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Abstract— There are many essential applications for quorum 

systems in ad-hoc networks, such as that of location servers in 
large-scale networks.  Existing research proposes many 
approaches to the problems, many of which are incomplete, 
cumbersome, or incur significant cost.  We describe and analyse 
a self-organising quorum system that creates an emergent 
intelligence to minimise overhead and maximise survivability.  
We compare our quorum system with ones proposed in the 
literature in terms of delivery success and find that it performs 
favourably. 
 

Index Terms— Geographical routing, Location server, quorum 
systems, wireless LAN. 
 

I. INTRODUCTION 
d-hoc networks are a means of networking computing 
devices together without requiring any setup or existing 

infrastructure.  We define an ad hoc network as a graph of a 
set of nodes, V, and a set of communication paths, E, that vary 
through time, t, as nodes move and fail.  A node, Vv ∈ , has an 
identifier vID, and a co-ordinate vx, vy.  

 

),( ttt EVG =  (1) 

 
Multi-hop ad-hoc networks allow nodes to communicate 

with each other without being in transmission range by 
relaying their messages through intermediate nodes.  Routing 
in small networks is usually achieved through an optimal 
broadcast mechanism; however, when the network becomes 
large (>200 nodes), this form of discovery becomes extremely 
expensive.   

 
Routing in large-scale ad hoc networks can be achieved 

through using location information from a GPS device.  Hou 
[1] describes Most-Forward-within-Radius (MFR) whereby 
nodes are aware of their geographical position (from GPS) and 
progressively route packets closer to the location of the 
destination.  Before a node can route packets in this fashion, it 
will need to know an accurate location for the destination.  
Many routing protocols propose a function that maps a node’s 
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ID to its location, but whilst this is ideal when networks are 
static and such a function can be defined, it is not when nodes 
are mobile and networks span many kilometres.  Location 
servers solve this problem by maintaining location information 
of a node that sends it frequent updates.   

 
Several types of location server have been proposed to 

provide this information.  Li [2] divides the area into grid-
squares of different orders.  Starting with the grid-square that 
the node currently occupies, an order-one square, an order-two 
square is the grid-square containing four of the order-one 
squares.  Li proposes that a number of nodes in each order-n 
square should host the location information.  Therefore, 
information about a node’s location becomes less densely 
available the further one is from its location.  

 
The most promising approach to a location server for large 

ad hoc networks is allocating nodes within a specific radius of 
a geographical point to serve as a location server [3, 4].  The 
reasoning is that the load is distributed evenly across the 
network and setup and query incurs fixed overhead, 
independent of the number of nodes in the network.  Giordano 
suggested modifying the radius depending upon the node 
density so that a minimum number of nodes participate; 
however, they did not address issues such as node mobility, 
fault tolerance and query success. 

 
Finally, Stojmenovic proposed [5] that all nodes to the north 

and south in a fixed-width column assume the role of a 
location server.  Location searches are performed by routing 
packets horizontally so that they will eventually intersect the 
vertical column.  This approach is not feasible for large-scale 
ad hoc networks because of the large number of nodes.  For a 
more complete review of approaches to location servers, the 
reader is referred to [6]. 

  
The approach shown in this paper is most similar to the 

work on home-regions but we further develop the system we 
proposed in [7, 8]  by examining performance as a location 
server for large-scale ad-hoc networks.  We compare our 
results with that of the home-region.  

II. A FAULT AND MOBILITY TOLERANT QUORUM SYSTEM 
FOR AD-HOC NETWORKS 

In this paper, we propose an approach similar to the home 
region but that addresses many of the problems associated 
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with it.  Instead of allocating a circular region of nodes as the 
hosts of a location server, we say that nodes directly adjacent 
to a particular geographic point should be responsible.  This 
permits a small number of nodes to be used without 
knowledge of node density. 

A. Quorum Deployment 
A node sets up a location server by sending an initiation 

packet toward its home location that will be received by the 
closest node.  If the point is within an area void of nodes, then 
the closest node will be one on the void perimeter.  This node 
will then assume the role of master of the server, and as it 
moves the role is transferred to a node that is closer to the 
home location.  Migration is the term we call this process of 
quorum components moving from node-to-node to remain 
close to a geographic point.   

 
Presently, with the master being the only one component,  

failure of the node hosting it could result in failure of the 
server so it is important that the data is replicated.  Immediate 
neighbours of the master are sent a duplication packet from 
the master and assume the role of a slave; however, the server 
as a whole needs to make sure that enough replicated copies 
are kept in the event of node failures so that the data is not 
lost.   

B. Quorum failure and mobility tolerance 
Formally, we define our location server as a set Qt where Mt 

and St are the sets of nodes that host master and slave 
components respectively: 

 
 tttt SMVQ ∪=⊆  (2) 

 
Such maintenance of what is essentially a quorum [9] is 

very costly process in wired networks let alone wireless, and 
so a novel approach is needed.  Therefore, we draw some of 
our inspiration from ants in a colony who find their way to 
food by laying pheromones for each other to follow [10].  
These pheromones serve to modify the environment so that 
other ants may detect these modifications avoiding the need 
for directed communication.  Although ants act independently, 
their individual behaviour develops an emergent intelligence.  
Drawing upon this to develop a location server, we suggest 
that instead of components of a quorum communicating with 
each other they modify their environment.  As every node has 
to beacon its location to its neighbours for routing to occur, we 
add to this beacon packet (which we call the environment) an 
itinerary of location server components held at that particular 
node.  A node’s itinerary, Iv,t, is simply a list of identifiers for 
quorums which it hosts a component of.  Therefore, a beacon 
frame can be described as the n-tuple: 

  
},,{ ,,,, tvtytxtv IvvB =  (3) 

 
Each node maintains a list of all received beacons so that 

each component of the quorum is able to examine a list of 

which nodes hold which components.  Beacons stored in the 
list expire after twice the beacon interval. 

 
The master is the only node permitted to duplicate as it is 

most likely to be in the centre of the quorum and so able to 
correctly count the number of components.  When the number 
of neighbours hosting components falls below a threshold, the 
master will begin a duplication phase to raise this number. 

 
We now have a set of quorum components who do not 

directly communicate with each other, but who act in a self-
organising manner forming an emergent intelligence (like 
ants).  Each attempts to get as close as possible to the home 
location by moving from node to node (except where a 
destination node is already in possession of one).  Each 
component assumes the role of master and responsibility for 
duplicating if it finds itself, through observing its 
environment, to be on the closest node to the home location.  
If it realises it is no longer the closest then it will 
automatically remove its responsibility and assume the role of 
a slave.  We illustrate the master and slaves, along with 
migration in Figure 1, where the master is held on the closest 
node to the point and has duplicated its data to several slaves 
on adjacent nodes. 

  

  
Figure 1: Illustration of quorum and component migration 

 
In addition to the duplication task, the components perform 

one more tasked based upon information gathered from the 
beacons.  The components self delete themselves to stop a 
large number of replicated components consuming resources.  
They do this by each monitoring the number of replicas, and if 
they rise above a threshold then component will delete itself.   

 
This process is performed on each node at regular intervals 

for each component held, as described by the 
ManageComponent(c) function: 

 
MANAGECOMPONENT(c) 
1 n ← closerNeighbor(homeLocation) 
2 if exists(n) and hasComponent(n) 
3 then crole ← slave 
4 else crole ← master 
5 if exists(n) and not hasComponent(n) 
6 then c.migrate(n) 
7 else if crole=master and  

hasComponent(all) < threshold 
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8 then replicate(c) 
9 else if crole=slave and  

hasComponent(all) > threshold 
10 then delete(c) 

 
We use multicast for replication of the data.  When a node 

senses that there is less than the threshold number of slaves, 
then it will create a multicast packet to a number of 
neighbours defined by the threshold minus the number of 
slaves.  The neighbours chosen will be those who do not 
already have a component.  

 
REPLICATE(C) 
1 needed ← threshold – hasComponent(all) 
2 destcount ← 0 
3 while needed > 0 and neigh not equal null 
4 if not hasComponent(neigh) then 
5 cdests[destcount++] = neigh 
6 needed-- 
7 endif 
8 neigh ← neighnext 
9 endwhile 

 

C. Update Mechanism 
The mechanism to update the quorum is equally simple and 

based upon a zero knowledge approach to minimise overhead.  
When receiving a new update packet, a node simply updates 
itself if it holds a component and then rebroadcasts it.  If it 
does not hold a quorum component already, it simply forwards 
the update to the next closest node to the centre. This way, 
each element of a quorum should receive a copy and the 
number of overhead packets will be equal to the number of 
components present. 

 
This approach does not guarantee a complete quorum 

update due to its self-organising approach, but querying 
multiple quorum components can mitigate this as shown in 
[8].   

 
RECVUPDATEPACKET(p) 
1 c ← Component(pnodeID) 
2 if not exist(c) or seenBefore(p) then ignore 
3 if prevision ≤  crevision then ignore 
4 cdata ← pdata 
5 broadcast(p) 

III. TERMINODE HOME-REGION SERVER IMPLEMENTATION 
The home-region server was briefly described in the 

introduction and here we implement it for comparison 
purposes against our own technique.  Due to the lack of 
technical detail in the original paper we have implemented the 
home-region server using many assumptions that are detailed 
below. 

 
First is the issue of deployment of the server.  We assume 

that to deploy the server the node simply sending a packet 
containing the information to be stored towards the centre of 

the home region.  At each hop the following algorithm is run: 
 

PROCESSHR(p) 
1 if distTo(px, py) < R then 
2 broadcast(p) 
3 store(p) 
4 else 
5 n = closestNeighbour(px, py) 
6 sendPacket(p, n); 

 
The algorithm determines whether the node processing the 

packet is within radius R of the centre of the home region, and 
if so the packet is broadcasted and stored, otherwise it is 
forwarded to the closest neighbouring node. 

 
To update the location server, a node simply sends another 

deployment packet to the centre location, and all who either 
contain no data, or contain data that is older than the update 
will be updated. 

IV. QUERYING THE LOCATION SERVERS 
The technique used to query two location servers is similar.  A 
node wishing to determine the destination of the node to 
which it wants to communicate creates a GET(vID) request and 
routes it toward the centre of the home region, or the home 
location (sx, sy).  Upon reaching a node, the technique varies 
slightly according to the location server used: 
 
Quorum system: If the node contains information of the 
destination’s location, a REPLY(vID) request is sent back to 
the origin. 
 
Home-region: If the node is within radius R of the centre of 
the region, and contains information about the destination’s 
location, a REPLY(vID) request is sent back to the origin. 
 
The two packets are defined as: 
 

},,{)(
},,{)(

,, tytxID

yxID

vvvnodeIDREPLY
ssvnodeIDGET

=

=
 

(4) 

(5) 

 
Whilst the query is being executed, the packet originating the 
query and any subsequent packets are queued until a reply is 
received, at which point they are then tagged with the location 
of the destination and sent to the nearest neighbour.  If no 
reply is received within one second a further GET(vID) packet 
is resent, up until a maximum of five, at which point the query 
is deemed to have failed. 

V. RESULTS 

A. Simulation description 
Simulations are performed in the Jist/SWANS simulator [11] 
and are repeated 10 times for validity.  Packets are routed 
using Most-Forward-in-Radius [1], except where stated.  Five 
bidirectional flows are set up between random nodes and 
packets are sent at a rate of 1 per second per direction, after 
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t=20s to allow for the servers to deploy.  Nodes are able to 
cache locations of nodes for up to 10 seconds after discovery 
or extraction from received packets to avoid large numbers of 
location discoveries. 
 

Parameter Value Parameter Value 

Terrain 1000x1000 Number of 
nodes 200 

Home-
Region: R 

value 
100m 

Number of 
bidirectional 

flows 
5 

Tx/Rx 
Range 100m 

Quorum: 
Number of 

slaves 
5 

Mobility 
Model 

Random 
Waypoint Beacon rate 

Every 5 
seconds 
+ jitter 

Simulation-
time 2 minutes 

Manage 
Component call 

rate 

Every 6 
seconds 
+ jitter 

 
Our simulations simulate node failures by clearing a node’s 
memory with a defined probability every five seconds.  One 
can determine an expected number of node failures per minute 
(X) given the number of nodes in the network (N) and the 
failure probability (D): 
 

DNX 12=  (6) 
 
To simplify simulation we assume the location (sx, sy) that a 
server (s) will reside near is assigned at known globally.  The 
locations are allocated in a grid-like fashion with each node 
taking the next sequential location, so that two servers have 
precisely the same location and the load is distributed evenly 
across the network. 

B. Figures 
In the figures, our system is termed ‘Quorum.’  Figure 2 
analyses the effect that varying speed and failure probability 
has on the delivery success of packets in the network.  One 
can see that in all cases the quorum outperforms terminode’s 
home region.  The update interval was set to 10 seconds and 
so the home region is redeployed at 10 second intervals, 
therefore varying the deletion probability had little effect on 
the delivery success. 
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Figure 2: Speed vs. delivery success whilst varying failure 
probability (update interval = 10s) 
 
The results shown in Figure 3 are obtained in the same manner 
as the previous graph with the exception the update interval is 
set at 40 seconds to compare the failure tolerance of both 
approaches.  The performance difference between the two 
systems widens greatly with the quorum approach performing 
significantly better.  It is worth noting that a certain number of 
failures will be due simply to the location information being 
out of date. 
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Figure 3: Speed vs. delivery success whilst varying failure 
probability (update interval = 40s) 
 
Figure 4 examines the effect the update interval has on 
delivery success whilst varying the failure probability.  A 
certain amount of decline with update interval would be 
expected with any system due to the increasingly less accurate 
location information; however, the terminode approach has no 
means to conquer mobility and node failures at higher speeds 
and so is outperformed. 
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Figure 4: Update interval vs. delivery success whilst 
varying failure probability (speed=5m/s) 
 
Figure 5 compares only failure probability and delivery 
success, with a speed of 5m/s and an update interval of 
40seconds.  The quorum system outperforms terminode’s 
home region approach by significantly under all cases. 
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Figure 5: Failure probability vs. delivery success 
(speed=5m/s; update interval=40s) 
 
Figure 6 illustrates the tolerance to an area void of nodes.  
Terminode requires a certain region to be populated whereas 
our system will attach the quorum to the edge of a void 
perimeter if necessary.  In this case, we use the right-hand rule 
[12] to aid routing, and compare the two systems with a 
varying sized area void of nodes (a x a), centred in the 
simulation scenario.  Terminode is again outperformed by a 
significant margin. 
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Figure 6: Tolerance of voids (speed=0) 

VI. CONCLUSION 
In this paper we described a quorum system that was fault and 
mobility tolerant for acting as location servers in ad-hoc 
networks.  Our system significantly outperformed the 
terminode home region approach under all the scenarios 
tested. 
 
There are many applications other than location servers to 
which this technique could be applied, with only imagination 
being a limitation.  One idea could be a wiki-based ad hoc 
network whereby everyone can store and modify information.  
Another would be the storage of topographical information to 
aid routing around the network topology where greedy 
forwarding fails, or where avoidance of traffic hotspots is 
desirable. 
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