration, and the law of large numbers, this
method would become asymptotic to the optimal policy, minus
the cost of exploration.
If, on the T th play, action a has been chosen ka times
prior to T , yielding returns rt (a), then its value is estimated
using Eq. (2) (with rt (a) = 0 when a is not selected on the
t th trial). However, the policy can never be quite optimal if a
constant exploration is used. For example, if an exploration rate
of ε = 0.2 is used, then on 0.2 of the trials a potentially non-
optimal action may be selected. Therefore, on the IGT, where
two of the four (50%) choices are advantageous, on 0.1 of the
trials, this parameter setting would select disadvantageously,
even if the correct value of each action was known.

QT (a) =
1
ka

T∑
t=1

rt (a). (2)

The sample-averaging version of the model has one free
parameter, ε, which ranges from 0 to 1. The full parameter
space was searched for the best matches to the human data
sets, in 0.01 steps. This model provides a good test of the ‘no
preferences’ theory, i.e. an exploration rate close to 1 suggests
a tendency towards ‘no preferences’. In addition, a mean of
1000 simulations are used to represent the average result, for
each parameter setting. This is the same for all the models. An
average across many simulations is used since there is inherent
variance in each run of a model due to the randomness of
exploration, even for the same parameter settings and valuation
function.
Variance-driven learning. This valuation function calculates
the variance in the results from each deck experienced by the
simulation. A standard equation for the variance is used (see
Eq. (3)).

QT (a) =
1
ka

T∑
t=1

(rt (a) − r T (a))2. (3)

The number of times an action has been taken is again ka ,
while r T (a) is the mean return for a particular action a at time
T . This model was theoretically inspired by the ‘risk-seeking’
theory. The use of variance by VMF patients is considered an
alternative to the strategies used by NHCs. Again, this model
only has one free parameter, the exploration rate ε, which
was examined using 0.01 steps across the 0 to 1 range of the
parameter.
Frequency-driven learning. This model is theoretically
inspired by the recent work of Frank and Claus (2006).
Frank and Claus suggest that following OFC lesions, since
decision making becomes more dependent on the basal ganglia,
assessment of choices becomes more frequency driven, with
respect to the frequency of positive and negative outcomes from
a particular action. Therefore, we suggest that this theory might,
in its strongest version, generate a valuation function similar to
that found in Eq. (4).

if (rt (a) > 0), Qt (a) = Qt−1(a) + 1
elseif (rt (a) < 0), Qt (a) = Qt−1(a) − 1
otherwise, Qt (a) = Qt−1(a). (4)

This approach is targeted at modelling the VMF patient data,
and only has one free parameter, ε, which is investigated across
the range 0 to 1, in 0.01 steps.
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Error-driven learning. This valuation function is loosely
inspired by the delta-rule (O’Reilly & Munakata, 2000) and is
set out in Eq. (5).

Qt (a) = Qt−1(a) + γ (rt (a) − Qt−1(a)). (5)

In the error-driven valuation function (Eq. (5)), γ denotes
the learning rate. The error-driven version of the model has
two free parameters, γ and ε, both of which were explored
exhaustively using a range from 0 to 1 with 0.01 steps,
producing 10,000 different parameter settings. The ‘myopia’
for future consequences theory will be captured within the
parameter space of this model.
Error-frequency learning. A potentially less extreme instan-
tiation of the Frank and Claus (2006) frequency-driven theory
might include an extra learning rate parameter. This would al-
low the inclusion of a factor for how responsiveness to recent
and past results affects current behaviour. This variation of the
frequency-driven model, the error-frequency model is presented
in Eq. (6).

if (rt (a) > 0), Qt (a) = Qt−1(a) + γ (1 − Qt−1(a))

elseif (rt (a) < 0), Qt (a) = Qt−1(a) − γ (1 + Qt−1(a))

otherwise, Qt (a) = (1 − γ ) · Qt−1(a). (6)

Similarly to the other two parameter model, the parameters
γ and ε were explored exhaustively using a range from 0 to 1
with 0.01 steps, producing 10,000 different parameter settings.
Reversal learning. This approach takes the error-driven model,
and adds our interpretation of a reversal learning deficit. The
interpretation being that, when a choice/stimulus is currently
associated with a positive estimation of reward (Qt−1(a) > 0),
but the next result shifts the estimation to predict a negative
outcome (Qt (a) < 0), or vice versa, then learning is slowed.
To implement this, an additional parameter λ (reversal-deficit
rate) was added to Eq. (5); this only has an impact when there
is a reversal in expectations/estimations (see Eq. (7)).

if (sign(Qt−1(a)) = sign(Z) ∨ Qt−1(a) = 0),

Qt (a) = Z

otherwise,
Qt (a) = Qt−1(a) + λ · γ (rt (a) − Qt−1(a))

where Z = Qt−1(a) + γ (rt (a) − Qt−1(a)).

(7)

The function sign(x) denotes the sign of x . The addition
of λ gives this model 3 free parameters, which substantially
increases the parameter space. Therefore, to reduce the number
of simulations, 0.05 steps were taken to investigate the
parameter space, which has a range from 0 to 1 for each
parameter. This condenses the number of investigations from
the 100,000 required when using 0.01 steps to 8,000. If λ

is small then there is a severe deficit in reversal learning
that would result in perseveration errors following a reversal.
Perseveration errors represent the main form of reversal
learning deficits found in VMF patients on simple reversal
learning tasks (Fellows & Farah, 2003) (i.e. not a probabilistic
reversal learning task).
Error-variance learning. To provide a less extreme test of
the variance-driven hypothesis (Sanfey et al., 2003), an error-
variance model is also considered. This model (see Eq. (8))
weights an estimation of the mean result, based on the error-
driven model, against the standard deviation for that choice
using a free parameter θ (the variance-weight) that ranges from
0 to 1.

QT (a) = (1 − θ) · (QT −1(a) + γ (rT (a) − QT −1(a)))

+ θ ·
√

Eq. (3). (8)

The 3 free parameters are investigated in combination, using
0.05 steps for each parameter.
Error-valence learning. This version examines whether there
is a difference in how participants value losses vs. gains. This
approach is again based on the error-driven model, but in this
case the return rt (a) is passed through a valence function (see
Eq. (9)). The error-valence model was used to test whether
NHCs and VMF patients value losses and gains equally. A
similar valence parameter has been used in other modelling
work on the IGT (Busemeyer & Stout, 2002).

rt (a) = w · Rt (a) + (1 − w) · L t (a). (9)

The parameter, 0 < w < 1, is comparable to the attention
weight parameter in Busemeyer and Stout (2002). However,
here it is called the valence weight. Rt (a) denotes the positive
reward resulting from a card selection, while L t (a) symbolizes
the loss element of the result. This model has 3 free parameters,
which are investigated in combination, with 0.05 steps for each
parameter. As is the case with the reversal learning model, this
requires simulations at each of the 8000 possible parameter
settings.
Working-memory model. This model examines whether
memory can be further dissected beyond the learning rate
parameter. This is achieved with a parameter that allows for
decay in retained information. The working-memory valuation
function is presented in Eq. (10).

∀i(1 ≤ i ≤ N ) · if (ac = ai ),

Qt (ai ) = Qt−1(ai ) + γ (rt (ai ) − Qt−1(ai ))

otherwise,
Qt (ai ) = ρ · Qt−1(ai ).

(10)

The parameter, 0 < ρ < 1, influences the amount reward
information decays when that specific choice is not selected and
is called the working memory parameter. The current chosen
action is denoted by ac. This model has 3 free parameters,
which are investigated in combination, with 0.05 steps for each
parameter.

The human profiles used to compare the simulated data with
come from an amalgamation of data from relevant studies,
comprising, Bechara et al. (1999, 2000), Clark et al. (2003),
Bechara and Damasio (2002) and Bechara et al. (2002). The
net scores can be found in Table 1. In addition, this table shows
a comparison between the human data and a random strategy
to test whether the human data are significantly different
from chance. We describe a random strategy as a binomial
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Table 1
An amalgamation of net score data from relevant studies, comprising, Bechara et al. (1999, 2000), Clark et al. (2003), Bechara and Damasio (2002) and Bechara
et al. (2002)

Net score blocks 1–20 21–40 41–60 61–80 81–100 Total No. of participants
Task variant

ABCD–N −5.9 2.3 7.1 8.6 9.7 21.8 54
Sig(P < 0.05) Yes Yes Yes Yes Yes Yes
Sig(P < 0.001) Yes Yes Yes Yes Yes Yes

ABCD–V −4.7 0.7 2.0 −3.0 −4.2 −9.2 15
Sig(P < 0.05) Yes No No Yes Yes Yes
Sig(P < 0.001) No No No No No No

EFGH–N 1.0 6.5 10.0 9.0 8.5 35 20
Sig(P < 0.05) No Yes Yes Yes Yes Yes
Sig(P < 0.001) No Yes Yes Yes Yes Yes

EFGH–V −2.0 0.0 0.0 1.0 3.0 2 10
Sig(P < 0.05) No No No No No No
Sig(P < 0.001) No No No No No No

A′B′C′D′–N −4.7 3.7 7.0 7.4 7.7 21.1 66
Sig(P < 0.05) Yes Yes Yes Yes Yes Yes
Sig(P < 0.001) Yes Yes Yes Yes Yes Yes

A′B′C′D′–V −6.1 0.0 −3.4 −3.1 −4.7 −17.3 18
Sig(P < 0.05) Yes No Yes Yes Yes Yes
Sig(P < 0.001) Yes No No No No Yes

E′F′G′H′–N 1.4 6.4 11.4 10.1 9.6 34.8 36
Sig(P < 0.05) No Yes Yes Yes Yes Yes
Sig(P < 0.001) No Yes Yes Yes Yes Yes

E′F′G′H′–V −1.6 −3.9 −3.1 0.0 −5.5 −14.1 16
Sig(P < 0.05) No No No No Yes Yes
Sig(P < 0.001) No No No No No No

The nomenclature used to describe the task variants is their version names with—N for normal healthy controls and—V for VMF net scores. In addition, the table
includes the results of significance testing (using Student’s t-test) with a null hypothesis (NH) that the net scores are random (i.e. a comparison of the human data
to a binomial distribution with Pr = 0.5). The alternate hypothesis (AH) is that they have a non-random strategy. The answer of yes or no signifies whether the NH
can be rejected at P < 0.05 and P < 0.001.
distribution of net scores. It is possible to use a Bernoulli
process (Pr = 0.5), because, even though there are usually four
choices, net scores only differentiate between advantageous and
disadvantageous choices. (Further details of these analyses can
be found in Kalidindi, Bowman, and Wyble (2005).)

4.1. Model selection

When considering a number of models and trying to
decide which is most likely to provide a good description
of the underlying cognitive processes it is important to
consider a number of factors. These have been summarized
by Jacobs and Grainger (1994) and set out in Pitt, Myung,
and Zhang (2002) to include (a) how plausible are the model’s
assumptions (biologically and psychologically); (b) is the
theoretical explanation reasonable and consistent with current
knowledge; (c) can the parameters or parts of the model be
interpreted in a sensible way; (d) how good is the fit to the
observed data; (e) how generalizable is the model (i.e. does it
predict future/new data); and (f) how complex is it?

The discussion section of this paper examines the models’
relationships to the first three factors. The two factors, (d) and
(f), goodness of fit and complexity are weighed against one-
another using the adjusted root mean square deviation (RMSD)
(Pitt et al., 2002) found in Eq. (11). It is appropriate to use
RMSD rather than a maximum likelihood method as we are
working from means of the data from the literature, and not
the original distribution of data across individual participants.
Factor (e) can be used to test competing models when they are
similar in terms of RMSD.

RMSD =
√

SSE/(N − k). (11)

SSE denotes the sum of the squared deviations between the
observed and predicted data. N represents the number of data
points fitted and k denotes the number of parameters in the
model. In the current study, N is set to 5 to reflect the five net
scores (1 for each block) per version of the IGT. A total is then
presented, generated from the sum of RMSDs calculated for
each version of the task. These can be found in Table 2.

5. Results and analysis

In terms of RMSD, the error-driven model with ε = 0.70
and γ = 0.90 (RMSD = 10.8) provides the best match to
human VMF patients, see Table 2. This is further supported
by three other more complex models (reversal learning, error-
variance and error-valence) collapsing to this nested version.
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Table 2
The ‘best’ parameter settings for all models across the ABCD, A′B′C′D′, EFGH and E′F′G′H′ versions of the Iowa Gambling Task (IGT)

Parameters ε γ λ w θ ρ RMSD ‘Shuff’
Models RMSD

Sample-averaging
Normals 0.60 * * * * * 8.0 (1.9)
VMF 0.98 * * * * * 14.6

Variance-driven
Normals 0.03 * * * * * 29.8
VMF 0.98 * * * * * 13.7

Frequency-driven
Normals 0.55 * * * * * 16.7
VMF 0.98 * * * * * 14.5

Error-driven
Normals 0.57 0.16 * * * * 10.0 (1.6)
VMF 0.70 0.90 * * * * 10.8

Error-frequency
Normals 0.54 0.08 * * * * 21.3
VMF 0.90 0.38 * * * * 15.5

Reversal learning
Normals 0.49 0.40 0.41 * * * 9.8 (2.6)
VMF 0.71 0.92 0.96 * * * 13.7

Error-variance
Normals 0.40 0.49 * * 0.15 * 9.7 (7.3)
VMF 0.70 0.94 * * 0.05 * 13.6

Error-valence
Normals 0.41 0.40 * 0.67 * * 9.7 (5.9)
VMF 0.68 0.92 * 0.51 * * 13.6

Working-memory
Normals 0.59 0.18 * * * 1 11.8
VMF 0.58 0.93 * * * 0.88 13.2

RMSD denotes the sum of parameter adjusted root mean square deviations for the 4 mentioned versions of the IGT, averaged across the top five parameter settings.
The final column (‘Shuff’ RMSD) scores in brackets are for the ‘shuffled’ ABCD version, used to test the generalizability of those models.
For example, for the error-valence model, if the valence weight
is w = 0.5 then it becomes the error-driven model as losses and
gains are equally weighted. This is almost the case (w = 0.51).
Therefore, since the values for ε and γ (see VMF models
in Table 2) are almost the same for both models, we can
reasonably treat them as the same model. Similarly, the extra
parameter in each of the reversal learning and error-variance
models is set to levels close to them being an error-driven
model, with ε and γ again being close to ε = 0.70 and
γ = 0.90.

The only model that offers a potentially different
interpretation of the results is the working-memory model (ε =

0.58, γ = 0.93 and ρ = 0.88). It is similar in terms of learning
rate to all the models mentioned above, however, unlike those
models it does not require an increase in exploration rate to
reproduce the VMF patient data compared to NHCs. But, the
working-memory model’s RMSD is bigger (13.2) than that for
the error-driven model (10.8). Again, suggesting that the error-
driven model is the best match.

In the case of NHCs, the sample-averaging model (ε =

0.60) has the lowest RMSD = 8.0. However, within its
parameter space it does not contain a good model of VMF
patients. The closest the sample-averaging model can get to a
VMF patient profile is by becoming random, ε = 0.98. This
is the maximum value for the exploration rate because we are
averaging over the best five parameter settings and this model
only has one parameter. However, clearly from Table 1, there
are a number of blocks where net scores for VMF patients
are significantly different from a random profile. The next best
NHC models are the error-valence and error-variance models,
both with an RMSD = 9.7. Therefore, it is difficult to decide
which model to select. One method to resolve this impasse is
to see whether the models can generalize and replicate well a
new data set. To test this property of generalization, the top five
NHC models, with their current parameter setting where used
to simulate NHCs on the ‘shuffled’ ABCD variant of the IGT
(Fellows & Farah, 2005). The final column of Table 2 presents
the RMSDs for the ‘shuffled’ ABCD variant (‘Shuff’ RMSD) in
brackets for the relevant models. From this additional analysis,
it is evident that the error-valence and error-variance models
do not generalize well to this new data set, unlike the sample-
averaging, error-driven and reversal learning models. The best
model in terms of generalization is the error-driven model
RMSD = 1.6. Therefore, the error-valence and error-variance
models seem to have over fit the current data. Furthermore,
when using RMSD to weigh goodness of fit against complexity,
the error-driven model (ε = 0.57 and γ = 0.16) only
performs slightly worse than the error-valence and error-
variance models with a RMSD = 10.0. In addition, were the
RMSD scores for all four IGT versions added to the ‘shuff’
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Fig. 1. Net score comparisons between the simulations and the human data for the four different versions of the IGT, using an error-driven valuation function and
parameters ε = 0.57 and γ = 0.16 for NHCs, and ε = 0.72 and γ = 0.90 for VMF patients. 10,000 runs of the simulation were averaged to gain the simulated
curves shown.
RMSD scores from simulations of the ‘shuffled’ ABCD variant
then the NHC error-driven provides the lowest total RMSD.
For these reasons, the error-driven models for NHCs and VMF
patients are presented in Fig. 1 as the best models among the
nine designs in the current study.

The error-driven ε-greedy model produces a good match
to the human NHCs’ profiles on all four versions of the
IGT, apart from the initial data points on the E(′)F(′)G(′)H(′)

versions. In addition, the error-driven model produces a good
match to VMF patients on all versions of the task except the
EFGH variant (see Fig. 1). Therefore, to further investigate
this discrepancy between the simulations and the human VMF
patient profile on the EFGH version the best parameter settings,
in terms of RMSD and goodness of fit (summed square
difference), for each model were found for this version and
profile alone. The results of this analysis suggested that the best
model was the error-driven model (ε = 0.27 and γ = 0.41)
with RMSD = 1.6. The next best model was a random model.

Neither the variance-driven, error-frequency or frequency-
driven models produced a good match to the human NHC
or VMF patient data. In respect to NHC profiles all three
models performed poorly. The closest the variance-driven and
frequency-driven models could get to a match for VMF patients
was when they collapsed into a random model (ε = 0.98).
The error-frequency was simply a worse fit to the VMF patient
data than the error-driven model. This is evidence against our
interpretations of the two theories represented in these three
models.

6. Discussion

In the following five sections of the discussion we consider
each of the five theories in light of the results from the
simulations and the current literature.

6.1. VMF patients have ‘no preferences’

If this theory were implemented literally, then one would
expect VMF patient behaviour on the IGT to be random (similar
to a Bernoulli process, with Pr = 0.5). This is not the case as
can be seen from Table 1, where blocks 1, 4 and 5 are found
to be non-random (P < 0.05) for the ABCD version of the
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IGT. Furthermore, there are non-random net scores in blocks
1, 3, 4 and 5 in the A′B′C′D′ version (P < 0.05) and in
block 5 on the E′F′G′H′ version (P < 0.05). In addition, our
sample-averaging ε-greedy models with exploration rates that
tend towards ε = 1 act randomly, but they do not replicate
Bechara et al.’s VMF patients’ profiles, only getting close
to their behaviour on the EFGH version, which is the only
profile that has no non-random blocks. In addition, the sample-
averaging model does not produce a negative net score once the
reversals have occurred. This is evident as the model produces a
match to VMF patients, which is slightly worse than a random
model.

The original ‘no preferences’ hypothesis presented in
Sloman (2004), probably comes from anecdotal evidence,
where a bilateral orbitofrontal lesion patient stated that she had
“no preferences” (Sacks, 1998). Without testing this patient
on the IGT it is impossible to know whether they would
actually act randomly; that is, whether their subjective sense
of not possessing preferences can be confirmed by objective
evaluation. In addition, as our study is particularly focused
on Bechara et al.’s VMF patients’ behaviour on the IGT, we
suggest that in this strong form, the ‘no preferences’ theory
does not predict these patients’ choices (apart from perhaps on
the EFGH variant). However, our error-driven model (which
does have a higher ε) does suggest that this theory, in a weaker
form, might reflect an aspect of VMF patients’ deficits on the
IGT.

Another potential reason for seeming to have ‘no
preferences’ was investigated using the working-memory
model. A value of ρ near to zero would suggest a severe
working memory deficit, as this would provide a time
dependent loss of information. A high learning rate (γ ), near
to one, alone is not the same as a time only dependent working
memory deficit, because with a high learning rate information is
retained about the last selection of a choice, even after a number
of other choice selections have been made.

For the best VMF patient working-memory model (ε = 0.58,
γ = 0.93 and ρ = 0.88), the learning rate is similar to that
found in the error-driven, reversal learning, error-variance and
error-valence VMF patient models. However, as mentioned,
unlike those models the working-memory model does not have
an increased exploration rate, but has one similar to the error-
driven NHC model. Instead, the VMF model has a reduced
value for ρ compared to its NHC parameter setting of 1, i.e. no
time dependent working-memory deficit. Randomness could,
we suggest, be thought of as either (1) an inherent property
of the system; or (2) a way of describing the properties of a
system for which the underlying mechanisms are still unknown.
Therefore, it could be argued that the working-memory model
offers an explanation/mechanism for the increase in exploration
rate through its working-memory parameter ρ. In that, VMF
patients might seem to act more randomly than NHCs because
information retained about choices decays slightly, whenever
that item is not selected. Therefore, although the working-
memory model is more complex than the error-driven model, as
suggested by the model’s RMSD score (note, they each have a
similar goodness of fit to the data), the working-memory model
potentially elaborates on the theoretical story developed with
the error-driven model. A small working-memory deficit in
these VMF patients is consistent with the finding that some of
them perform abnormally on delayed response tasks (Bechara
et al., 1998).

6.2. VMF patients are ‘risk-seeking’

If VMF patients’ main deficit were risk-seeking, one would
expect them to select more from the advantageous decks in the
E(′)F(′)G(′)H(′) variants than normals. This is not supported
by the human VMF patient data or our variance-driven model,
which requires an exploration rate near to 1, to ‘best’ replicate
the human VMF patients. Furthermore, the less extreme version
of a variance driven model, the error-variance model collapses
to a version of the error-driven model when generating its
best match to the VMF data. The error-variance model spans
the range of models from the error-driven model to the more
extreme variance-driven model.

This provides support for the view that variance information
is not used in these VMF patients’ decision making on the
IGT. Furthermore, although the error-variance model produces
a good fit to the NHC data presented for the A(′)B(′)C(′)D(′)

and E(′)F(′)G(′)H(′) versions it seems to have over fit the data
and does not generalize well to additional NHC data taken from
Fellows and Farah (2005)’s ‘shuffled’ ABCD variant.

Sanfey et al. (2003) found that there were two subgroups
within their VMF population, one risk-VMF and the other safe-
VMF. This could also be the case in Bechara et al.’s VMF
population, but we are not aware of such an analysis having
been performed on Bechara et al.’s data sets. Therefore, with
the present data, the ‘risk-seeking’ interpretation does not seem
to be the main cause of Bechara et al.’s VMF patients’ deficits
on the IGT.

6.3. VMF patients are only influenced by frequency

A frequency-driven model does not replicate the human
VMF patients’ data or the human NHCs’ data. This is because
the simulations for NHCs select more frequently from the
decks with the lowest frequency of losses, decks B(′) and
D(′) in the A(′)B(′)C(′)D(′) versions and deck G(′) in the
E(′)F(′)G(′)H(′) versions. However, a model with a penchant
for these decks does not recreate the required NHC profile.
Interestingly, schizophrenia patients were found to have a
preference for decks B and D in the ABCD version of the task
(Shurman, Horan, & Nuechterlein, 2005).

The main motivation for this model was to discover whether
a frequency-driven approach would replicate the human VMF
patients’ data. The frequency-driven model did not achieve
this aim, with the ‘best’ match from this model requiring an
exploration rate ε = 0.98. Therefore, effectively, the simulation
was acting randomly and thus, was not using the frequency
information.

In the case of the error-frequency model, the best parameter
settings for NHCs produce a poor match to the human data. For
the best match to VMF patients, this model is not as effective



K. Kalidindi, H. Bowman / Neural Networks 20 (2007) 676–689 685
as the error-driven model, but does produce an improved match
compared to that of the NHC model to the human NHC profile.
Therefore, it raises the possibility that further investigation of
these kinds of models might produce a reasonable match to
VMF patients. A possible model to be investigated in future,
might contain a magnitude compressing function to test a model
that ranges from the current error-driven model to the error-
frequency model. This would more exhaustively test the Frank
and Claus theory that the basal ganglia might hold a frequency-
based representation of results.

6.4. VMF patients have a ‘myopia’ for future consequences

This hypothesis, suggested by Bechara et al. (2000), is based
directly on the VMF patient group who are the main focus
of this paper. In addition, this is the theory that most closely
reflects what can be gleaned from the NHC (ε = 0.57 and
γ = 0.16) and VMF patient (ε = 0.70 and γ = 0.90)
error-driven ε-greedy models. Furthermore, strong support for
the error-driven model is provided by the fact that the more
complex error-valence, error-variance and reversal learning
models provide their best replication of the human VMF data
when they approximate the error-driven model (ε = 0.70 and
γ = 0.90).

However, an acceptance of the ‘myopia’ for future
consequences hypothesis is dependent on one’s interpretation
of the theory. The theory is closely related to the ‘somatic-
marker’ hypothesis which suggests that bodily signals
representing past experiences are not available to guide decision
making in VMF patients (Damasio, 1994). Therefore, a
possible operational definition of the theory for the IGT could
be that subjects with this deficit are driven more by the
immediate value of a choice rather than the mean value of
repeating that choice: the future consequences. Again, here
there is ambiguity, what is meant by immediate value? This
could be the regular value, e.g. in the ABCD version, the
guaranteed $100 wins in decks A and B. Alternatively, more
closely related to the current models, the immediate value could
reflect the current or most recent return from a choice. However,
in the IGT, these concepts overlap. Therefore, for greater clarity,
we suggest our models offer a specific form of ‘myopia’ for
future consequences based on our operational definition of this
complex concept. VMF patients are driven more by the recent
value of stimuli/choices than NHCs (higher γ ) and that they
ignore this information more often than NHCs (higher ε), that
is VMF patients are more reactive (higher γ ) and less strategic
(higher ε) than NHCs.

That VMF patients are less strategic than NHCs, might
provide a possible reason for their quicker return to a deck
after receiving a loss from that deck (Bechara, Damasio, Tranel,
& Damasio, 2005). However, as mentioned, this could be due
to a working memory deficit (Bechara et al., 1998), which
might be a causal reason for VMF patients’ less strategic
behaviour. A potential reason for VMF patients being more
reactive could relate to the theory that frontal patients are often
unable to transcend the default mode (Mesulam, 2002), which
is evident in utilization behaviour. (Lhermitte, 1983, 1986;
Shallice, Burgess, Schon, & Baxter, 1989). They are only able
to see the immediate/recent value of a stimulus or choice.

The VMF patient model (ε = 0.70 and γ = 0.90)
further suggests that VMF patients do not average over the
results from a number of selections. Therefore, they are more
frequently influenced by regular wins or losses, than uncertain
events, as these are quickly overridden by new results. This
could be consistent with rodent OFC lesion studies, where
lesions cause increased preference for small certain reinforcers
over larger uncertain ones (Mobini et al., 2002). The error-
driven model suggests that certain rewards would keep their
value, whereas uncertain rewards might only retain their
value for a short time after they are received, as when they
are withheld their positive stimulus–reinforcement association
would quite quickly be devalued. In addition, Doya (2002)
has suggested that acetylcholine might represent the learning
rate in a reinforcement learning model similar to the current
error-learning ε-greedy models and this neuromodulator is
known to have significant associations with OFC and medial
prefrontal function (Arsten & Robbins, 2002). Our result is
further corroborated by Yechiam et al. (2005), who used a
model comparable to the error-valence model, which they
tested with data from the same VMF patients on the ABCD
version of the task. They found the similar result of increased
randomness and a higher learning rate compared to NHCs, with
only a very small increased responsiveness to losses over gains.

6.5. VMF patients have a reversal learning deficit

The ‘best’ VMF patient reversal learning model (ε = 0.70,
γ = 0.96, λ = 0.98) suggests that VMF patients have less of a
reversal learning deficit on the IGT than NHCs (ε = 0.49, γ =

0.40, λ = 0.41). In addition, a superior ability to learn reversals
has some support from three other error-based models, the
error-variance, error-driven and error-valence models, in that
these models all show a higher learning rate in the VMF
patient versions than in their NHC versions. One consequence
(amongst a number of others) of a smaller learning rate would
be a tendency to perseverate. This is in conflict with the simple
and probabilistic reversal learning literature, where NHCs are
faster than VMFs at learning reversals (Dias, Robbins, &
Roberts, 1997; Fellows & Farah, 2003; Hornak et al., 2004;
Rolls et al., 1994).

In addition, there is direct evidence for a reversal learning
deficit in VMF patients on the IGT, which arises from a recent
study. Fellows and Farah (2005) proposed that reversal learning
deficits found in their VMF patients were the cause of such
patients’ poor performance on the IGT. To test their proposal,
they created a ‘shuffled’ version of the ABCD IGT, where the
score card was rearranged to remove the reversal. A reversal
occurs when the mean return for advantageous decks becomes
greater than that for the disadvantageous decks. In the standard
ABCD version, this occurs at card 9 for deck B and card 5 for
deck A (see the score-card in Bechara et al. (2000)). Fellows
and Farah found that their VMF patients did not perform
significantly differently from their NHCs on the ‘shuffled’
ABCD version. In addition, they found a positive correlation
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between improvement on the ‘shuffled’ ABCD version and the
number of reversal errors in a simple reversal learning task
(Fellows & Farah, 2003, 2005).

However, it is unclear whether the VMF patients in Fellows
and Farah (2005) are directly comparable to those from Bechara
et al.’s studies. This is because Fellows and Farah’s VMF
patients continue to improve their net scores over the five blocks
of the standard ABCD IGT (the profile is similar to that of
Bechara et al.’s VMF patients on the EFGH IGT (see Fig. 1)).
This is unlike Bechara et al.’s VMF patients, who improve their
net scores and then actively behave disadvantageously in blocks
4 and 5. This difference in behaviour on the ABCD IGT could
be due to Fellows and Farah’s VMF patients being selected
just on lesion location and not on both everyday life decision
making deficits and lesion location, as Bechara et al.’s VMF
patients were.

Furthermore, Fellows and Farah’s VMF patients’ with the
worst reversal learning deficits have a focus of lesions in
the left posteromedial orbitofrontal cortex, and the net score
profile for their VMF patients on the standard ABCD IGT is
similar to that of patients with unilateral left-VMF damage
(Tranel et al., 2002) and those with left unilateral frontal
lesions (Clark et al., 2003). Importantly, it should also be noted
that the improvement in net scores for Fellows and Farah’s
VMF patients on the ‘shuffled’ ABCD IGT were produced
almost entirely by 3 out of the 9 VMF patients, who all
nearly doubled their net scores, and each selected over 90
advantageous cards. This raises the possibility that these 3
high performers were able to simplify the task, by completely
ignoring the disadvantageous decks after receiving initial losses
from these decks. They were able to apply a fixed rule, and did
not continue to explore. The three high scoring VMF patients
had larger net scores than the average NHC on the ‘shuffled’
ABCD IGT, suggesting on average that NHCs did continue to
explore the disadvantageous decks, even after initial losses on
those decks.

Moreover, neither Bechara et al. nor Fellows and Farah’s
VMF patient groups suffered from perseverative reversal
learning deficits on the standard ABCD IGT. For example,
Fellows and Farah found that after the big loss ($1250) on
deck B (card 9), 8 out of their 9 VMF patients stopped
selecting from deck B (L.K. Fellows, personal communication).
A similar normative move away from losses has been observed
by Bechara et al. (2005). The difference between NHCs and
VMF patients in both sets of studies is that the VMF patients
return to deck B quicker than NHCs. This nuance is modelled
in our simulations by the increased exploration rate in the VMF
patient versions of the error-based models compared to the
NHC versions, or by a decreased working-memory parameter in
the working-memory model. In future work, we intend to model
the net scores of the VMF patients from Fellows and Farah
(2005) to further understand the differences between these two
VMF patient groups and the role of the ‘shuffled’ ABCD IGT
in developing current theory.

Other modelling work supports the use of an increased
learning rate for modelling Huntington’s disease (HD) patients
who have similar deficits on the IGT to Bechara et al.’s
VMF patients, and produce perseveration deficits on an
extra-dimensional shift task and a probabilistic reversal task
(Lawrence, Sahakian, Rogers, Hodges, & Robbins, 1999).
HD patients, who were tested on the ABCD IGT (Stout,
Rodawalt, & Siemers, 2001), were modelled with an increased
learning rate compared to NHCs (Busemeyer & Stout, 2002).
HD is a progressive neurodegenerative syndrome, which
causes particular damage to the caudate nucleus and putamen
structures within the striatum. This suggests that differential
damage to cortico-striatal loops may cause overlapping deficits.
Furthermore, Busemeyer and Stout (2002) do not specifically
address the issue of reversal learning deficits as a possible
underlying cause for HD patients’ IGT deficits.

Overall, the error-based simulations suggest that for
Bechara et al.’s VMF patients, a reversal learning deficit is not
the cause of their poor performance on the IGT. If they had
a ‘typical’ reversal learning deficit, one would expect them
to perseverate at the reversal, which they do not. However,
evidence from Fellows and Farah (2005) does suggest that for a
subset of their VMF population, removal of the reversal does
allow them to improve their net scores, but that their deficit
on the standard ABCD IGT is not due to perseveration errors
(in the sense of moving from deck B). Therefore, these results
still require further investigation, and possibly modelling. In
the following section we consider some issues pertaining to the
differences between simple reversal learning tasks and the IGT.

6.6. The IGT and simple reversal learning tasks: How similar
are they?

There are important differences between the IGT and
simple reversal learning tasks (SRLT)s (e.g. Fellows and Farah
(2003)). Firstly, in an SRLT, performance is improved when
recent results are given most importance. “If a choice is
positive, then pick that stimulus again and, if it is negative
then pick the other stimulus.” This parsimonious rule allows
the participant to be more or less optimal in response to change
at the reversals. This type of strategy could plausibly have
been used by NHCs in Fellows and Farah (2003), because the
number of errors they generated on the SRLT seem to average
an error per reversal. In addition, the task instructions for the
SRLT state that only one of the choices represents a win at one
time, while the other results in a loss (L.K. Fellows, personal
communication). Therefore, in contrast, if participants were to
take into account the cumulative amount of wins received from
a stimulus and evaluate this against the loss at the reversal, one
might, expect them to perseverate.

In addition, in the SRLT, change in one stimulus reflects
the automatic change in the other choice, not in magnitude but
in direction, from positive to negative or vice versa. However,
in the IGT, the initial rational behaviour is to select from
the disadvantageous packs (Maia & McClelland, 2004), then
after the reversal (card 9, deck B and card 5, for deck A,
(see the score-card of Bechara et al. (2000))), the participant
should begin to select more from the advantageous packs.
However, once the participant begins selecting more from the
advantageous packs, the ‘rational’ behaviour is to continue
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selecting from the advantageous decks even though there might
be an occasional loss. In the IGT, in this sense, there is only one
reversal, which can only be correctly evaluated by comparing
many or all results from the different decks. Therefore,
successful IGT performance requires a longer memory of
magnitude and direction of results, rather than simply which
choice last provided a positive or negative result, as in the SRLT.

Thus, the ‘rational’ behaviour for these two tasks, in terms
of learning rates, would be a (relatively) low learning rate
for the IGT and a high one for the SRLT. This represents an
inherent difference in the two tasks and may offer a reason for
the seemingly problematic high learning rates presented in our
models for VMF patients on the IGT. As mentioned earlier,
one consequence of a low learning rate would be increased
perseveration errors on an SRLT.

This raises at least three possibilities for the current VMF
patient model.

(1) Bechara et al.’s VMF patients have a high learning rate
in both tasks and therefore, do not have a perseverative reversal
learning deficit on the SRLT. This is still an empirical question
as they have not been, to our knowledge, tested on such a task.

(2) At least two studies have suggested that frontal
regions are particularly important for reversal learning
rather than initial stimulus–reinforcement acquisition (Daum,
Schugens, Channon, Polkey, & Gray, 1991; Fellows & Farah,
2003). Therefore, without inhibition from OFC regions,
representations in posterior cortex might result in prepotent
stimulus-associations driving behaviour (Knight & Stuss,
2002). In the SRLT, one might speculate that, the initial
rewarding stimulus becomes prepotent due to repeated positive
reinforcement (arising from a well-established temporal cortex
representation (Daum et al., 1991) and selection (motor or
cognitive impulsivity)). This repetition of selection is necessary
if a VMF patient is to reach a reversal in the first place. For
example, in Rolls et al. (1994), the criterion before a reversal is
9 correct responses out of the last 10 trials and in Fellows and
Farah (2003) it is 8 correct selections in a row. Therefore, in
VMF patients on an SRLT this prepotent behaviour might act
like a low learning rate. However, in NHCs intact OFC regions
provide the task appropriate cognitive and emotional flexibility
to inhibit this prepotent action and produce single trial reversals
by applying the rule in working memory to swap the stimulus-
associations for both the positive and negative stimuli (Deco &
Rolls, 2005), generating an effect similar to a high learning rate.

In the IGT, the requirement is to utilize information from a
number of selections to gain a fairly accurate expectation of the
result of a choice. VMF patients have limited access to at least
one such behaviourally important and flexible representation
found in intact OFC regions (Roesch & Schoenbaum, 2006;
Rolls, 2004). We speculate that VMF patients are, again,
strongly influenced by stimulus–reinforcement associations
in posterior cortex (Knight & Stuss, 2002). However,
we speculate, due to the frequent changes in returns on
the IGT, VMF patients, more or less, produce a new
stimulus–reinforcement association for each new result in
posterior cortex. This would act like the high learning rate
found in the current simulations, therefore, suggesting that
without intact OFC regions, posterior areas are less able to
reflect ‘averaged’, and therefore more accurate, expectancies.
This process could be consistent with the disinhibited ERPs
(i.e. P3 amplitudes) found in OFC patients compared to controls
for novel and emotional stimuli (Knight & Scabini, 1998;
Rule, Shimamura, & Knight, 2002). We would suggest that
the rewards and punishments in the IGT are emotional (Rolls,
2005) and that the changing results provide frequent novelty.
Furthermore, as selections are not as frequently repeated on the
IGT compared to the SRLT there would be less of a requirement
to inhibit motor or cognitive impulsivity.

(3) Not all difficulties on a simple reversal learning task
are due to perseveration errors. In some cases, in monkeys,
particularly those with more medial OFC lesions, there seems
to be an inability to retain which item is currently rewarded.
In these cases, the deficit is only evident after both stimuli
have been associated with reward and non-reward. It seems
the animal is unable to hold the required information about the
current rewarding stimulus on-line in working-memory (Zald,
2006). A slight working-memory deficit in VMF patients has
been suggested by our working-memory model and shown by
Bechara et al. (1998).

Therefore, we suggest that it is still an open question whether
these VMF patients have reversal learning deficits on an SRLT
and the exact form they may take. However, in addition, we
have offered a more detailed (2), but speculative, mechanism
for possible differences in learning rates in the two tasks for
both NHCs and VMF patients. Overall, our suggestion is that
in the IGT, the role of VMF regions is in ‘averaging’ over
results for a selection and to inhibit over-reaction to individual
results. However, in relation to perseveration errors, in an
SRLT the VMF is important in applying a rule from working
memory to rapidly change expectancies to override a prepotent
response. Therefore, the function of the VMF is context
specific and so, when damaged, this is likely to have specific
consequences for behaviour, but in all these contexts the VMF
is important in flexible representations of expectancies (Roesch
& Schoenbaum, 2006; Rolls, 2000; Tremblay & Schultz, 2000).

7. Conclusions

The models and simulations presented in this paper suggest
that, among the theories considered, a ‘myopia’ for future
consequences provides the best description for deficits found
in Bechara at al.’s VMF patients on the IGT. However, it
might be more appropriate and complete to suggest that VMF
patients are less strategic (higher ε), possibly due to working-
memory deficits, and more reactive (higher γ ) than NHCs. Both
these aspects are evident in VMF patients’ real life behaviour
(Damasio, 1994). Our work is supported by results from
Yechiam et al. (2005) which, similarly to (Busemeyer & Stout,
2002), offers a relatively accessible method for explaining
behaviour in complex tasks. Furthermore, in the current study
cognitive modelling has been used to explicitly instantiate
aspects of verbal theories to test their viability against human
data.
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