
Declarative Extensions of XML Languages
 Simon Thompson
 Computing Laboratory
 University of Kent
 Canterbury, UK CT2 7NF

 s.j.thompson@kent.ac.uk

 Peter R. King
Department of Computer Science
 University of Manitoba
 Winnipeg MB, R3T 2N2, Canada
 prking@cs.Umanitoba.ca

 Patrick Schmitz
 Ludicrum Enterprises
San Francisco, CA, USA
 cogit@ludicrum.org

ABSTRACT
We present a set of XML language extensions that bring notions
from functional programming to web authors, extending the
power of declarative modelling for the web. Our previous work
discussed expressions and user-defined events. In this paper, we
discuss how one may extend XML by adding definitions and
parameterization; complex data and data types; and reactivity,
events and continuous "behaviours". We consider these
extensions in the light of World Wide Web Consortium
standards, and illustrate their utility by a variety of use cases.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document Preparation –
Languages and Systems; H.5.4 [Hypertext/Hypermedia]:

General Terms
Design, Human Factors, Languages.

Keywords
XML, functional, declarative, type, data type, event, behaviour.

1. INTRODUCTION
Many Web authors make use of W3C language standards [10]
as powerful yet simple to use authoring tools. These standards
promote a declarative approach to defining complex document
manipulations, permitting the author to describe what is to
happen rather than how the effect is to be achieved. Similarly,
functional programming embodies a declarative approach to
programming. Our work examines how features from functional
programming may extend the declarative authoring model of
XML-based languages, in particular addressing situations when
authors, needing additional capabilities not provided in the
XML language [3], are forced to work outside the declarative
dictum in an imperative scripting or programming language. In
[6] we showed how expressions and user-defined events could
be added to XML. In this paper we discuss a variety of further
extensions, including a generalized type mechanism, expression
evaluation, and a more powerful model of dynamic behaviours.

2. PARAMETERIZED DEFINITIONS
We present a general mechanism to support template definition
and parameterization in XML-based languages. Our proposed
mechanisms contrast with those provided by such HTML
template languages as Smarty [8], in that we use an entirely
declarative means of expression.

2.1 Definitions and Instances
Consider the following SVG/SMIL [7,9] fragment:
<circle cx="20" cy="20" r="100" fill="red">
 <animateMotion dur="5s" from="0,0" to="50,50"/>
</circle>
This defines a red circle and a particular 5 second motion
animation. If one requires an animation comprising 100 such
circles of varying colours and durations, then in XML one
would need to reproduce this code fragment 100 times, making
100 sets of changes to the attributes fill and dur. Our proposed
extensions are related to the SVG <symbol> and <use>
elements but with semantics that are different enough that we
define new elements <template> and <instance>. We
include a mechanism for parameterization allowing for more
flexible template instantiation. The following example illustrates
these notions:
<template id="button">
 <param name=”color” value="blue" />
 <param name=”label” />
 <param name=”num” value ="0" />
 <rect id=”bg” width=”100” height=”40”
 style=”fill:$color”
 x=”10” y=”calc(25+$num*(40+5)”>
 <text>$label</text>
 </rect>
</template>
Within the template element: each formal parameter is specified
using a <param> element and its name attribute. A default
value may be assigned to the parameter using the value
attribute. Created instances supply values for actual parameters,
as in:
<instance id=”homeBtn” xlink:href=”#button”
 xlink:type="simple">
 <param name=”label” value=”Home”/>
</instance>
<instance id=”goBackBtn” xlink:href=”#button”>
 xlink:type="simple">
 <param name=”label” value=”Go Back”/>
 <param name=”num” value="1" />
</instance>
<instance id=”searchBtn” xlink:href=”#button”>
 xlink:type="simple">
 <param name=”color” value="green" />
 <param name=”label” value=”Search”/>
 <param name=”num” value="2" />
</instance>
Here, the y coordinate of the rectangle position is calculated as a
dynamic expression using proposals to be discussed in section 4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’07, August 28–31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008...$5.00.

89

2.2 Naming
In order to refer to instances independently, a mechanism is
required to associate a local identifier space with each instance.
Local id-spaces also enable the use of each instance to be
exposed as a true DOM copy, rather than as a shadow copy as
used by SVG [7], and also enable the children to be selected by
style sheets, to be targeted by external animations or XMLE
event bindings [12], and to be referenced by scripts.
We have investigated two approaches to local identifier spaces.
The first uses structured ID references such as homeBtn/bg
where the instance introduces a new ID scope, and so bg is
found as a descendent of homeBtn. A second solution requires
no XML parser changes. In this case, the interpreter changes
local (within the template) ID definitions and local ID
references (ID-REFs to local IDs), inserting the value of the
<instance> ID as a prefix. Thus, the following animation
declarations show the two references to the background rect
element for the home and search button instances in the menu
example:
<animate targetElement=“homeBtn.bg” …/>

3. REACTIVITY
In this section we examine ways in which events and
continuously evolving behaviours can be defined, to set out the
design space for adding them to XML. This marks a major
improvement over what can currently be achieved with XML
languages. In SMIL [9] one is restricted to reactions based on a
limited number of pre-defined events, although the general
event description and handling mechanism of XML Events [12]
extends this power somewhat. HTML Template Languages do
not provide for any dynamic behaviour at runtime, they generate
HTML and so cannot extend the DOM. Thus, referring to our
example earlier, using, say Smarty, one could readily generate
HTML to represent the 100 animated circles, but one could not
define a (user defined) event to be raised when, say, two of the
circles collide, nor any changes in the animated behaviour
which occur upon such an event being raised. It is this wider
class of dynamic behaviour that our extensions seek to address.

3.1 Events and Behaviours
In [6] we outline a proposal for the support of user-defined
events, how such events are raised and how they are handled. In
the light of recent developments we see that these events can be
subsumed under the general event description and handling
mechanism of XML Events [12], which views events as atomic,
and being initiated externally to the browser. It is possible to
build a set of combining forms for events, the most obvious one
taking a set of events into a single event which fires when and
only when one of the set fires.
We first introduce the notion of behaviours, which were
discussed in [6] and were inspired by the Fran model of
reactivity [4]. A behaviour is a data value that evolves in time.
The (calculated) expressions that we will describe in section 4
are used to define such dynamic behaviours. Motivating
examples of external behaviours would include

• a numerical value arising from a sensor in the environment,
measuring something like temperature or pressure;

• a tuple of values (R,G,B) representing the colour of an
artifact.

Behaviours can also be internal, arising as an artifact of
computation, such as a saw tooth function representing the
fractional part of the current time.
Composite behaviours can be built from simpler ones.
Moreover. behaviours can depend on events, and vice versa. A
particular scenario involves two temperature sensors, red and
green:

A composite behaviour would, for example, be given by an
expression defining the maximum value of the two sensors at
any point in time and "lifted" to become a behaviour.
Behaviours can be Boolean, such as the condition that the red
value is greater than the green. Boolean behaviours give rise to
events, which are triggered by the condition becoming true. For
example, an event is triggered when the red graph crosses the
green. The firing of this event can trigger other changes: for
example, if the sensors represent conditions at two different
sites, it is possible to switch between two webcam images of the
sites. Similarly, a behaviour may respond to the occurrence of a
particular event, such as a mouse button press. The mechanism
underlying this uses an event handler in the definition of
behaviour. Because of the constraints of space we omit the
XML code for these behaviours and events in this scenario.
Thus new ‘internal’ events are created, as mentioned earlier.
The presence of a behaviour in a computed value requires a
different computation model on those parts of the document that
are dependant on the behaviour. For instance, an image which
depends on a behaviour will be an animated image. Further, in
[1] we discuss the relationship between finite behaviours, as
typically found in SMIL, and infinite behaviours, as found in
functional languages.

3.2 Encapsulation
In order to associate events and handlers, we have identified two
options which we now describe and illustrate:
1. Events and handlers are combined, as in Fran behaviours [4]
<value type="int"
 initial = "345"
 change = "increment"
 trigger = "foo.click">

2. Values and their "handlers" are separated:
<value type="int"
 initial = "345"
 handler = "fred">

<handler name = "fred"
 change = "increment"
 trigger = "foo.click">
Given we are adopting the XML Events approach, which
separates events and handlers, we adopt the second form.

90

4. DATA TYPES AND EVALUATION
In [6] we propose an expression language supporting calculation
of values of a limited repertoire of types, namely integers,
floats, Booleans and strings. Calculations are restricted to
expressions formed from a set of built-in operations, and can
occur in a limited set of contexts. We now discuss extensions of
this earlier proposal in two directions, better support for
complex, composite, data types, and broader evaluation of
expressions over these types.
Typed functional programming languages such as Haskell [5]
provide a variety of structured data types. These types include
finite “enumerated” types, records, arrays, collections, disjoint
unions and their combination in variant records. These
languages also support definitions of collections, homogeneous
or heterogeneous, and types may in general be recursive.
While it is possible to express many such types in XML, using
schema languages, or using (deeply) nested XML elements as a
model of data structures languages, our proposal is to provide a
richer set of types than such approaches can achieve, and to
provide a more compact and readable XML-based concrete
syntax for types and structured values. The design of the
particular embedding of a readable syntax for structured data
types and values within XML can take a number of directions.
Attribute values containing structured XML fragments would
violate the XML model. Such structures could be represented
implicitly through use of id-refs as names for each layer of the
structure; this would be legal XML, at the cost of readability
and abstraction. We are still exploring alternatives. In any case,
the introduction of such types necessitates both static and
dynamic type checking; see Section 5 below for discussion.
The introduction of values and types allows data representing
complex objects to be constructed and passed around between
elements in a document. In [6] we imposed two essential
restrictions. First, computed (or ‘calculated’) expressions could
only occur in a limited, fixed, collection of contexts. Second, the
operators and functions that could be used in expressions come
from a limited repertoire that explicitly excludes user-defined
functions. In the extensions proposed here we remove both of
these restrictions, and permit computations on the values of
attributes..

5. RELATED AND FUTURE WORK
There is a variety of proposals for user-defined functions in
existing XML-based languages, but these are all more limited
than our approach. Standard libraries of functions are defined
XPath [13], as well as in ECMAScript [2]. XForms [11] permits
certain values to be changed, such as forms input (as the user is
typing), and slider controls, but this notion of computation is far
more limited that our proposals.
XSLT 2.0 [14] allows the definition of functions (as opposed to
templates) known as ‘stylesheet functions’. A working draft of
SMIL 3 [16] (State Modules) includes an expression attribute
allowing a pre-defined set of functions from XPath, evaluated at
runtime (the evaluation semantics are somewhat unclear).
Although these models are more limited than our proposals, we
have tried to be reasonably consistent with them.
We also note that what we propose is similar to what is found in
some HTML template languages; Smarty [8], for example, uses
expressions of the form {$x} where we use calc(x), but again,

our proposal has the advantage of remaining entirely within a
declarative mode of expression.
Some aspects of our proposed future work in this area have been
identified in the foregoing descriptions. In addition, we propose
to examine several questions relating to type definitions.
Should type definitions be extracted from a document, or should
types be defined explicitly? Equally, should types for
parameters, functions and so forth be given in an explicit way,
or should some form of type inference be used (to the extent that
this is possible). Finally, should types be seen as particular
fragments of XML schemata, or should they have a separate
identity?
In addition, the prototype translator for the authors' current
extended XML, implemented at the University of Manitoba, is
being extended to handle the additions described here.
We are very grateful to the Royal Society for supporting an
incoming short visit to the UK by Dr. King in March 2007.
6. REFERENCES
[1] Helen Cameron, Peter King, and Simon Thompson.
Modelling Reactive Multimedia: Events and Behaviours
Multimedia Tools and Applications, 19(1), January 2003.
[2] ECMAScript Language Specification, 3rd edition
(December 1999),http://www.ecma-
international.org/publications/ standards/ Ecma-262.htm, last
accessed (l.a.) 17/05/07.
[3] Extensible Markup Language (XML),
http://www.w3.org/XML/, l.a. 17/05/07.
[4] Fran version 1.16, http://conal.net/fran/, l.a. 17/05/07.
[5] Haskell 98 Language and Libraries, The Revised Report,
2002, http://www.haskell.org/onlinereport/, l.a. 11/05/07.
[6] Peter King, Patrick Schmitz, and Simon Thompson.
Behavioural Reactivity and Real Time Programming in XML:
Functional Programming meets SMIL animation. In Jean-Yves
Vion-Dury, editor, ACM DocEng 2004,. ACM ,Press 2004.
[7] Scalable Vector Graphics (SVG) Full 1.2 Specification,
http://www.w3.org/TR/SVG12/, la. 17/05/07.
[8] Smarty Template Engine, http://smarty.php.net/ l.a.
14/06/07.
[9] Synchronized Multimedia Integration Language (SMIL 2.1),
http://www.w3.org/TR/SMIL2/, l.a. 17/05/07.
 [10] World Wide Web Consortium, http://www.w3.org/, l.a.
17/05/07.
[11] XForms 1.1, http://www.w3.org/TR/xforms11/ l.a.
14/06/07.
[12] XML Events 2, An Events Syntax for XML,
http://www.w3.org/TR/xml-events, l.a. 17/05/07.
[13] XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20/, l.a. 17/05/07.
[14] XSL Transformations (XSLT) Version 2.0,
http://www.w3.org/TR/xslt20/, l.a. 17/05/07
[15] W3C The Forms Working Group,
http://www.w3.org/MarkUp/Forms/, l.a. 14/06/07.
[16] SMIL 3.0 W3C Working Draft 20 December 2006,
http://www.w3.org/TR/SMIL3/, l.a. accessed 14/06/07

91

