
Computer Science at Kent

Algorithmic Debugging and Trusted
Functions

Yong Luo and Olaf Chitil

Technical Report No. 10 - 07
August 2007

Copyright c© 2007 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Algorithmic Debugging and Trusted Functions

Yong Luo and Olaf Chitil

Computing Laboratory, University of Kent

Abstract As the name states, trusted functions do not have bugs. It is
up to user to specify which function is trusted. Commonly used functions
in standard library are normally trusted. In the process of algorithmic
debugging, we search for faulty nodes to locate bugs. Since a trusted
function cannot be a faulty node, there is no point to keep trusted func-
tions in Evaluation Dependency Trees (EDT) for algorithmic debugging.
In this report, we create smaller tree structures by removing trusted func-
tions. There are two di�erent ways to achieve this: generating a smaller
tree structure directly from the original trace; or creating a smaller trace
�rst and then from which generating a smaller tree structure.

1 De�nition

By �a trusted function�, we mean that the de�nition of the function in a
program is correct. We trust that there is nothing wrong about the code
of the function. For example, we may trust that the function map in the
standard Haskell library is correctly de�ned.

Since we have high-order functions such as map, the concept of �trusted
function� could be a little confusing. For a �rst-order function f , if f is
trusted then any equation of the form

f v1......vn = u

must be correct in terms of intentional semantics. However, if f is a high-
order function, even if it is trusted, the equation may not be correct. For
example,

map g [a] = [b]

may not be correct because the de�nition of g may be wrong.

2 EDTs from original ARTs

2.1 Original ART

In this draft, we shall use the full ART as de�ned in our TFP paper [1].
The ART has enough information for general purposes. We shall only
remove trusted functions from EDT.

2.2 New EDT

The de�nition of children is the same as before.
Now, let us de�ne a concept called �untrusted children�. The EDT has

untrusted functions only.

• If n is a child of m, and head(n) is not trusted, then n is an untrusted
child of m.

• If n is a child of m, and head(n) is trusted, then all untrusted children
of n are also untrusted children of m.

2.3 Properties

There are two properties:

1. If m is a node in an old EDT, and head(m) is trusted function, then
m cannot be a faulty node. (Need the proof of correctness of the old
EDT.)

2. A faulty node in the new EDT is also a faulty node in the old one.
(Need property 1 to prove this.) Since we have proved the correctness
of the old EDT, this proves the correctness of the new one.

Note that a faulty node in the old EDT is not necessarily a faulty node
in the new one. The following example shows the point. The root node
main = 0 is a faulty node in the old EDT, but it is not in the new EDT.

main :: Int

main = f 5 -- should be: main = f 5 + 1

f :: Int -> Int

f x = g x - h x -- f is trusted.

g :: Int -> Int

g x = x -- should be: g x = x + x

h :: Int -> Int

h x = x -- should be: h x = x + x

3 Smaller ARTs and EDTs

We build a smaller ART in order to get a smaller EDT by omitting the
trusted functions in the ART.

3

3.1 Smaller ARTs

De�nition 1. (Partial and Full application) An application f a1 ... an

is a full application if the arity of f is n, otherwise it is a partial applica-

tion.

Remark 1. We shall only compute nodes which are full applications. With
this restriction, we don't need to ask questions like f c = g in an EDT.
It seems a lot easier to deal with trusted functions with this restriction.
Moreover, the concept of full application is also useful for replacing un-
evaluated parts in an ART since we only want to replace unevaluated
nodes which are full applications.

An example.

f x = c1

g y = c2

h x = c3

i c1 x = h x

main = i (f a) (g b)

The original graph is the following. (We assume the nodes t etc are
full applications)

main r

rf
ra

raf g

rar

c1

c2

i

f a

b

h

rff

rfarrfa

raa

rr

rrf

rfaf rfaa

c3

rrr

If i is trusted then the graph will be the following. The old node is
replaced by a new node)

4

main

ra

raf g

rar

c1

c2

f a

b

h

rfarrfa

raa

rf

rfaf rfaa

c3

rrr

If i and f are trusted then the graph will be

main

ra

raf g

rar

c1

c2

a

b

h

rfa

raa

rf

rfaa

c3

rrr

Remark 2. The new graphs look disconnected but we can still �gure out
the parent edges by the names of nodes.

The smaller ARTs are su�cient for algorithmic debugging. One prob-
lem is that the smaller ARTs are not suitable for other purposes because
a lot of information was lost.

The disconnected nodes without computation can also be removed.

5

main

ra

raf g

rarc2

b

h

raa

rf
c3

rrr

3.2 Smaller EDTs

The de�nitions of children and EDT are the same as those in TFP paper
[1].

Trusted constants

In practice, a trusted constant is often too large to display. In the de�nition
of �most evaluated form�, we may just keep the name of the constant. For
example,

e = a_huge_term

f x c = c′

main = f e c

where e is trusted.

4 Another way for smaller ARTs and EDTs

The node labels (eg rr and rrr) do not change, but the de�nitions of mef
and children are di�erent.

An example.

f x = c1

g y = c2

h x = c3

i c1 x = h x

main = i (f a) (g b)

The original graph.

6

main r

rf
ra

raf g

rar

c1

c2

i

f a

b

h

rff

rfarrfa

raa

rr

rrf

rfaf rfaa

c3

rrr

If i is trusted then the graph will be

main

ra

raf g

rar

c1

c2

f a

b

h

rfarrfa

raa

rr

rrf

rfaf rfaa

c3

rrr

If i and f are trusted then the graph will be

7

main

ra

raf g

rar

c1

c2

a

b

h

rfar

raa

rr

rrf

rfaa

c3

rrr

The new de�nition of �most evaluated form�, mef .

mef (m) = meft(mr...r)

The new de�nition of �children�.

children(m) = {n | parent(n) = m and nr...r ∈ dom(G)}

The disconnected nodes without computation can also be removed.
main is not keep in the graph.

main

ra

raf g

rarc2

b

h

raa

rr

rrf
c3

rrr

References

1. Y. Luo and O. Chitil. Proving the correctness of algorithmic debugging for func-
tional programs. In Proceedings of the seventh symposium on Trends in Functional

Programming, TFP, 2006.

8

