
Computer Siene at Kent

Algorithmi Debugging with Cyli Traesof Lazy Funtional Programs

Yong Luo and Olaf Chitil
Tehnial Report No. 9 - 07August 2007
Copyright © 2007 University of KentPublished by the Computing Laboratory,University of Kent, Canterbury, Kent, CT2 7NF, UK

Algorithmi Debugging with Cyli Traes ofLazy Funtional Programs
Yong Luo and Olaf ChitilComputing Laboratory, University of Kent

Abstrat We have proved the orretness of algorithmi debugging forfuntional programs if the traes are ayli [3℄. For yli traes, how-ever, does algorithmi debugging still work? There does not exist a om-mon understanding of how to debug yli traes in funtional program-ming ommunities for a long time. In this paper we give two small ex-amples to demonstrate that it is extremely di�ult to �nd a generialgorithmi debugging sheme for yli traes. We onjeture that it isimpossible to have a generi sheme for yli traes beause the exam-ples are very small and the hoies of reasonable debugging trees are verylimited. We also present ayli traes in whih onstants are shared un-less shared onstants result in a yle. The normal algorithmi debuggingsheme works �ne for ayli traes and the proof is very similar to ourprevious paper [3℄.
1 IntrodutionTraing for funtional programs based on graph rewriting is a proess thatreords information about omputations. The trae an be viewed in variousways. The most ommon need for traing is debugging. Traditional debuggingtehniques are not well suited for delarative programming languages suh asHaskell, beause it is di�ult to understand how programs exeute (or theirproedural meaning). In fat, funtional programmers want to ignore low-leveloperational details, in partiular the evaluation order, but take advantage ofproperties suh as expliit data �ow and absene of side e�ets. Algorithmidebugging (also alled delarative debugging) has been developed for logi andfuntional programming languages [8,6,7℄.In this paper a trae is an augmented redex trail (ART) whih is a ompatbut detailed representation of omputations; it diretly relates eah redex with itsredut. The ART does not overwrite a redex with its redut, but adds the redutinto the graph. The existing graph will never be modi�ed. A detailed examplean be found in our previous paper [2℄. The ART has no information about theorder of omputation beause this information is irrelevant. We formulate andprove properties without referene to any omputation strategy. This observationagrees with our idea that funtional programmers abstrat from time.Algorithmi debugging an be thought of as searhing an debugging tree fora fault in a program. One need to answer several questions aording to the

intended semantis in algorithmi debugging sheme [4℄. An evaluation depen-deny tree (EDT) is for algorithmi debugging. If the evaluation of a node inan EDT is not intended then the node is erroneous. All the branhes of a nodeare the hildren of the node. If a node in an EDT is erroneous but has no erro-neous hildren, then this node is alled a faulty node. The evaluated funtion ata faulty node should be a faulty in a program. For example, the double negationfuntion is mistakingly de�ned as
doubleneg x = id (not x)(the right-hand side should be not (not x)). The ART and EDT for a startingterm main = doubleneg (not True) are in Figure 1 and 2.

doubleneg

Truenot

False
id

not

True

main

Figure 1. The ART for the Introdution Setion
where the dashed lines represent one-step omputations.

doubleneg False = True

main = True

not True = False

yes

no

no

yes

yes

faulty node

id True = Truenot False = True

Figure 2. The EDT for the Introdution Setion

3

We have formally presented the ART and EDT and proved important prop-erties, in partiular, the orretness of algorithmi debugging [3℄. The ART isayli. It has sharing (i.e. the arguments of a funtion an be shared) but on-stants are not shared.
2 ProblemIf we want to share onstants there may be yles in an ART. Sharing onstantsitself does not make muh trouble for algorithmi debugging if there is no ylein the ART. However, when there are yles in the ART algorithmi debuggingbeomes extremely di�ult.
First ounter exampleThe following program has one mistake, i.e. the de�nition of a is faulty.main :: Intmain = h ah :: (Int, Int) -> Inth (x, y) = x + ya :: (Int, Int)a = f (g a) 1 -- should be: a = f (g a) 2f :: Int -> Int -> (Int, Int)f x 1 = (x, 3)f x 2 = (x, 5)g :: (Int, Int) -> Intg (x, y) = snd a + 4The intended semantis:a = f (g a) 2 = (9, 5)g (x, y) = snd a + 4 = 9main = h a = 14The yli ART for the �rst ounter example is in Figure 3. One simple hoieof EDT is in Figure 4.Now, there is a problem. We know that the de�nition of a is faulty, but fromthe EDT in Figure 4 the faulty de�nition is the funtion g.4

main

h

a

+

10

f

g 4

3
1

(,)

+

snd

7

Figure 3. The yli ART for the �rst ounter example

g (7, 3) = 7

a = (7, 3)h (7, 3) = 10

main = 10 no

yes

yes
faulty node

yes
7 + 3 = 10 f (7, 1) = (7, 3)

snd (7, 3) = 33 + 4 = 7

no

yesyes

no

Figure 4. An EDT for the �rst ounter example
Seond ounter exampleThe intention of the following program is to demonstrate a blak-hole problem,but it has one mistake, i.e. the de�nition of h is not strit enough.main = f af C = C'a = g (h a)g C'' = Ch x = C'' -- should be: h C = C''--where C, C' and C'' are onstrutors.The yli ART and one simple EDT for the seond ounter example are inFigure 5 and 6. 5

C’

f

a

g

C

C’’

h

main

Figure 5. The yli ART for the seond ounter example
f C = C’ a = C

g C’’ = C h C = C’’

no

yes no

yesyes

main = C’

Figure 6. An EDT for the seond ounter example
The answers to the equations are the following.main = C' No, should not have any result at allf C = C' Yesa=C No, should not have any result at allg C� = C Yesh C = C� Yes, intended semantis.
There is also a problem here. We know that the de�nition of h is faulty, butfrom the EDT in Figure 6 the faulty de�nition is the funtion a.These two examples are very small, and the hoies of reasonable debuggingtrees are very limited. We annot think of any workable and generi debug-ging trees for these two examples. So we onjeture that there is not a generialgorithmi debugging sheme for yli traes.6

3 A proposed solutionSine yles are killers, an immediate solution is that we only generate ayliARTs. On the other hand we want onstants to be shared. So we share onstantsas long as there is no yle in the ART. We use indiretions pointing to sharedonstants. Indiretions help us to have a easier naming sheme to deide om-putation dependenies, i.e. the parent nodes and their hildren. The on�ueneproperty still hold in the sense that di�erent evaluation orders do not yield dif-ferent ARTs. We give one more example in the paper. The formal details andproofs an be established as those in our previous paper [3℄ beause the esseneis the same, i.e. ARTs are ayli. We omit the formal presentation here.Example 3 The program is the following.main = f a a bf (C x) (C (C y)) z = C'a = bb = C a--where C and C' are onstrutors.The ayli ART and EDT for Example 3 are in Figure 7 and 8.
main

f
a

b

C a

C’

C

b

a

Figure 7. The ayli ART for Example 3
The onstants a and b in the example are shared but not always shared.If sharing a onstant results in a yle then we will start a new node for theonstant. Otherwise it will be shared.Note that the question �b = C (C a)� that omes from the same node in theART (see Figure 7) is one of the hildren of �main = C�' and the hild of �a =C (C a)� (see Figure 8). So, one question that omes from the same plae ouldappear more than one in an EDT beause of onstant sharing. In general, suhrepeated questions in an EDT annot be removed, otherwise we may end uploating a wrong faulty node. But repeated questions only need to be answeredone in pratie. We an also use a graph to represent the EDT (see Figure 9).7

f (C (C a)) (C (C a)) (C (C a)) = C’ b = C (C a)a = C (C a)

b = C (C a)

main = C’

b = C a

a = C a

a = C a b = C a

Figure 8. The EDT for Example 3
f (C (C a)) (C (C a)) (C (C a)) = C’ a = C (C a)

b = C (C a)

main = C’

b = C a

a = C a

Figure 9. A graph representation of the EDT for Example 3
Now, we give ayli ARTs and new EDTs for the two ounter examples(see Figure 10 - 14). The ayli ARTs are not as e�ient as the yli onesbeause there are more omputation in the ayli ARTs. But the new EDTsderived from the ayli ARTs an orretly loate the faulty de�nitions in lazyfuntional programs.

8

main

h

a

+

10

f

g 4

3
1

(,)

+

snd

a

a

f

g g

f

a a

331 1

(,)(,)

7

Figure 10. The ayli ART for the �rst ounter example
h (7, 3) = 10

main = 10 no

yes

yes

yes
7 + 3 = 10 f (7, 1) = (7, 3)

3 + 4 = 7

nog (g a, 3) = 7 a = (g a, 3)

snd (g a, 3) = 3 a = (g a, 3) f (g a) 1 = (g a, 3)

f (g a) 1 = (g a, 3)

a = (7, 3)

yes yes

yes

yes

faulty node

faulty node

no

no

no

Figure 11. New EDT for the �rst ounter example
If we replae the unevaluated parts by _s, the questions may beome learer.

9

h (7, 3) = 10

main = 10 no

yes

yes

yes
7 + 3 = 10 f (7, 1) = (7, 3)

3 + 4 = 7

nog (_, 3) = 7 a = (_, 3)

snd (_, 3) = 3 a = (_, 3) f _ 1 = (_, 3)

f _ 1 = (_, 3)

a = (7, 3)

yes yes

yes

yes

faulty node

faulty node

no

no

no

Figure 12. New EDT for the �rst ounter example
C’

f

a

g

C

C’’

h

main

a

Figure 13. The ayli ART for the seond ounter example
f C = C’ a = C

g C’’ = C h _ = C’’

no

yes no

yes

main = C’

no

Figure 14. New EDT for the seond ounter example
Related WorkIn some systems suh as Freja and Hat, yles are treated as blak boxes. Everyyle (or blak box) may have several funtion de�nitions. The debuggers an10

tell whether there is a bug inside a blak box, but annot tell whih funtion inthat box is faulty.In Nilsson's thesis [5℄, he demonstrated how to debug yli Freja programs.However, the urrent debugging tool annot orretly debug the ounter ex-amples in this paper. We had extensive disussion about the issue. I was toldthat Freja ould loate the bug if the mutually reursive funtions were loallyde�ned. But I have not fully understood this laim.The idea of redex trail is developed and the omputation builds its owntrial as redution proeeds [9℄. The trae in Hat is reorded in a �le ratherthan in memory [10℄. Hat integrates several viewing methods suh as FuntionalObservations, Redution Trails and Algorithmi debugging.Naish presents a very abstrat and general sheme for algorithmi debug-ging [4℄. The sheme represents a omputation as a tree and relies on a wayof determining the orretness of a subomputation represented by a subtree.In Nilsson's thesis [5℄, a basis for algorithmi debugging of lazy funtional pro-grams is developed in the form of EDT whih hides operational details. TheEDT is onstruted e�iently in the ontext of implementation based on graphredution. Caballero et al formalise both the delarative and the operationalsemantis of programs in a simple language whih ombines the expressivenessof pure Prolog and a signi�ant subset of Haskell, and provide �rm theoretialfoundations for the algorithmi debugging of wrong answers in lazy funtionallogi programming [1℄. However, the starting point of the approah is an oper-ational semantis (i.e. a goal solving alulus) that is high-level and far froma real e�ient implementation. For example, there is no sharing of repliatedterms. In ontrast we use the ART as base, whih is a model of trae used inthe Hat system. Important properties of the ART have also been proved [2℄.
Referenes1. Rafael Caballero, Franiso J. López-Fraguas, and Mario Rodríguez-Artalejo. The-oretial foundations for the delarative debugging of lazy funtional logi programs.In Herbert Kuhen and Kazunori Ueda, editors, Funtional and Logi Program-ming, 5th International Symposium, FLOPS 2001, Tokyo, Japan, Marh 7-9, 2001,Proeedings, LNCS 2024, pages 170�184. Springer, 2001.2. O. Chitil and Y. Luo. Towards a theory of traing for funtional programs basedon graph rewriting. In Proeedings of the third international workshop on TermGraph Rewriting, Termgraph, volume 7, 2006.3. Y. Luo and O. Chitil. Proving the orretness of algorithmi debugging for fun-tional programs. In Proeedings of the seventh symposium on Trends in FuntionalProgramming, TFP, 2006.4. Lee Naish. A delarative debugging sheme. Journal of Funtional and LogiProgramming, 1997(3), 1997.5. Henrik Nilsson. A delarative approah to debugging for lazy funtional languages.Lientiate Thesis No. 450, Department of Computer and Information Siene,Linköping University, S-581 83, Linköping, Sweden, September 1994.6. Henrik Nilsson. Delarative Debugging for Lazy Funtional Languages. PhD thesis,Linköping, Sweden, May 1998. 11

7. B. Pope and Lee Naish. Pratial aspets of delarative debugging in Haskell-98. In Fifth ACM SIGPLAN Conferene on Priniples and Pratie of DelarativeProgramming, pages 230�240, 2003.8. E. Y. Shapiro. Algorithmi Program Debugging. MIT Press, 1983.9. Jan Sparud and Colin Runiman. Traing lazy funtional omputations using redextrails. In H. Glaser, P. Hartel, and H. Kuhen, editors, Pro. 9th Intl. Symposiumon Programming Languages, Implementations, Logis and Programs (PLILP'97),pages 291�308. Springer LNCS Vol. 1292, September 1997.10. Malolm Wallae, Olaf Chitil, Thorsten Brehm, and Colin Runiman. Multiple-view traing for Haskell: a new Hat. In Preliminary Proeedings of the 2001 ACMSIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utreht, 2001. Finalproeedings to appear in ENTCS 59(2).

12

