
 1

Abstract— There are many essential applications for quorum

systems in ad-hoc networks, such as that of location servers in
large-scale networks. Existing research proposes many
approaches to the problems, many of which are incomplete,
cumbersome, or incur significant cost. We describe and analyse
a self-organising quorum system that creates an emergent
intelligence to minimise overhead and maximise survivability.
We compare our quorum system with ones proposed in the
literature in terms of delivery success and find that it performs
favourably.

Index Terms— Geographical routing, Location server, quorum
systems, wireless LAN.

I. INTRODUCTION
d-hoc networks are a means of networking computing
devices together without requiring any setup or existing

infrastructure. We define an ad hoc network as a graph of a
set of nodes, V, and a set of communication paths, E, that vary
through time, t, as nodes move and fail. A node, Vv ∈ , has an
identifier vID, and a co-ordinate vx, vy.

),(ttt EVG = (1)

Multi-hop ad-hoc networks allow nodes to communicate

with each other without being in transmission range by
relaying their messages through intermediate nodes. Routing
in small networks is usually achieved through an optimal
broadcast mechanism; however, when the network becomes
large (>200 nodes), this form of discovery becomes extremely
expensive.

Routing in large-scale ad hoc networks can be achieved

through using location information from a GPS device. Hou
[1] describes Most-Forward-within-Radius (MFR) whereby
nodes are aware of their geographical position (from GPS) and
progressively route packets closer to the location of the
destination. Before a node can route packets in this fashion, it
will need to know an accurate location for the destination.
Many routing protocols propose a function that maps a node’s

G. H. Owen is a researcher with the University of Portsmouth’s School of

Computing, Lion Terrace, Portsmouth, PO1 3HE. (Phone: +442392846782;
email: gareth.owen@port.ac.uk).

M. Adda is a principal lecturer with the University of Portsmouth’s School
of Computing. (Phone: +442392846377; email: mo.adda@port.ac.uk).

ID to its location, but whilst this is ideal when networks are
static and such a function can be defined, it is not when nodes
are mobile and networks span many kilometres. Location
servers solve this problem by maintaining location information
of a node that sends it frequent updates.

Several types of location server have been proposed to

provide this information. Li [2] divides the area into grid-
squares of different orders. Starting with the grid-square that
the node currently occupies, an order-one square, an order-two
square is the grid-square containing four of the order-one
squares. Li proposes that a number of nodes in each order-n
square should host the location information. Therefore,
information about a node’s location becomes less densely
available the further one is from its location.

The most promising approach to a location server for large

ad hoc networks is allocating nodes within a specific radius of
a geographical point to serve as a location server [3, 4]. The
reasoning is that the load is distributed evenly across the
network and setup and query incurs fixed overhead,
independent of the number of nodes in the network. Giordano
suggested modifying the radius depending upon the node
density so that a minimum number of nodes participate;
however, they did not address issues such as node mobility,
fault tolerance and query success.

Finally, Stojmenovic proposed [5] that all nodes to the north

and south in a fixed-width column assume the role of a
location server. Location searches are performed by routing
packets horizontally so that they will eventually intersect the
vertical column. This approach is not feasible for large-scale
ad hoc networks because of the large number of nodes. For a
more complete review of approaches to location servers, the
reader is referred to [6].

The approach shown in this paper is most similar to the

work on home-regions but we further develop the system we
proposed in [7, 8] by examining performance as a location
server for large-scale ad-hoc networks. We compare our
results with that of the home-region.

II. A FAULT AND MOBILITY TOLERANT QUORUM SYSTEM
FOR AD-HOC NETWORKS

In this paper, we propose an approach similar to the home
region but that addresses many of the problems associated

A Fault and Mobility Tolerant Location Server
for Large-scale Ad-hoc Networks

Gareth Owen and Mo Adda

A

 2

with it. Instead of allocating a circular region of nodes as the
hosts of a location server, we say that nodes directly adjacent
to a particular geographic point should be responsible. This
permits a small number of nodes to be used without
knowledge of node density.

A. Quorum Deployment
A node sets up a location server by sending an initiation

packet toward its home location that will be received by the
closest node. If the point is within an area void of nodes, then
the closest node will be one on the void perimeter. This node
will then assume the role of master of the server, and as it
moves the role is transferred to a node that is closer to the
home location. Migration is the term we call this process of
quorum components moving from node-to-node to remain
close to a geographic point.

Presently, with the master being the only one component,

failure of the node hosting it could result in failure of the
server so it is important that the data is replicated. Immediate
neighbours of the master are sent a duplication packet from
the master and assume the role of a slave; however, the server
as a whole needs to make sure that enough replicated copies
are kept in the event of node failures so that the data is not
lost.

B. Quorum failure and mobility tolerance
Formally, we define our location server as a set Qt where Mt

and St are the sets of nodes that host master and slave
components respectively:

 tttt SMVQ ∪=⊆ (2)

Such maintenance of what is essentially a quorum [9] is

very costly process in wired networks let alone wireless, and
so a novel approach is needed. Therefore, we draw some of
our inspiration from ants in a colony who find their way to
food by laying pheromones for each other to follow [10].
These pheromones serve to modify the environment so that
other ants may detect these modifications avoiding the need
for directed communication. Although ants act independently,
their individual behaviour develops an emergent intelligence.
Drawing upon this to develop a location server, we suggest
that instead of components of a quorum communicating with
each other they modify their environment. As every node has
to beacon its location to its neighbours for routing to occur, we
add to this beacon packet (which we call the environment) an
itinerary of location server components held at that particular
node. A node’s itinerary, Iv,t, is simply a list of identifiers for
quorums which it hosts a component of. Therefore, a beacon
frame can be described as the n-tuple:

},,{ ,,,, tvtytxtv IvvB = (3)

Each node maintains a list of all received beacons so that

each component of the quorum is able to examine a list of

which nodes hold which components. Beacons stored in the
list expire after twice the beacon interval.

The master is the only node permitted to duplicate as it is

most likely to be in the centre of the quorum and so able to
correctly count the number of components. When the number
of neighbours hosting components falls below a threshold, the
master will begin a duplication phase to raise this number.

We now have a set of quorum components who do not

directly communicate with each other, but who act in a self-
organising manner forming an emergent intelligence (like
ants). Each attempts to get as close as possible to the home
location by moving from node to node (except where a
destination node is already in possession of one). Each
component assumes the role of master and responsibility for
duplicating if it finds itself, through observing its
environment, to be on the closest node to the home location.
If it realises it is no longer the closest then it will
automatically remove its responsibility and assume the role of
a slave. We illustrate the master and slaves, along with
migration in Figure 1, where the master is held on the closest
node to the point and has duplicated its data to several slaves
on adjacent nodes.

Figure 1: Illustration of quorum and component migration

In addition to the duplication task, the components perform

one more tasked based upon information gathered from the
beacons. The components self delete themselves to stop a
large number of replicated components consuming resources.
They do this by each monitoring the number of replicas, and if
they rise above a threshold then component will delete itself.

This process is performed on each node at regular intervals

for each component held, as described by the
ManageComponent(c) function:

MANAGECOMPONENT(c)
1 n ← closerNeighbor(homeLocation)
2 if exists(n) and hasComponent(n)
3 then crole ← slave
4 else crole ← master
5 if exists(n) and not hasComponent(n)
6 then c.migrate(n)
7 else if crole=master and

hasComponent(all) < threshold

M

S

S

S

 3

8 then replicate(c)
9 else if crole=slave and

hasComponent(all) > threshold
10 then delete(c)

We use multicast for replication of the data. When a node

senses that there is less than the threshold number of slaves,
then it will create a multicast packet to a number of
neighbours defined by the threshold minus the number of
slaves. The neighbours chosen will be those who do not
already have a component.

REPLICATE(C)
1 needed ← threshold – hasComponent(all)
2 destcount ← 0
3 while needed > 0 and neigh not equal null
4 if not hasComponent(neigh) then
5 cdests[destcount++] = neigh
6 needed--
7 endif
8 neigh ← neighnext
9 endwhile

C. Update Mechanism
The mechanism to update the quorum is equally simple and

based upon a zero knowledge approach to minimise overhead.
When receiving a new update packet, a node simply updates
itself if it holds a component and then rebroadcasts it. If it
does not hold a quorum component already, it simply forwards
the update to the next closest node to the centre. This way,
each element of a quorum should receive a copy and the
number of overhead packets will be equal to the number of
components present.

This approach does not guarantee a complete quorum

update due to its self-organising approach, but querying
multiple quorum components can mitigate this as shown in
[8].

RECVUPDATEPACKET(p)
1 c ← Component(pnodeID)
2 if not exist(c) or seenBefore(p) then ignore
3 if prevision ≤ crevision then ignore
4 cdata ← pdata
5 broadcast(p)

III. TERMINODE HOME-REGION SERVER IMPLEMENTATION
The home-region server was briefly described in the

introduction and here we implement it for comparison
purposes against our own technique. Due to the lack of
technical detail in the original paper we have implemented the
home-region server using many assumptions that are detailed
below.

First is the issue of deployment of the server. We assume

that to deploy the server the node simply sending a packet
containing the information to be stored towards the centre of

the home region. At each hop the following algorithm is run:

PROCESSHR(p)
1 if distTo(px, py) < R then
2 broadcast(p)
3 store(p)
4 else
5 n = closestNeighbour(px, py)
6 sendPacket(p, n);

The algorithm determines whether the node processing the

packet is within radius R of the centre of the home region, and
if so the packet is broadcasted and stored, otherwise it is
forwarded to the closest neighbouring node.

To update the location server, a node simply sends another

deployment packet to the centre location, and all who either
contain no data, or contain data that is older than the update
will be updated.

IV. QUERYING THE LOCATION SERVERS
The technique used to query two location servers is similar. A
node wishing to determine the destination of the node to
which it wants to communicate creates a GET(vID) request and
routes it toward the centre of the home region, or the home
location (sx, sy). Upon reaching a node, the technique varies
slightly according to the location server used:

Quorum system: If the node contains information of the
destination’s location, a REPLY(vID) request is sent back to
the origin.

Home-region: If the node is within radius R of the centre of
the region, and contains information about the destination’s
location, a REPLY(vID) request is sent back to the origin.

The two packets are defined as:

},,{)(
},,{)(

,, tytxID

yxID

vvvnodeIDREPLY
ssvnodeIDGET

=

=

(4)

(5)

Whilst the query is being executed, the packet originating the
query and any subsequent packets are queued until a reply is
received, at which point they are then tagged with the location
of the destination and sent to the nearest neighbour. If no
reply is received within one second a further GET(vID) packet
is resent, up until a maximum of five, at which point the query
is deemed to have failed.

V. RESULTS

A. Simulation description
Simulations are performed in the Jist/SWANS simulator [11]
and are repeated 10 times for validity. Packets are routed
using Most-Forward-in-Radius [1], except where stated. Five
bidirectional flows are set up between random nodes and
packets are sent at a rate of 1 per second per direction, after

 4

t=20s to allow for the servers to deploy. Nodes are able to
cache locations of nodes for up to 10 seconds after discovery
or extraction from received packets to avoid large numbers of
location discoveries.

Parameter Value Parameter Value

Terrain 1000x1000 Number of
nodes 200

Home-
Region: R

value
100m

Number of
bidirectional

flows
5

Tx/Rx
Range 100m

Quorum:
Number of

slaves
5

Mobility
Model

Random
Waypoint Beacon rate

Every 5
seconds
+ jitter

Simulation-
time 2 minutes

Manage
Component call

rate

Every 6
seconds
+ jitter

Our simulations simulate node failures by clearing a node’s
memory with a defined probability every five seconds. One
can determine an expected number of node failures per minute
(X) given the number of nodes in the network (N) and the
failure probability (D):

DNX 12= (6)

To simplify simulation we assume the location (sx, sy) that a
server (s) will reside near is assigned at known globally. The
locations are allocated in a grid-like fashion with each node
taking the next sequential location, so that two servers have
precisely the same location and the load is distributed evenly
across the network.

B. Figures
In the figures, our system is termed ‘Quorum.’ Figure 2
analyses the effect that varying speed and failure probability
has on the delivery success of packets in the network. One
can see that in all cases the quorum outperforms terminode’s
home region. The update interval was set to 10 seconds and
so the home region is redeployed at 10 second intervals,
therefore varying the deletion probability had little effect on
the delivery success.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Speed (m/s)

D
el

iv
er

y
su

cc
es

s
(%

)

Quorum D=0

Terminode D=0

Quorum D=20

Terminode D=20

Linear (Quorum D=0)

Linear (Terminode D=0)

Poly. (Quorum D=20)

Poly. (Terminode D=20)

Figure 2: Speed vs. delivery success whilst varying failure
probability (update interval = 10s)

The results shown in Figure 3 are obtained in the same manner
as the previous graph with the exception the update interval is
set at 40 seconds to compare the failure tolerance of both
approaches. The performance difference between the two
systems widens greatly with the quorum approach performing
significantly better. It is worth noting that a certain number of
failures will be due simply to the location information being
out of date.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Speed (m/s)

D
el

iv
er

y
su

cc
es

s
(%

)

Quorum D=0

Terminode D=0

Quorum D=20

Terminode D=20

Linear (Quorum D=0)

Linear (Terminode D=0)

Poly. (Quorum D=20)

Poly. (Terminode D=20)

Figure 3: Speed vs. delivery success whilst varying failure
probability (update interval = 40s)

Figure 4 examines the effect the update interval has on
delivery success whilst varying the failure probability. A
certain amount of decline with update interval would be
expected with any system due to the increasingly less accurate
location information; however, the terminode approach has no
means to conquer mobility and node failures at higher speeds
and so is outperformed.

 5

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45

Update interval (sec)

D
el

iv
er

y
su

cc
es

s
(%

)

Quorum D=0

Quorum D=20

Terminode D=0

Terminode D=20

Linear (Terminode D=20)

Linear (Quorum D=0)

Linear (Quorum D=20)

Linear (Terminode D=0)

Figure 4: Update interval vs. delivery success whilst
varying failure probability (speed=5m/s)

Figure 5 compares only failure probability and delivery
success, with a speed of 5m/s and an update interval of
40seconds. The quorum system outperforms terminode’s
home region approach by significantly under all cases.

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Failure probability (%)

D
el

iv
er

y
su

cc
es

s
(%

)

Quorum

Terminode

Linear (Quorum)

Linear (Terminode)

Figure 5: Failure probability vs. delivery success
(speed=5m/s; update interval=40s)

Figure 6 illustrates the tolerance to an area void of nodes.
Terminode requires a certain region to be populated whereas
our system will attach the quorum to the edge of a void
perimeter if necessary. In this case, we use the right-hand rule
[12] to aid routing, and compare the two systems with a
varying sized area void of nodes (a x a), centred in the
simulation scenario. Terminode is again outperformed by a
significant margin.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

Void area

De
liv

er
y

Su
cc

es
s

(%
)

Quorum
Terminode
Poly. (Terminode)
Linear (Quorum)

Figure 6: Tolerance of voids (speed=0)

VI. CONCLUSION
In this paper we described a quorum system that was fault and
mobility tolerant for acting as location servers in ad-hoc
networks. Our system significantly outperformed the
terminode home region approach under all the scenarios
tested.

There are many applications other than location servers to
which this technique could be applied, with only imagination
being a limitation. One idea could be a wiki-based ad hoc
network whereby everyone can store and modify information.
Another would be the storage of topographical information to
aid routing around the network topology where greedy
forwarding fails, or where avoidance of traffic hotspots is
desirable.

REFERENCES
[1] T.-C. Hou and V. Li, "Transmission range control in multihop

packet radio networks," IEEE Transactions on Communications,
vol. 34, pp. 38-44, 1986.

[2] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris,
"A Scalable Location Service for Geographic Ad Hoc Routing,"
presented at 6th ACM International Conference on Mobile
Computing and Networking (MobiCom), 2000.

[3] S. Giordano and M. Hamdi, "Mobility Management: The Virtual
Home Region," EPFL, Lausanne, Switzerland, 1999.

[4] X. Wu, "VPDS: Virtual Home Region Based Distributed Position
Service in Mobile Ad Hoc Networks," presented at 25th IEEE
international conference on distributed computing systems: ICDCS
2005, Columbus, OH, 2005.

[5] D. Liu, I. Stojmenovic, and X. Jia, "A Scalable Quorum Based
Location Service in Ad Hoc and Sensor Networks," presented at
IEEE International Conference on Mobile Ad-hoc and Sensor
Systems MASS, Vancouver, 2006.

[6] T. Camp, J. Boleng, and L. Wilcox, "Location Information
Services in Mobile Ad Hoc Networks," presented at IEEE
International Conference on Communications, 2002.

[7] G. H. Owen and M. Adda, "Quorum based geographically static
data storage in ad-hoc networks," presented at International
Network Conference, Plymouth, UK, 2006.

[8] G. H. Owen and M. Adda, "Self organizing quorum systems for ad
hoc networks," presented at International Conference on
Communication, Network, and Information Security, MIT Faculty
Club, Cambridge, Massachusetts, USA, 2006.

[9] D. Malkhi, M. K. Reiter, A. Wool, and N. Wright, "Probabilistic
Quorum Systems," Information and Computation, vol. 170, 2001.

[10] S. Johnson, Emergence: The Connected Lives of Ants, Brains,
Cities and Software: Scribner, 2001.

[11] R. Barr, "An efficient, unifying approach to simulation using
virtual machines.," vol. PhD: Cornell University, 2004.

[12] B. Karp, "Geographic Routing for Wireless Networks," in The
Division of Engineering and Applied Sciences, vol. PhD.
Cambridge, MA: Harvard, 2000.

