
Decrypting The Java Gene Pool
Predicting objects’ lifetimes with micro-patterns

Sebastien Marion

University of Kent, Canterbury, UK

sm244@kent.ac.uk

Richard Jones

University of Kent, Canterbury, UK

R.E.Jones@kent.ac.uk

Chris Ryder

University of Kent, Canterbury, UK

C.Ryder@kent.ac.uk

Abstract
Pretenuring long-lived and immortal objects into infre-
quently or never collected regions reduces garbage collec-
tion costs significantly. However, extant approaches either
require computationally expensive, application-specific, off-
line profiling, or consider only allocation sites common to all
programs, i.e. invoked by the virtual machine rather than ap-
plication programs. In contrast, we show how a simple pro-
gram analysis, combined with an object lifetime knowledge
bank, can be exploited to match both runtime system and ap-
plication program structure with object lifetimes. The com-
plexity of the analysis is linear in the size of the program, so
need not be run ahead of time. We obtain performance gains
between 6–77% in GC time against a generational copying
collector for several SPECjvm98 programs.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory management (garbage
collection)

General Terms Design, Performance, Algorithms

Keywords Pretenuring, Micro-Patterns, Java

1. Introduction
The goal of this research is to explore reusable yet application-
specific mechanisms to reduce the cost of managing long-
lived objects. By application-specific, we mean that we wish
to be able to identify and take advantage of the application’s
particular pattern of object allocation. By reusable, we mean
that the technique should be easily applied to any program,
without for example having recourse to instrumenting and
profiling runs of that program.

Tracing garbage collectors spend much of their time fol-
lowing the graph of live objects, either copying objects to a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM ’07 October 21–22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-893-0/07/0010. . . $5.00

separate region or setting mark-bits. In other words, most ef-
fort is spent on rescuing live objects. However, the lifetimes
of objects vary. Some may be immortal (live from the mo-
ment of their birth to the end of the program), some may live
for a long time, but most typically die young [25].

The most widely adopted strategy, generational GC, ex-
ploits this observation by segregating objects by age into
different regions,generations, of the heap. Younger genera-
tions are collected more frequently than older ones, and ob-
jects that survive sufficiently long are promoted (copied) or
tenuredto an older generation1.

Generational collection has two corollaries. By concen-
trating on that region of the heap where most objects are
likely to be dead, the youngest generation (or nursery),
the most space is reclaimed for the least effort of promot-
ing objects. Further, objects in older generations are given
more time to die. This strategy has two shortcomings. First,
longer-lived objects must still be copied at least once, on
their promotion from the nursery in which they were first
allocated. Second, immortal objects may be repeatedly pro-
cessed when older generations are collected. The solution
to the first problem is topretenurelong-lived objects by
allocating them directly in an older generation [11]. The so-
lution to the second problem is to allocate immortal objects
into a region that is never collected [6], although references
from immortal objects to objects in other spaces must be
discovered.

Blackburn et al. [9, 7] use object birth and death statistics,
gathered from instrumented programs in an off-line phase, to
advise the allocator as to whether particularallocation sites
(points in the program which allocate new objects) are ex-
pected to create objects withshort, long or immortal life-
times. Acquiring advice forself-prediction[4] of particular
programs is extremely expensive. Blackburn et al. also com-
bine advice common to all programs and provide this at Jikes
RVM’s build time. Suchbuild-timeadvice providestrue pre-
diction, applicable to any program, and can reduce costs of
generational copying by 40–70% on average in Jikes RVM.

1 For the sake of simplicity, we shall assume that all generations are man-
aged by copying; however, our discussion is equally applicable to configu-
rations in which generations are managed by other strategies.

However the scope of the advice is restricted to sites of JVM
classes, and is, by definition, not program-specific.

We might seek allocation advice from the programmer,
who has some understanding of the lifetimes of their objects.
Unfortunately, their intuition may be unreliable, either be-
cause programmers make mistakes or because the context in
which their code executes has changed. However, we show
here that the way in which programmers write code can be
mined to offer object lifetime hints to the allocator. Although
programs are written in different styles, programmers tendto
adopt similar practices and idioms. Indeed, they may be con-
strained to do so by standard libraries and frameworks, or en-
couraged to do so by the influence of what is seen to be good
practice (educators, design patterns, books, etc. [12, 10]).

We use a simple program analysis to identify coding pat-
terns. We match such micro-patterns [13] against a knowl-
edge bank of historical object lifetime behaviour: rules about
patterns are associated with expected lifetimes (short, long
or immortal) and confidence levels. The knowledge bank is
created by profiling a wide range of programs, in our case the
DaCapo benchmark suite [5]. While this is extremely time-
consuming to do, like Blackburn’s build-time advice it only
has to be done once. On the other hand, our program anal-
ysis and pattern lookup is quick: the analysis’ complexity is
linear in the size of the program. Furthermore, the knowl-
edge bank can be extended at any time by processing further
programs and improvements in the rule sets applied to any
program, new or existing. Our contributions are as follows:
• We show that object lifetimes are often related to code

patterns.
• We provide a knowledge bank that associates patterns

with object lifetime.
• We provide a pretenuring allocator that can exploit such

program-specific lifetime advice.
• We demonstrate that GC times can be reduced by up to

77%.
• We provideMemTrace, a comparatively cheap mecha-

nism for gathering object lifetime data.
Note that our interest is inprogram-specificpretenuring.
Thus, throughout we consider only such advice and not
build-time advice, which we have not yet incorporated into
our system. However, we could add build-time advice to
the boot image, and intend to do so. We expect this to
further enhance performance, especially in tight heaps or
small benchmarks where Jikes RVM dominates.

Organisation of this paper We discuss related work in
Section 2. We explain pretenuring in Section 3, micro-
patterns in Section 4 and data mining in Section 5. We dis-
cuss our methodology in Section 6 and implementation de-
tails in Section 7. Our results are presented in Section 8 and
evaluated in Section 9 where we also make suggestions for
future work. We conclude in Section 10.

2. Related work
The advantages of treating different categories of object
with different memory management policies have long been
recognised. For example, large objects are commonly allo-
cated into a separate region, managed by a non-moving col-
lector. The most common form of regional organisation is
generational GC [25]. Generational collectors typically have
two generations, but may have more; more sophisticated re-
gional organisations are also possible [8, 24]. It is impor-
tant to decide when an object should be promoted from a
younger to an older generation. Too early risks objects not
only dying soon after promotion (thereby causing too fre-
quent collections of the older generation) but also encour-
ages nepotistic promotion of the referents of tenured (i.e.
promoted) garbage; too late demands either larger young
generations (and consequently longer pause times) or more
frequent young generation collections. Some collectors can
dynamically adjust promotion thresholds [26].

Cheng et al. [11] (CHL) observed that savings might be
made if long-lived objects are allocated directly into an older
generation (pretenured). Identification of suitable candidates
may be through profiling programs [11, 9, 7], dynamic sam-
pling at run-time [16, 21], or program analysis [15].

We consider off-line, profiling approaches first. CHL tag
objects with theallocation sitein the program that allocated
them and inspect the tags of dead objects at each collection.
From this profile, they identify those sites that allocate pro-
moted objects consistently (i.e. where the volume exceeds a
threshold) in their collector. This advice is then used to allo-
cate objects from those sites directly into the old generation,
thereby reducing GC times by 12–50%. The generality of
this approach is limited because the pretenuring thresholdis
a function of a particular collector configuration.

Blackburn et al. [9, 7] extend this approach. They remove
implementation dependency by normalising object lifetime
as a multiple of the maximum volume of objects live at any
time, live size. They also add an immortal space for objects
that are never to be collected. Sites are classified as gen-
erating predominantly short-lived, long-lived or ‘immortal’
objects, using thresholds expressed as a fraction of maxi-
mum live size; objects are defined as immortal if they die
more than halfway between their birth and the end of the
program (and hence not worth keepingcopy reservespace
for). Because their advice is implementation-independent,
they can also combine advice from runs of different pro-
grams by ignoring application-specific data. Just using such
build-timeadvice improved performance in tight heaps par-
ticularly. Our scheme, on the other hand, leverages program-
specific knowledge. Object lifetimes are recorded at a 64KB
granularity in [9], as we do, but precisely in [7] using Merlin
[17]. For combining advice in their algorithm, Blackburn et
al. cite the use of precise ages, plus ranking the importance
of allocation sites by the volume they allocate rather than the

product of the objects’ volumes and ages, as the reason for
the better consistency of results [7].

Huang et al. [19] use type as a predictor, based on per-
class rather than per allocation site lifetimes. However, they
find type-based predictions be poor predictors. As they re-
port experiments using the Jikes RVM BaseBase compiler,
rather than the optimising compiler as we do, their results
may exaggerate the benefits of object placement.

Harris [16] pretenures objects in a Java virtual machine
using dynamic feedback from statistics gathered online. Dy-
namic pretenuring allows adaption to phase behaviour, by
reversing and re-enabling pretenuring decisions. A disadvan-
tage of his mechanism is that it is specific to Java as it uses
weak pointers. Whereas Harris samples objects on local al-
location buffer overflow, Jump et al. [21] sample at every2n

bytes of allocation. Both mechanisms skew sampling, either
by introducing a regular stride (Jump) or by over-sampling
large objects (Harris). However, Jump et al.’s mechanism has
lower time and space requirements than Harris’s. Both pro-
vide only small benefits forjvm98 [23] benchmarks, and de-
grade some significantly (e.g.raytrace). Furthermore, there
is evidence that, in Jikes RVM at least, a large fraction of
long-lived objects are allocated at the start of the program
[7], for which sampling-based pretenuring would be too late.

On the basis that connected objects share similar lifetimes
[18], Guyer and McKinley [15] seek to colocate them in the
same space. They combine a compiler analysis, that identi-
fies the object to which a new object might be connected,
with a specialised allocator, that places the new object in the
same space as the connectee. The analysis is neither required
to be sound nor must allocation sites be homogeneous. As
well as reducing copying, colocation also reduces pressure
on the write barrier. Experiments withjvm98 show that GC
time can be reduced by up to 75%. In work most similar
to ours, Singer et al. [22] suggest using metrics designed to
measure the object-oriented nature of source code as a guide
to longevity; they do not measure performance.

3. Pretenuring
By segregating objects by age and concentrating effort on the
youngest, generational garbage collection [25] has proved
remarkably successful. Yet its management of longer-lived
objects is not optimal: all long-lived objects will be copied
at least once into an older generation, and immortal objects
may be copied many times as older generations are collected.

However, if we know ahead of time how long an object
will live, we can allocate objects more efficiently. Those with
a short lifetime would still be allocated in the nursery, but
objects with a longer lifetime could be allocated directly
into an older generation. Further, immortal objects can be
allocated into a space which will never be collected. Thus,
unnecessary copying between generations is avoided and the
cost of a young-generation collection is potentially reduced
to that of tracing roots (if all the objects allocated in the

nursery are dead at the time of the collection). Moreover,
young generation pause times should be reduced.

However, it is essential to predict object lifetimes con-
servatively, because incorrect pretenuring decisions harm
performance. First, wrongly pretenuring short-lived objects
leads to increased pressure on the older generation, and
hence more frequent old generation collections. Second, in
the case of an Appel-style collector [2], allocation in the
older generation reduces the space available for the nursery;
conversely, allocation into the immortal space eases memory
pressure as there is no need to reserve space (the copy re-
serve) for copying it. Third, incorrectly pretenuring an object
leads to nepotism [26] as no referent of a dead yet tenured
object will be collected: it is particularly important to avoid
incorrect allocation into the immortal region.

Blackburn et al. [9, 7] predict lifetimes by analysing pro-
gram trace files in order to associate each allocation site
with an expected lifetime (short, long or immortal). Their
trace files were gathered with Merlin [17] and provide, inter
alia, an object’s times of birth and death, and allocation site.
However, gathering traces with Merlin is slow: for example,
instrumentedjavac may run for a week, whereas ourMem-
Tracetool gathers the trace in 3.5 hours. MemTrace modifies
the Jikes RVM compiler to cause allocation site IDs to be
written into the header of each object allocated; unlike Mer-
lin, we do not scan the stack on each allocation. On the other
hand, although MemTrace allocation times are accurate, be-
cause we determine deaths by periodically collecting the full
heap, object death times are only accurate toN=64 KB bytes
whereas Merlin death times are accurate. Although this gran-
ularity exaggerates the lifetime of short-lived objects, this is
not problematic, as no practical tracing collector could take
advantage of greater precision.

Blackburn et al. classify lifetime behaviour as follows [7].
The first step is to classify objects. Note that they usemax
live size, the maximum volume of data live at any point in
the program’s execution, as a normalising factor.
1. If an object dies later than halfway between its time of

birth and the end of the program, it is classifiedimmortal.
2. Otherwise, if an object’s age is greater thanTa×max live size,

then it is classified aslong-lived. They useTa = 0.45.
3. Otherwise, the object is classified asshort-lived.
Immortality is defined in this way because objects that might
be copied need space reserved for the copy, whereas immor-
tal objects do not; the copy reserve accounts for half the
heap in an Appel-style generational collector. They therefore
adopt the heuristic that an object is immortal if it is dead for
less time than it is alive.

The second step is to compute lifetimes for each alloca-
tion site, based on the fractionSs of short-lived,Ls of long-
lived andIs of immortal objects it allocates. Homogeneity
factorsHlf andHif determine the conservatism of decision
to pretenure in the mature and immortal spaces respectively:

higher values ofH lead to fewer sites pretenured. They adopt
Hlf = 0.6 andHif = 0.0.
1. If Is > Ss + Ls + Hif , the site is classifiedimmortal.
2. If Is + Ls > Ss + Hlf , the site is classifiedlong-lived.
3. Otherwise, the site is classifiedshort-lived.

Throughout this paper, we compare how pretenuring ad-
vice improves the performance of the MMTk [6] GenCopy
collector for Jikes RVM, version 2.4.4 [1]. GenCopy is an
Appel-style [2] generational collector with a variable-sized
nursery (i.e. it expands to occupy all memory not used by
other spaces). GenCopy’s mature space is managed by semi-
space copying. It also has an immortal space, used for VM
objects, and a large object space managed by a treadmill [3].
For pretenuring, we modify the Jikes RVM compilers and
the GenCopy allocator to exploit advice (see Section 7).

The improvements in GC time and overall execution time
offered by Blackburn’s self advice can be seen in Figure 3
and Figure 4 respectively. Measurements were taken on a
Dell Optiplex GX270, with a Intel Pentium 4 2.6 GHz pro-
cessor with 800 MHz FSB and Hyper-Threading, 512 KB
8-way set-associative L2 cache, 1 GB RAM, under Debian
Linux, kernel 2.6.12. Performance is shown as the ratio of
self-advice pretenuring time to that without (lower is bet-
ter). Heap sizes are shown as multiples of the smallest heap
in which the program would run. GC time is improved, often
very substantially, for all programs exceptjack, where it per-
forms significantly worse in large heap sizes, andcompress,
for which is neutral. On the other hand, execution time is not
improved fordb, jack or compress.

4. Micro-patterns
Gil & Maman [13] provide a framework for the statistically
valid comparison of Java coding styles. Amicro-pattern
is “a non-trivial, formal condition on the attributes, types,
name and body of a class and its components, which is me-
chanically recognisable, purposeful, prevalent and simple”.
Micro-patterns are similar to design patterns [12] but closer
to implementation: a set of micro-patterns may implement
a design pattern. Rather than describing an interaction be-
tween classes, a micro-pattern is a property of a single class
(although a class may exhibit more than one pattern). Not all
implementations of the same specification will use the same
combination of patterns (though they are statistically highly
likely to do so), but they are likely to use some combination.

Gil & Maman’s catalogue captures a wide spectrum of
common coding practices, including particular uses of im-
mutability, wrapping, restricted creation and emulation of
different programming paradigms with object-oriented con-
structs. They identify 29 different patterns (Table 1). Statisti-
cal analysis of a very large corpus, drawn from a wide variety
of application domains, indicates that use of these patterns is
not random. Consider an example.

Sampleris a ‘controlled creation’ micro-pattern. It de-
fines classes which have apublic constructor and one

MP = {p0, p1, . . . , pn} (Set of all patterns)
LT = {short, long, immortal} (lifetime)
SL = SiteID→ LT
S = SiteID→ P(MP) × P(MP)

PL = P(MP) × P(MP) → LT

Table 2. Site, micro-pattern and lifetime mappings.

or more public static fields of the same type as the
class. Such classes provide clients with pre-made instances
of the class as well as being able to make their own.
java.awt.Color, which provides pre-defined colours, is
a Sampler. Sampler objects turn out to be very likely to be
immortal.

We associate micro-patterns with allocation sites. For the
code snippet below, we call classSrc in which the alloca-
tion occurs thesource and classDst of the object allocated
the destination.Both source and destination classes define
sets of micro-patterns. We associate this allocation site (rep-
resented by a unique site ID) with these sets (implemented
as a bit-vector), thus obtaining the mappingS in Table 2.

public class Src {

IDst bar = new Dst();

}

We now require a mappingPL from sets of patterns to
expected site lifetimes. We adopt the same approach as Gil
and Maman, namely, to analyse a large corpus of classes.
Because we are interested in object demographics, we chose
to use DaCapo[5], a suite of real-world Java benchmarks
with non-trivial memory loads (Table 3). We profiled each
benchmark with MemTrace, and classified each DaCapo,
Jikes RVM and library site using Blackburn’s heuristics,
giving mappingSL. We used Gil and Maman’s analysis to
associate each of these sites with a set of patterns, givingS.
PL = SL ◦S−1 provides the mapping from sets of patterns
to lifetimes. We usePL as a historical guide to pretenuring.

However,PL is a very large relation, and worse, it is
not clear which patterns influence object lifetime and which
do not. Rather than a large relation, we require rules that
identify probable lifetimes from the patterns exhibited byan
allocation site. Each rule should have a confidence level. We
obtain these rules by data mining the relation.

5. Data mining
Data mining extracts information from large data sets which
would be very hard, if not impossible, for a human to find,
and can often discover unexpected relationships between its
attributes. Choosing the best suited algorithm depends on
the nature of the data to be analysed. We useClementine
C5.0 [14], a powerful and widely used algorithm designed
to analyse databases of thousands to hundreds of thousands
of records along with tens to hundreds of attributes. C5.0

All SPEC
Micro-pattern Definition Src-Dst Src-Dst

D
eg

en
er

at
e

cl
as

se
s

Designator Interface with no members. 0-0 0-0
Taxonomy Empty interface extending another interface. 4-0 1-0
Joiner Empty interface joining two or more superinterfaces. 0-1 0-0
Pool Class which declares only static final fields, but no methods. 8-0 3-0
Function Pointer Class with a single public instance method, but with no fields. 1-3 1-1
Function Object Class with a single public instance method, and at least one instance field. 9-5 4-3
Cobol Like Class with a single static method, but no instance members. 1-0 0-0
Stateless Class with no fields, other than static final ones. 15-6 5-4
Common State Class in which all fields are static. 18-0 7-0
Immutable Class with several instance fields, which are assigned exactly once, during instance construction. 5-6 3-3
Restricted Creation Class with no public constructors, and at least one static field of the same type as the class. 6-4 5-2
Sampler Class with one or more public constructors, and at least one static field of the same type as the class. 8-9 7-3

C
on

ta
in

m
en

t Box Class which has exactly one, mutable, instance field. 6-14 2-10
Compound Box Class with exactly one non primitive instance field. 32-22 17-12
Canopy Class with exactly one instance field that it assigned exactly once, during instance construction. 4-13 2-6
Record Class in which all fields are public, no declared methods. 0-0 0-0
Data Manager Class where all methods are either setters or getters. 1-10 0-5
Sink Class whose methods do not propagate calls to any other class. 11-9 4-5

In
he

rit
an

ce

Outline Class where at least two methods invoke an abstract method onthis. 7-4 5-2
Trait Abstract class which has no state. 4-0 2-0
State Machine Interface whose methods accept no parameters. 0-0 0-0
Pure Type Class with only abstract methods, and no static members, andno fields. 0-0 0-0
Augmented Type Only abstract methods and three or more static final fields of the same type. 0-0 0-0
Pseudo Class Class which can be rewritten as an interface: no concrete methods, only static fields. 5-2 3-1
Implementor Concrete class, where all the methods override inherited abstract methods. 19-11 9-3
Overrider Class in which all methods override inherited, non-abstract methods. 27-20 11-14
Extender Class which extends the inherited protocol, without overriding any methods. 0-8 3-5
Limited Self Subclass that does not introduce new fields and all self method calls are to its superclass. 13-9 6-5
Recursive Class that has at least one field whose type is the same as that of the class. 7-11 3-7

Table 1. Gil & Maman’s micro-patterns [13]. The table includes counts of patterns used in all rules with confidence greater
than 75%, generated (All)and discovered in the SPEC benchmarks (SPEC), as either sources or destinations. Micro-patterns
never exploited (including those only discovered in classes compiled at build-time) are shown in italic.

classifiers can be expressed as decision trees or as sets of
rules, the latter being easier to interpret.

C5.0 captures the field giving the best information gain
and, from this, splits the data into different bins. Each binis
further subdivided using a different field, and the process is
repeated until no more splitting can be performed. When the
binning is complete, the final bins are analysed again, and
those with insufficient influence on the results are removed.
A decision tree or a ruleset is then constructed from these
different bins. C5.0 also offers anadaptive boostingfacility
able to further refine previously generated rule sets by fo-
cusing on the incorrect predictions of the previous model. A
voting system is used to determine the final prediction.

In our case, we data mine the site–lifetime relationPL
to discover which attributes (combinations of patterns) are
good lifetime predictors. Unlike the classical data mining
approach, we do not clean our data set by removing duplicate
or contradictory data, because (a) we expectPL to be 1-
many and (b) we want to take account of reinforcement of a
prediction (i.e. if many instances make the same prediction,
this strengthens the merit of the prediction).

/ / R u l e 5 7 f o r I M M O R T A L (3 5 1 . 7 1 2 , 0 . 9 9 6)

if (Src=10 & Dst!=14 and Dst=10) IMM

Outputs are rules in disjunctive normal form. The rule
above, true in99.6%of the cases, states“If the source is im-
mutable (pattern 10) and the destination is not a compound
box (pattern 14) and is also immutable, then instances allo-
cated by this site are immortal in 99.6% of the cases”.

C5.0 thus provides a set of rules associating patterns with
lifetimes and confidence levels. These constitute a historical
knowledge bankwhich sites can query by matching pattern-
sets; it can be refined at any time as further programs are
analysed. Such queries can be built into the compiler or per-
formed off-line and stored as (allocation-site,lifetime) pairs.
We describe our implementation in Section 7.

6. Methodology
6.1 Program-specific, true prediction

Our purpose is to explore the extent to which micro-patterns
can provide program-specific prediction to guide pretenur-
ing. However, it is important that such program-specific
prediction nevertheless be true prediction rather than self-
prediction [4], that is, the prediction should not be derived
simply from a past execution of the same program.

In Section 5, we explained that we use a data mining al-
gorithm to derive a rule set, matching patterns found at al-
location sites to expected lifetimes, from off-line profiling

Program Input Max. live Allocated Sites
antlr large 8.21 649.6 2014
bloat large 12.72 3218 1940
fop large 17.61 132 2336
hsqldb default 19.8 1025 1265
jython large 9.02 1724 1432
pmd large 16.56 1533 1393
ps large 15.39 1676 1166

Table 3. Allocation (MB) by the DaCapo benchmark suite,
v. 051009, baseline compiled.Sitesis the number of sites
used at run-time by the benchmark, Jikes RVM or libraries.

of the DaCapo suite. Unlike other pretenuring approaches
that exploit program-specific prediction, our off-line analy-
sis is performed just once. We use DaCapo to construct rule-
sets because it is the best representative of ‘real-world’ pro-
grams: it comprises a set of benchmarks with a large num-
ber of classes, written in an object-oriented style, and gen-
erates intensive memory loads, and provides a large knowl-
edge base for our rule sets. However, the need for true pre-
diction requires that we do not use it for performance experi-
ments. To evaluate our approach, we thus apply the results of
our analysis to thejvm98 suite [23]. For each benchmark, we
identify the patterns at each allocation site — our approach
is program-specific. To obtain lifetime advice for a site, we
compare its patterns against the rule set derived from Da-
Capo — this is true prediction. Thus, our advice is applica-
ble to JVMs other than Jikes RVM.

At run-time, we compile this advice into the allocation
sequence for each site (details in Section 7). Note that not all
sites with advice are used. First, our advice may be applied
to sites in code paths that are never executed. Second, we do
not incorporate advice to classes compiled at build-time.

We profiled DaCapo with MemTrace, using the base
compiler at both build- and run-time (BaseBase). We pro-
file with BaseBase because our focus is on application ob-
jects rather than optimising compiler data (which has a more
pronounced effect on smaller programs). We also wished
to minimise the effect of compiler-allocated data on exag-
gerating object lifetimes (which are measured in bytes —
the size of any allocation, e.g. by the compiler, between an
object’s birth and death contributes to its lifetime). Further,
BaseBase MemTrace configurations generate comparatively
smaller, although still several gigabyte, trace files.

We ran our tests on thejvm98 suite using a FastAdaptive
configuration (using the optimising compiler at both build-
and run-time). We use compiler replay to avoid allocation
and mutator variations due to non-deterministic invocation
of the adaptive compiler. For each benchmark, we take the
best of 5 performance runs.

6.2 Immortal classification

The output of the Clementine C5.0 data mining algorithm
is a set of rules, each an expression in disjunctive normal

form, a lifetime and a confidence level. In our experiments,
we accept a rule as pretenuring advice only if its confidence
level exceeds a fixed threshold. In general, this threshold
determines how many sites will pretenure objects: higher
values lead to more conservative schemes — less chance of
making bad decisions — but less opportunity for gains.

One aspect of prediction is how immortality is defined.
We explored both Blackburn’s heuristic definition of im-
mortality (dying more than halfway between time of birth
and the end of the program) and a true immortality (living
until the end of the program). In general, where pretenur-
ing advice provides performance gains, then the benefit is
sometimes greater with the heuristic definition than with the
true definition. Otherwise, results are similar. Our pretenur-
ing scheme is as follows:
1. We exclude any rule with confidence less than a fixed

threshold.
2. For any allocation site exhibiting a set of patternsmp,

we select the ruler that matchesmp with the highest
confidence level.

Theoretically, conflicting rules with identical confidences
are possible. In practice, we find that advice with high con-
fidence never conflicts.

6.3 Results

Column 3 of Table 5 shows the number ofsites in the
jvm98 suite for which we obtain predictions with confi-
dence greater than 75%, using the heuristic definition of
immortality. At this confidence level, most predictions are
of immortal sites and there are no predictions for long-lived
sites (although these do appear at lower confidence levels).
However, of the 97 rules (confidence≥ 75%) in the knowl-
edge bank, less than half are found injvm98. Figure 1 shows
the number of times each rule is used in each benchmark.2

Most are applied to very few sites, and a small number ap-
ply to very many sites; most rules are used the same number
of times in each benchmark, and different benchmarks are
distinguished by use of only a very small number of rules.

Consider an example. GC times forraytrace/mtrt are
improved by advice (Figure 3). Rule 25 in Figure 1 is more
prevalent (72 instances) in these benchmarks than others
(1–3): the source isImmutableas is the destination, which
is also not aCompoundBox. These sites provide graphical
components of the scenes to be raytraced: theScene (the
source) and objects within it (the destinations) are never
changed, and common components likePoints have only
primitive fields.

Figure 2 compares the accuracy of micro-pattern predic-
tion with self prediction for sites compiled at run-time with
the baseline compiler. The height of each bar is the total
number of sites that allocated data. The shaded blocks are
micro-pattern predictions. Although micro-patterns make

2 Excluding those found only in classes compiled at build-time for which
we do not currently provide advice.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25 30 35 40

N
um

be
r

of
 s

ite
s

Rule number

compress
jess

raytrace
db

javac
mpegaudio

mtrt
jack

Figure 1. Instances of rules used by SPECjvm98 sites at confidence 75%.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

com
press

jess
raytrace

db javac
m

pegaudio

m
trt

jack

N
um

be
r

of
 s

ite
s

No advice
Match Immortal

Match Short
Expensive Error

Cheap Error

Figure 2. Comparing self prediction with micro-pattern ad-
vice at 75%.

fewer predictions than self-advice, on average they match
self-prediction advice for 81% of the sites for which they
give advice. However, occasionally (9% on average of the
sites we predict) our advice makes a potentially ‘expensive’
error by pretenuring a site when it should not; more rarely,
we make ‘cheap’ errors by failing to pretenure.

7. Implementation
To evaluate our pretenuring analysis, we implemented a pre-
tenuring mechanism in Jikes RVM, an open source Java vir-
tual machine written in Java. Its well-defined memory man-
agement toolkit,MMTk [6], allows the easy implementation
of new garbage collectors by composing reusable compo-
nents, and by defining a common base for the main garbage
collector algorithms available.

Our system passesallocation adviceto the JIT compiler,
allowing it to insert different allocation paths accordingto
the advice. Advice is contained in a file specified to the JVM
using a command line option. Loading advice from a file at
run-time has the advantage of allowing easy experimentation
without having to rebuild the JVM. However, advice gener-
ation could be done on-line instead by the class loader.

7.1 Advice file format

An allocation advice file comprises one line for each alloca-
tion site, specifying the fully qualified name of the allocating
method, the offset from the start of the method to thenew in-

struction, and the lifetime advice:Class:Method:Offset
Advice, for example (wrapped over multiple lines here):

Ljava/util/TimeZone;

:timezones()Ljava/util/Hashtable;:1123 2

This entry describes an allocation site contained in the
methodtimezones() of java.util.TimeZone, return-
ing aHashtable object. The allocation site is at offset 1123
within the method. The pretenuring advice for this site is ‘2’
(immortal), which will be used by the compiler to generate
an appropriate allocation sequence.

7.2 Exploiting advice files

When the JVM starts up it reads the allocation advice file
into a HashMap. The keys used to insert and lookup ad-
vice are derived from the allocation site descriptor. The class
loader in Jikes RVM maintains a collection ofVM_Atom ob-
jects that represent class names, method names, type de-
scriptors, etc. TheseVM_Atoms are singletons, shared be-
tween all uses. Our advice system exploits this property
by using the class name, method name and method type
VM_Atoms, along with the offset, as the hash key. This avoids
duplicating class or method names. A side effect of this
mechanism is that some of theVM_Atoms will be constructed
ahead-of-time by virtue of their inclusion in an allocationad-
vice file, but this has a negligible impact on space usage.

During method compilation, the modified compiler looks
up the advice for each site it finds, and uses that to generate
a suitable allocation sequence. For example, if the advice for
a site isimmortal, the compiler will generate instructions to
allocate the object in the immortal region. If no allocation
advice is found for a site, it is allocated in the default re-
gion — typically the nursery. Jikes RVM already performs a
minimal form of pretenuring — instances of certain MMTk
memory management classes are allocated in the immortal
space. These decisions might conflict with our pretenuring
advice. Table 4 summarises how conflicts are resolved.

It is important to note that this pretenuring mechanism
performs all its work in the compiler, which produces spe-
cialised allocation sequences depending upon the pretenur-
ing advice. Hence this mechanism has no runtime overhead,
other than a slight increase in compilation time. This is im-

X
X

X
X

X
X

X
X

X
Alloc

Advice
Short Long Imm No advice

Nursery Nursery Mature Imm Nursery
Mature Mature Mature Imm Mature
LO Space LOS LOS Imm LOS
Immortal Imm Imm Imm Imm

Table 4. Combining MMTk and pretenuring allocation
policies.

portant because any overhead on allocation results in a sig-
nificant slowdown in program execution.

One potential concern about our pretenuring mechanism
is the size of theHashMap that is used to store the allocation
advice. ThisHashMapmust be retained for the lifetime of the
program because we do not know when new classes may be
loaded, or methods recompiled at new optimisation levels.
Measurements of the space and time overhead of loading our
advice shows that it has minimal impact (Table 5).

7.3 Immortal objects

A consequence of pretenuring is that many more objects
are allocated in the immortal region of the heap than would
otherwise be the case. Although immortal objects are never
reclaimed, it is essential to treat any reference fields they
contain as roots for other spaces. In MMTk, these fields are
discovered from the remembered sets at minor collections,
but by tracing the immortal space at full collections. This
ensures that only reachable objects in the immortal space
are considered in the latter case, hence minimising nepotism.
However, this policy increases the work done to allocate in
the immortal region compared with allocation in the nursery
or mature space. Allocation in those regions is performed
by a simple bump pointer, while allocation of an object in
the immortal space requires in addition setting the object’s
mark-bit to the appropriate value. However, the cost of this
extra work is negligible.

8. Results
Here, we compare the effectiveness of the pretenuring
schemes described in Section 6. We first consider the effect
on GC time (both overall and pause time distribution). We
then show the effect of pretenuring on overall run-time and
object placement (number of sites identified for pretenuring,
volume pretenured, etc.). We explore in detail the cost in
terms of time and space of loading and exploiting advice.

8.1 Pretenuring schemes

Our pretenuring schemes are determined by two main fac-
tors: how the lifetime of a site is classified and the confidence
level used. We adopt Blackburn’s heuristics for the propor-
tions of short-, long-lived and immortal objects (Section 3).
By and large, using a ‘true’ definition of immortality offers
similar, if tending toward more conservative, results.

-55

-50

-45

-40

-35

-30

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-55

-50

-45

-40

-35

-30

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-55

-50

-45

-40

-35

-30

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-55

-50

-45

-40

-35

-30

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

(a) raytrace

-80

-60

-40

-20

 0

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-80

-60

-40

-20

 0

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-80

-60

-40

-20

 0

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-80

-60

-40

-20

 0

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

(b) db

-40

-30

-20

-10

 0

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-40

-30

-20

-10

 0

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-40

-30

-20

-10

 0

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-40

-30

-20

-10

 0

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

(c) javac

-80

-60

-40

-20

 0

 20

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-80

-60

-40

-20

 0

 20

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-80

-60

-40

-20

 0

 20

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

-80

-60

-40

-20

 0

 20

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 G

C
 ti

m
e

Heap size

0.75
0.85
0.95
Self

(d) mtrt

Figure 3. GC time relative to no advice for GenCopy con-
figurations at 75, 85 and 95% confidence and for self-
prediction (lower is better).

-4

-2

 0

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

-4

-2

 0

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

-4

-2

 0

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

-4

-2

 0

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

(a) raytrace

 0

 5

 10

 15

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

 0

 5

 10

 15

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

 0

 5

 10

 15

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

 0

 5

 10

 15

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

(b) db

-10

-8

-6

-4

-2

 0

 2

 4

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

-10

-8

-6

-4

-2

 0

 2

 4

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

-10

-8

-6

-4

-2

 0

 2

 4

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

-10

-8

-6

-4

-2

 0

 2

 4

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

(c) javac

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 e

xe
cu

tio
n

tim
e

Heap size

0.75
0.85
0.95
Self

(d) mtrt

Figure 4. Overall execution times relative to no advice.

 0

 5

 10

 15

 20

 1 1.5 2 2.5 3 3.5 4 4.5 5

G
C

 ti
m

e
/ e

xe
c

tim
e

Heap size (X times minimum heap size)

201_compress
202_jess

205_raytrace
209_db

213_javac
222_mpegaudio

227_mtrt
228_jack

Figure 5. GC time as a fraction of overall execution time
for MMTk GenCopy (without advice).

0

5

10

15

20

25

30

35

40

45

 1 1.5 2 2.5 3 3.5 4 4.5 5

H
its

 x
 1

0^
5

Heap size (X times minimum heap size)

No advice
With advice

Figure 6. The frequency that the write barrier’s slow path is
taken, with and without advice, bydb at 75% confidence.

8.2 GC time

Figure 3 shows relative GC time for a generational copy-
ing collector (GenCopy) for the fourjvm98 benchmarks for
which we obtained performance improvements. Otherjvm98

benchmarks showed no significant change in performance,
except forjack which fares very poorly both at 75% confi-
dence and, to a lesser extent, with self-prediction. At 85%
confidence, no programs show significant GC time degrada-
tion in other than the tightest heaps. The graphs show GC
time relative to running with no advice, using rules with
confidences 75, 85, 95%, and self prediction, at a range of
heap sizes, expressed as a multiple of the size of the smallest
heap in which the benchmark would run. 75% confidence
generally offers the largest performance gains, improving
raytrace andmtrt by around 50% anddb by 65% on aver-
age; however, in tight heaps 75% pretenures too much, caus-
ing the raytrace and mtrt to run out of memory.javac in
contrast only shows improvements (around 7%) for confi-
dences≥ 75%, in large heaps.

8.3 GC pause time

Pretenuring aims to reduce the volume of data copied at each
collection. It should reduce pause times for full heap collec-
tions as immortal data is traced rather than copied; moreover,

as a copy reserve is not needed for immortal objects, pre-
tenuring increases the effective heap size, thereby givingob-
jects longer to die, again reducing the volume to be copied.
For minor collections, pretenuring increases the proportion
of short-lived objects allocated in the nursery which again
should reduce pause times. Figure 7 shows pause time distri-
butions for the benchmarks for which pretenuring improves
overall GC time. Pauses are improved in curves that are
lower (fewer GCs) and lefter-most (shorter pauses). Where
we improve overall GC time, we also reduce the pause time
for both full collections (althoughjvm98 benchmarks do
very few full collections) and minor collections.

8.4 Overall execution time

Figure 4 shows overall execution times relative to no advice
for a range of confidences. At 75% confidence, gains in GC
performance are generally not reflected in overall execution
time. Given that GC time represents only a small fraction of
overall execution time for thejvm98 benchmarks (Figure 5),
it is not surprising that changes in GC time lead to much
smaller changes in execution time. However, micro-pattern
advice offers performance similar to self-prediction forray-

trace andmtrt at 85%, and forjavac at 75% in large heaps.
However, some results are counter-intuitive. For example

for db, 75% confidence pretenuring improves GC time by
65% but gives extremely poor performance overall. We ex-
plore the reasons for this below.

8.5 Loading advice

Accounting for the space used by our advice is complicated
because it sharesVM_Atoms with the rest of the system (see
Section 7). To estimate the space overhead, we measured
heap usage at two points: just before a benchmarks starts
running and just after it finishes. We trigger a full collection
before each of these points to ensure that only live data is
accounted. Columns 6 and 7 in Table 5 show the overhead
(in 4 KB pages) of loading advice, comparing running with
and without advice. Notice that the overhead at the end of
the run may be smaller than that at the beginning; this is
because someVM_Atoms created by loading the advice are
subsequently shared by the compiler.

8.6 Object placement

Table 5 summarises the consequences of the pretenuring
decisions made by MMTK and with 75% confidence ad-
vice (MMTk places many of its objects in the immortal
space, Section 7). Pretenuring has three consequences, par-
ticularly for the immortal space. First, objects allocatedin
the immortal space must have a bit set to the current value
of the marking bit. Second, although pretenuring increases
the space used by the immortal space, this frees copy re-
serve, thereby increasing the effective heap available to other
spaces, provided the pretenuring decision is correct and does
not increase the volume of floating garbage. Pretenuring at
75% confidence places no objects in the mature space (al-

though pretenuring at more aggressive, lower confidence
levels does) but places many objects in the immortal space.
Third, increasing the volume of objects in the immortal and
mature spaces might change the number of cross-region ref-
erences, which have to be trapped by the write-barrier’s slow
path and added to the remembered set.

We explored our most consistently contrary performer,
db at 75% confidence, which showed improved GC time
performance but reduced execution time performance, in
order to analyse the causes of the extra mutator overhead.

To estimate a lower bound on the additional cost of allo-
cating in the immortal region, we measured the cost of set-
ting a header bit atall allocations and calculated the fraction
of this cost proportional to the number of immortal alloca-
tions. This is a lower bound because we can assume that the
value of the bit will stick in the cache, which it might not
if bit-setting is unusual (as it would be for immortal allo-
cation). Under this pretenuring scheme,db allocates 40,047
objects in the immortal space. We find that the initial mark-
bit setting overhead is negligible.

The number of times that the write-barrier slow path is
taken can only be reduced by promoting an object to an older
space; the larger the nursery, and hence fewer collections,
the later that the object is promoted. This accounts for the
no-advice curve in Figure 6. However, objects advised to be
pretenured are immediately allocated together in the same
space. We believe that this is the reason that, rather than
increasing its cost, pretenuring has substantially reduced it.

However, we note thatdb is sensitive to the layout of
data since it repeatedly traverses long singly-linked lists [7].
Moreover, GC time accounts for only a very small propor-
tion of overall execution time, so even small mutator over-
heads will override any improvements in GC time. Exami-
nation of the hardware performance counters indicates that,
although the number of instructions executed and the cache
behaviour for the mutator is similar with and without advice,
advice increases DTLB misses by 33%.

9. Evaluation
Data mining object and allocation site lifetimes, obtained
from the DaCapo benchmark suite and classified with either
the heuristic or true definition of immortality, has shown a
link with the sets of micro-patterns [13] exhibited at sites.
Data mining is most effective at identifying patterns that tend
to lead to immortal or short-lived object; rules that identify
long-lived objects are far less frequent, especially at high
confidence levels.

For a choice of confidence that is neither too aggressive
nor too conservative, rules derived from Clementine’s C5.0
algorithm lead to improvements in GC times of between 6–
77%. For all programs exceptjack at 75% confidence, such
pretenuring never significantly degrades GC performance.
GC performance is never significantly degraded at 85% or
more in other than the tightest heaps. The option of running

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI75

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI75

(a) raytrace, 3×, conf. 75%

 18

 19

 20

 21

 22

 23

 0 20 40 60 80 100 120 140 160 180

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI75

 18

 19

 20

 21

 22

 23

 0 20 40 60 80 100 120 140 160 180

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI75

(b) db, 1.25×, conf. 75%

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI95

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI95

(c) javac, 3.5×, conf. 95%

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI75

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

C
um

ul
at

iv
e

nu
m

be
r

of
 G

C
s

Time (ms)

No advice
BI75

(d) mtrt, 2.33×, conf. 75%

Figure 7. Cumulative pause time distributions, compared with no advice. A point (x, y) on the curve indicates thaty
collections had a pause time less thanx ms.

Min. All Loading overhead Advice sites Count Volume
Program heap sites Rules time% before after Advice MMTk Advice MMTk Advice MMTk All
compress 21 6655 230 -0.55 8 8 203 83 1467 369 139 114 128
jess 22 6935 289 0.60 8 8 255 83 14871 647 535 133 299
raytrace 30 6757 328 0.63 8 8 303 83 2491889 416 54194 118 166
db 39 6665 246 0.13 8 6 215 83 140067 377 23784 114 101
javac 40 7269 271 1.16 16 13 204 83 25786 665 559 149 225
mpegaudio 18 7656 243 0.66 8 8 217 83 1463 461 140 120 44
mtrt 38 6756 331 0.60 8 8 306 83 2656466 419 57548 118 176
jack 22 6954 308 0.48 8 6 209 83 573176 469 13255 122 312

Table 5. Pretenuring placement at 75% confidence, all benchmarks with speed 100 input.Min. heapis the size in MB of the
smallest heap in which the program would run.All sitesis the total number of sites compiled (including Jikes RVM, application
and library code used).Rulesis the number of sites with advice.Loading overheadis the percentage execution time overhead
to load the advice file, and the space overhead (in pages) before and after the run.Advice sitesis the number of sites pretenured
to the immortal space, either by advice or by MMTk; similarly, VolumeandCountare the number and volume (in KB, or MB
for All) of objects pretenured.

more aggressive pretenuring schemes gives the application
user a tuning option that may, but is not guaranteed to, im-
prove GC performance yet further. The degree of pretenuring
aggression can be selected by a command-line switch, with-
out need to rebuild Jikes RVM, nor recompile the applica-
tion. Construction and data mining of the prediction knowl-
edge bank need be done only once, e.g. by the JVM devel-
oper. Currently, we analyse program classes for patterns and
match these against the rule set off-line (mainly for ease of
experimentation). However, this process is quick and simple
and we plan to move it into the class loader in future. Fur-
ther, our rules can be improved at any time by processing
further programs; the results can then be applied to any new
or existing program.

Yet, improvements in GC time do not lead consistently in
all programs to improvements in overall execution time. Pre-
tenuring, and hence changes of object locality, may increase
or reduce pressure on the mutator. If connected objects are
pretenured into the same space, whereas they might other-
wise have been placed in different spaces, the number of
times the write-barrier slow path is taken and the size of the
remembered set are reduced (e.g. [15]). Conversely, if con-
nected objects are dispersed to different spaces, these will be
increased. Dispersion of objects that might otherwise have

been allocated close together affects DTLB behaviour, par-
ticularly in programs likedb that are sensitive to data layout.

It is possible to identify a richer, yet domain-specific, set
of micro-patterns than Gil and Maman’s [13]. The MMTk al-
locator already treats specially allocation of instances of ob-
jects that belong to particular packages. We plan to explore
this further, by treating certain Jikes RVM-specific pack-
ages as patterns to see if this improves treatment of Jikes
RVM objects. We also intend to add advice at build-time,
rather than just run-time, either using rules derived in this
way or using Blackburn et al.’s techniques to combine build-
time advice [7]. We expect significant performance improve-
ments, especially in tight heaps.

Allocation sites in Java programs demonstrate a far more
diverse object lifetime behaviour than the short, long, im-
mortal classification used above [20]. In particular, it is com-
mon for a single site to allocate objects with a bimodal life-
time distribution. Based on the Beltway GC framework [8],
we are investigating the extent to which we can capture and
exploit these richer patterns.

10. Conclusions
Pretenuring long-lived and immortal objects into regions that
are infrequently or never collected can reduce garbage col-

lection costs significantly. However, extant approaches ei-
ther require extremely computationally expensive, application-
specific, off-line profiling, or consider only allocation sites
common to all programs, i.e. invoked by the virtual machine
rather than application programs.

In contrast, we have shown how programmer’s intentions
can be captured with micro-patterns [13], applied to object
allocation sites. By data mining a large corpus of Java pro-
grams, we find relationships between patterns exhibited at an
allocation site and the lifetimes of the objects allocated by
that site. This analysis is effective at discovering short-lived
and immortal objects, but predicts fewer sites that allocate
long-lived data.

Our analysis is cheap and could be provided in a class
loader (though currently we load advice from files prepared
off-line). We obtain performance gains between 6–77% in
GC time against a generational copying collector for several
jvm98 programs.

We are grateful for the support of IBM through its Faculty
Partnership Awards and the EPSRC through grant EP/D078342.
Any opinions, findings, conclusions or recommendations expressed
in this paper are the authors’ and do not necessarily reflect those of
the sponsors. We thank Yossi Gil and Itay Maman for providing
their pattern analysis tool, IBM Research for making Jikes RVM
available, the MMTk Core Team for their GC framework, and the
DaCapo group for their benchmark suite.

References
[1] B. Alpern, D. Attanasio, J.J. Barton et al. The Jalapeñovirtual

machine.IBM Systems Journal, 39(1), 2000.

[2] A.W. Appel. Simple generational garbage collection andfast
allocation.Software Practice and Experience, 19(2):171–183,
1989.

[3] H.G. Baker. The Treadmill, real-time garbage collection
without motion sickness.SIGPLAN Notices, 27(3):66–70,
1992.

[4] D.A. Barrett and B.G. Zorn. Using lifetime predictors to
improve memory allocation performance. InProgramming
Languages Design and Implementation (PLDI’93), 187–196,
1993.

[5] S.M. Blackburn, R. Garner, K.S. McKinley et al. The DaCapo
benchmarks: Java benchmarking development and analysis.
In Object-Oriented Systems, Languages and Applications
(OOPSLA’06), 2006.

[6] S.M. Blackburn, P. Cheng, and K.S. McKinley. Oil and
water? high performance garbage collection in Java with
MMTk. In International Conference on Software Engineering
(ICSE’04), 2004.

[7] S.M. Blackburn, M. Hertz, K.S. Mckinley et al. Profile-based
pretenuring.Transactions on Programming Languages and
Systems, 29(1):1–57, 2007.

[8] S.M. Blackburn, R.E. Jones, K.S. McKinley, and J.E.B.
Moss. Beltway: Getting around garbage collection gridlock.

In Programming Languages Design and Implementation
(PLDI’02), 153–164, 2002.

[9] S.M. Blackburn, S. Singhai, M. Hertz et al. Pretenuring
for Java. InObject-Oriented Systems, Languages and
Applications (OOPSLA’01), 342–352, 2001.

[10] J. Bloch.Effective Java. Addison-Wesley, 2001.

[11] P. Cheng, R. Harper, and P. Lee. Generational stack collection
and profile-driven pretenuring. InProgramming Languages
Design and Implementation (PLDI’98), June 1998.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley, 1995.

[13] J. Gil and I. Maman. Micro patterns in Java code. InObject-
Oriented Programming, Systems, Language and Applications
(OOPSLA’05), 97–116, 2005.

[14] U. Grimmer. Clementine: Data mining software. InClas-
sification and Multivariate Graphics,10, 25–31. Weierstrass-
Institut für Angewandte Analysis und Stochastik, Berlin,
1996.

[15] S. Guyer and K. McKinley. Finding your cronies: Static
analysis for dynamic object colocation. InConference
on Object-Oriented Systems, Languages and Applications
(OOPSLA’04), 2004.

[16] T. Harris. Dynamic adaptive pre-tenuring. InInternational
Symposium on Memory Management (ISMM’02), 2000.

[17] M. Hertz, S.M. Blackburn, K.S. McKinley et al. Error-
free garbage collection traces: How to cheat and not get
caught. InMeasurements and Modeling of Computer Systems
(SIGMETRICS’02), 2002.

[18] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based
garbage collection. InObject-Oriented Systems, Languages
and Applications (OOPSLA’03), 2003.

[19] W. Huang and W. Srisa-an and J.M. Chang. Adaptive pre-
tenuring for generational garbage collection. InInternational
Symposium on Performance and Analysis of Systems and
Software (ISPASS’04), 133–140, 2004.

[20] R.E. Jones and C. Ryder. Garbage collection should be
lifetime aware. InImplementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems
(ICOOOLPS’06), 2006.

[21] M. Jump, S.M. Blackburn, and K.S. McKinley. Dynamic
object sampling for pretenuring. InInternational Symposium
on Memory Management (ISMM’04), 2004.

[22] J.Singer, G. Brown, M. Lujan et al.. Towards intelligent
analysis techniques for object pretenuring. InPrinciples &
Practice of Programming in Java (PPPL’07), 2007.

[23] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03, 1999.

[24] D. Stefanović, K.S. McKinley, and J..B. Moss. Age-based
garbage collection. InObject-Oriented Systems, Languages
and Applications (OOPSLA’99), 370–381, 1999.

[25] D.M. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm.SIGPLAN
Notices, 19(5):157–167, 1984.

[26] D.M. Ungar and F. Jackson. Tenuring policies for generation-
based storage reclamation.SIGPLAN Notices, 23(11):1–17,
1988.

