
Computer Science at Kent

Algorithmic Debugging for Locally
De�ned Functions

Yong Luo and Olaf Chitil

Technical Report No. 8 - 07
August 2007

Copyright c© 2007 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Algorithmic Debugging for Locally De�ned

Functions

Yong Luo and Olaf Chitil

Computing Laboratory, University of Kent

Abstract The purpose of the document is to prove the correctness of

Algorithmic Debugging where the traces for local functions are generated

in a new way. The processes of generating computation graphs follow

exactly what we might do by hand. Therefore, we can be con�dent that

the graphs are correct. We do not need to justify the graphs by comparing

λ-lifted programs.

1 Basic De�nitions

In this section we give some basic de�nitions.

De�nition 1. (Nodes, Atoms)

• A node is a sequence of letters r, f and a, i.e. {r, f, a}∗.
• Atoms:

1. a constructor is an atom;
2. a function symbol is an atom;
3. a node combined with a function symbol is an atom. For example,

m.f is an atom where m is a node and f is a function symbol.

Notation: In the future, we shall say that g is a function if g is an atom
but not a constructor.

De�nition 2. (Terms, Patterns, Rewriting rule and Program)

• Terms:

1. an atom is a term;
2. a node is a term;
3. a variable is a term;
4. (Application) MN is a term if M and N are terms.

• Patterns:

1. a variable is a pattern;
2. cp1...pn is a pattern if c is a constructor and p1,..., pn are patterns,

and the arity of c is n.

• A simple rewriting rule is of the form f p1...pn = R where f is a
function and p1,..., pn (n ≥ 0) are patterns and R is a term.

• A rewriting rule is in one of two forms:

1. (top-level functions without local functions) a simple rewriting rule.
2. (top-level functions with local functions) the form

f p1...pn = R
where g1 q11 ...qm1 = R1

......
gk q1k

...qmk
= Rk

where f p1...pn = R and gj q1j ...qmj = Rj are simple rewriting
rules. g1, ..., gk are the local functions of f .

• A program is a �nite set of rewriting rules.

If a simple rewriting rule is of the form f = R we call it a constant
rewriting rule and f is a constant.

De�nition 3. (Node expression and Computation graph)

• A node expression is either

· an atom, or
· a node, or
· an application of two nodes, which is of the form m ◦ n.

• A computation graph is a set of pairs which are of the form (n, e),
where n is a node and e is a node expression.

Notation: dom(G) denotes the set of nodes in a computation graph G.

2 Pattern matching

The pattern matching algorithm for a graph has two di�erent results,
either a set of substitutions or �doesn't match�.

• Let G be a computation graph, and m ∈ dom(G). The �nal node in a
sequence of reductions starting at m, lastG(m):

lastG(m) =

lastG(mr) if mr ∈ dom(G)
lastG(n) if (m,n) ∈ G and n is a node
m otherwise

The purpose of this function is to �nd out the most evaluated point
for m.

3

• Let G be a computation graph, and m ∈ dom(G). The head of the
term at m, headG(m):

headG(m) =

headG(lastG(i)) if (m, i ◦ j) ∈ G
a if (m,a) ∈ G and a is an atom
unde�ned otherwise

• Let G be a computation graph, and m ∈ dom(G). The arguments of
the function at m, argsG(m), is de�ned as follows.

argsG(m) =

{
〈argsG(last(G, i)), j〉 if (m, i ◦ j) ∈ G
〈〉 otherwise

Note that the arguments of a function are a sequence of nodes.

Now, we de�ne two functions match1 and match2 which are mutually
recursive. The arguments of match1 are a node and a pattern. The argu-
ments of match2 are a sequence of nodes and a sequence of patterns.

• match1:

match1G(m,x) = [m/x] where x is a variable
match1G(m, cq1...qk)

=

{
match2G(args(G, m′), 〈q1, ..., qk〉) if headG(m′) = c
does not match otherwise

where m′ = lastG(m).
• match2:

match2G(〈m1, ...,mn〉, 〈p1, ..., pn〉)
= match1G(m1, p1) ∪ ... ∪match1G(mn, pn)

where ∪ is the union operator. Notice that if n = 0 then

match2G(〈〉, 〈〉) = []

If any mi does not match pi, 〈m1, ...,mn〉 does not match 〈p1, ..., pn〉.
If the length of two sequences are not the same, they do not match.
For example, 〈m1, ...,ms〉 does not match 〈p1, ..., ps′〉 if s 6= s′.

• We say that G at m matches the left-hand side fp1...pn of a rewriting
rule with [m1/x1, ...,mk/xk] if headG(m) = f and

match2G(argsG(m), 〈p1, ..., pn〉) = [m1/x1, ...,mk/xk]

In the substitution form [m/x], m is not a term but a node. The de�nition
of pattern matching and its result substitution sequence will become im-
portant for making computation order irrelevant when we generate graphs.

4

3 Renaming and Program for local functions

Suppose that G at m matches the left-hand side of a rewriting rule with
[m1/x1, ...,ml/xl], and the rewriting rule has local functions as follows.

f p1...pn = R
where g1 q11 ...qr1 = R1

......
gk q1k

...qrk
= Rk

We generate a set of new simple rewriting rules, Lm, called local func-
tions at m. All the local functions g1, ..., gk in the local rewriting rules
are renamed to m.g1, ...,m.gl, and all the free variable in R1, ..., Rk are
substituted by [m1/x1, ...,ml/xl]. Then, Lm looks like the following:

m.g1 q11 ...qr1 = R′
1

... ...

m.gk q1k
...qrk

= R′
k

4 ART

The function graph is de�ned as follows.

De�nition 4. (graph) Let G be a computation graph, and m ∈ dom(G).
The function graph takes two arguments. The �rst argument is a node
and the second is a term.

graph(n, e) = {(n, e)} where e is an atom or a node

graph(n, MN) =

{(n, M ◦ N)} if M and N are nodes

{(n, M ◦ na)} ∪ graph(na, N) if only M is a node

{(n, nf ◦ N)} ∪ graph(nf, M) if only N is a node

{(n, nf ◦ na)} ∪ graph(nf, M) otherwise

∪graph(na, N)

Generate an ART

• For a starting term M , the starting ART is graph(r,M). Note that
the start term has no nodes inside.

• (ART rule 1) If an ART G at m matches the left-hand side of a sim-
ple rewriting rule fp1...pn = R in the program L with [m1/x1, ...,ml/xl],
then we generate a new ART.

G ∪ graph(mr, R[m1/x1, ...,ml/xl])

5

• (ART rule 2) If an ART G at m matches the left-hand side of
a rewriting rule in the program L with [m1/x1, ...,ml/xl], and the
rewriting rule has local functions as follows.

f p1...pn = R
where g1 q11 ...qr1 = R1

......
gk q1k

...qrk
= Rk

Then we generate a set of new rewriting rules Lm and a new ART.

G ∪ graph(mr, R′[m1/x1, ...,ml/xl])

where R′ is obtained from R by renaming all the local functions in R.
• (ART rule 3) If an ART G at m matches the left-hand side of
a simple rewriting rule (s.f)p1...pn = R in the program Ls with
[m1/x1, ...,mk/xk], then we generate a new ART.

G ∪ graph(mr, R[m1/x1, ...,mk/xk])

• An ART is generated from the starting ART and by applying the
ART rules repeatedly. Note that the order in which nodes are chosen
to compute has no in�uence in the �nal graph.

The following simple properties of an ART will be used later.

Lemma 1. Let G be an ART.

• If m ∈ dom(G) then there is at least one letter r in m.
• If mr ∈ dom(G) then m ∈ dom(G) or m = ε where ε is the empty
sequence.

• If mr ∈ dom(G) then (m,n) 6∈ G for any node n.

Proof. The �rst and second are trivial. The third is proved by contra-
diction. If (m,n) ∈ G then headG(m) is unde�ned. There cannot be a
computation at m, i.e. mr 6∈ G.

5 EDT

Generating an Evaluation Dependency Tree

De�nition 5. (Parent edges)

parent(nf) = parent(n)
parent(na) = parent(n)
parent(nr) = n

6

Note that parent(r) = ε where ε is the empty sequence.

De�nition 6. (children and tree) Let G be an ART, and mr a node in
G (i.e. mr ∈ dom(G)). children and tree are de�ned as follows.

• children:

children(m) = {n | nr ∈ dom(G) and parentG(n) = m}

• tree:

tree(m) = {(m,n1), ..., (m,nk)} ∪ tree(n1) ∪ ... ∪ tree(nk)

where {n1, ..., nk} = children(m)

Usually, a single node of a computation graph represents many di�erent
terms. We are particularly interested in two kinds of terms of nodes, the
most evaluated form and the redex.

De�nition 7. (Most Evaluated Form) Let G be an ART. The most
evaluated form of a node m is a term and is de�ned as follows.

mef (m) =

{
mef (mr) if mr ∈ dom(G)
meft(m) otherwise

where

meft(m) =

a (m,a) ∈ G and a is an atom
mef (n) (m,n) ∈ G and n is a node
mef (i) mef (j) (m, i ◦ j) ∈ G

One may also use the de�nition of lastG(m) to de�ne the most evaluated
form.

De�nition 8. (redex) Let G be an ART, and mr a node in G (i.e. mr ∈
dom(G)). redex is de�ned as follows.

• redex(ε) = main

• redex(m) =

{
mef (i) mef (j) if (m, i ◦ j) ∈ G
a if (m,a) ∈ G and a is an atom

7

Generate an EDT

Now, we de�ne the evaluation dependency tree of a graph.

De�nition 9. (Evaluation Dependency Tree) Let G be an ART. The
evaluation dependency tree (EDT) of G consists of the following two parts.

1. The set tree(ε);
2. The set of equations; for any node m in tree(ε) there is a corresponding

equation. If headG(m) is a top-level function, the the equation at m is
of the form

redex(m) = mef(m)

If headG(m) is a local function of the form n.f , then the equation at
m is of the form

redex(m) = mef(m)
within redex(n)

6 Proofs

Some of the de�nitions and proofs are as the same before but some are
new. The old proofs still need to be checked again because the basic de�-
nitions such as rewriting rules and EDT are changed.

The following theorems suggest that the EDT of an ART covers all
the computation in the ART. Although two evaluations may rely on the
same evaluation in an ART, every evaluation for algorithmic debugging
only needs to be examined once.

Lemma 2. Let G be an ART, and T its EDT. If there is a sequence of
nodes m1,m2, ...,mk such that

m ∈ children(m1),m1 ∈ children(m2), ...,
mk−1 ∈ children(mk),mk ∈ children(ε)

then m ∈ dom(T).

Proof. By the de�nition of tree(ε).

Lemma 3. Let G be an ART. If mr ∈ dom(G), then m ≡ ε or there is a
sequence of nodes m1,m2, ...,mk such that

m ∈ children(m1),m1 ∈ children(m2), ...,
mk−1 ∈ children(mk),mk ∈ children(ε)

8

Proof. By induction on the size of m, and by Lemma 1.

Since mr ∈ dom(G), by Lemma 1, we only need to consider the fol-
lowing two cases.

• If m = ε, the statement is obviously true.

• If m ∈ dom(G), by Lemma 1, there is at least one letter r in m. We
consider the following two sub-cases.

· m = rn, where there is no r in n. Since mr ∈ dom(G) and parent(rn) =
ε, we have rn ∈ children(ε).

· m ≡ m1rn, where there is no r in n. Since mr ∈ dom(G) and
parent(m) = m1, we have m ∈ children(m1). Now, because m1 is
a sub-sequence of m, by induction hypothesis, there is a sequence
of index numbers m2, ...,mk such that

m1 ∈ children(m2), ...,mk−1 ∈ children(mk),mk ∈ children(ε)

So, there is a sequence of index numbers m1,m2, ...,mk such that

m ∈ children(m1),m1 ∈ children(m2), ...,mk ∈ children(ε)

Theorem 1. Let G be an ART, and T its EDT.

If mr ∈ dom(G), then m ∈ dom(T). In other word, T covers all the
computations in G.

Proof. By Lemma 3 and 2.

Lemma 4. Let G be an ART, and T its EDT.

If (m,n) ∈ T , then n ∈ children(m) and parent(n) ≡ m.

Proof. By the de�nition of tree.

Theorem 2. Let G be an ART, and T its EDT.

If (m,n) ∈ T and m 6≡ k, then (k, n) 6∈ T .

Proof. By Lemma 4.

The above theorem suggests that every evaluation for algorithmic de-
bugging only needs to be examined once although two evaluations may rely
on the same evaluation. For example, g is de�ned as g x = (not x, not x, not x).
When we compute g (not True), the equation not True = False only ap-
pears once in the EDT.

9

6.1 Semantical Equality

Notations: M 'I N means that M is equal to N with respect to the
semantics of the programmer's intention. If the evaluation M = N of
a node in an EDT is in the programmer's intended semantics, then
M 'I N . Otherwise, M 6'I N i.e. the node is erroneous.

Remark 1. For a local function, the evaluation of a node in an EDT is of
the form

(m.g)b1, ..., bn = N
within fe1, ...ek

The �within� part helps the programmer to decide whether the evaluation
is intended or not, but it will not be used in proofs. We keep the pre�x m
in order to make semantics of local functions clear. If both m and �within�
are removed, we might have gb1, ..., bn = N and gb1, ..., bn = N ′ where N
and N ′ are di�erent. In practice, one may chose di�erent ways to help the
programmer to answer such questions.

6.2 Equivalent rewriting rules

Two kind of rewriting rules, top-level and local-level, are used during the
processes of building trace. For a top level rewriting rule, there is no node
in the right-hand side. However, for a local rewriting rule of the form
(m.f)p1...pn = R, it is possible that there are nodes in R. When the
computation stops and we start to analysis the properties, we regard that
the rewriting rule is equivalent to (m.f)p1...pn = R′ where R′ is obtained
from R by replacing all the nodes by their most evaluated forms. For
example, the nodes in R are m1, ...,mk, then

R′ ≡ R[mef(m1)/m1, ...,mef(mk)/mk]

For a top-level rewriting rule fp1...pn = R, if it used at node m and
there are local functions in R, we regard that the rewriting rule is equiv-
alent to fp1...pn = R′ where R′ is obtained from R by renaming all the
local functions in R.

6.3 Program faulty

De�nition 10. (Program faulty)

• For a simple rewriting rule fp1...pn = R without local functions, if
there exists a substitution σ such that (fp1...pn)σ 6'I Rσ, then we say
that the de�nition of the function f in the program is faulty.

10

• For a rewriting rule without local functions of the following form

f p1...pn = R
where g1 q11 ...qm1 = R1

......
gk q1k

...qmk
= Rk

If there exists a substitution σ such that (fp1...pn)σ 6'I (R within fp1...pn)σ,
then we say that the de�nition of the function f in the program is
faulty. If there exists σ and σ′ such that {(gi q1i ...qmi)σ

′ 6'I Riσ
′} within (fp1...pn)σ,

then we say that the de�nition of the local function gi within f is faulty.

6.4 Correctness of Algorithmic Debugging

The proofs are the same as before, but we should check them again because
the de�nition of program faulty is changed.

De�nition 11. If the following statement is true, then we say that algo-
rithmic debugging is correct.

• If the equation of a faulty node is fb1...bn = M , then the de�nition of
the function f in the program is faulty.

For a faulty node m, we have redex(m) 6'I mef (m). We shall �nd a term
N and prove redex(m) →P N 'I mef (m). In order to de�ne N , we need
other de�nitions.

De�nition 12. Let G be an ART and m a node in G. reduct(m) is de-
�ned as follows.

reduct(m) =

a if (m,a) ∈ G and a is an atom
mef (n) if (m,n) ∈ G and n is a node
reduct(mf) reduct(ma) if (m,mf ◦ma) ∈ G
reduct(mf) mef (j) if (m,mf ◦ j) ∈ G and j 6= ma

mef (i) reduct(ma) if (m, i ◦ma) ∈ G and i 6= mf

mef (i) mef (j) if (m, i ◦ j) ∈ G and i 6= mf and j 6= ma

reduct represents the result of a single-step computation. And we shall
prove redex(m) →P reduct(mr) 'I mef (m) for a faulty node m. Note
thatmef (m) = mef (mr) and so we want to prove reduct(mr) 'I mef (mr).
In order to prove this, we prove a more general result reduct(m) 'I

mef (m) for all m ∈ dom(G) (see Lemma 6 for the conditions).
We de�ne branch and the reduction principle depth in order to prove

this general result.

11

De�nition 13. (branch and branch′) We say that n is a branch node
of m, denoted as branch(n, m), if one of the following holds.

• branch(m,m);
• branch(nf,m) if branch(n, m);
• branch(na,m) if branch(n, m).

Let G be an ART.

branch′(m) = {n | nr ∈ dom(G) and branch(n, m)}

Note that branch′(m) is the set of all evaluated branch nodes of m.

Lemma 5. Let G be an ART.

• If n ∈ branch′(mf) or n ∈ branch′(ma) then n ∈ branch′(m).
• If mr ∈ dom(G) then children(m) = branch′(mr).

Proof. By the de�nitions of children and branch′.

De�nition 14. (depth) Let m be a node in an ART G.

depth(m) =

1 + max{depth(mf), if (m,mf ◦ma) ∈ G
depth(ma)}

1 + depth(mf) if (m,mf ◦ j) ∈ G and j 6= ma

1 + depth(ma) if (m, i ◦ma) ∈ G and i 6= mf

1 if (m, i ◦ j) ∈ G and i 6= mf and j 6= ma

0 otherwise

Lemma 6. Let G be an ART and m a node in G. If redex(n) 'I mef (n)
for all n ∈ branch′(m), then reduct(m) 'I mef (m).

Proof. By induction on depth(m).
When depth(m) = 0, we have (m, e) ∈ G where e is a node or an

atom.

• If e is a node, then mr ∈ G by Lemma 1. Then by the de�nitions
of reduct and mef , we have reduct(m) = mef (e) and mef (m) =
meft(m) = mef (e).

• If e is an atom, we have reduct(m) = e. Now, we consider the fol-
lowing two cases. If m ∈ branch′(m), then we have mr ∈ dom(G)
and mef (m) 'I redex(m) = e. If m 6∈ branch′(m), then we have
mr 6∈ dom(G) and mef (m) = meft(m) = e.

For the step cases, we proceed as follows.

12

• If m ∈ branch′(m), then we have mr ∈ dom(G) and redex(m) 'I

mef (m). And we need to prove redex(m) 'I reduct(m).
Let us consider only one case here. The other cases are similar. Suppose
(m,mf ◦ j) ∈ G and j 6= ma, then by the de�nitions we have

redex(m) = mef (mf) mef (j)
reduct(m) = reduct(mf) mef (j)

Since for any n ∈ branch′(mf), by Lemma 5, we have n ∈ branch′(m)
and hence redex(n) 'I mef (n). By the de�nition of depth, we also
have depth(mf) < depth(m). Now, by induction hypothesis, we have
reduct(mf) 'I mef (mf). And hence we have redex(m) 'I reduct(m).

• If m 6∈ branch′(m), then mr 6∈ dom(G).
Let us also consider only one case. The other cases are similar. Suppose
(m,mf ◦ j) ∈ G and j 6= ma, then by the de�nitions we have

mef (m) = mef (mf) mef (j)
reduct(m) = reduct(mf) mef (j)

The same arguments as above su�ce.

Corollary 1. Let G be an ART and mr a node in G (i.e. mr ∈ dom(G)).
If redex(n) 'I mef (n) for all n ∈ children(m), then reduct(mr) 'I

mef (m).

Proof. By Lemma 5 and 6.

The condition, redex(n) 'I mef (n) for all n ∈ children(m), basically
means that m does not have any erroneous child nodes.

Lemma 7. Let G be an ART and mr a node in G (i.e. mr ∈ dom(G)).
Then redex(m) →P reduct(mr).

Proof. Since there is a computation at the node m, we suppose G at node
m matches the left-hand side of the rewriting rule fp1...pn = R with
[m1/x1, ...,mk/xk]. We need to prove that there exists a substitution σ
such that redex(m) = (fp1...pn)σ and reduct(mr) = Rσ. In fact σ =
[mef (m1)/x1, ...,mef (mk)/xk].

Now, we need to prove that redex(m) = (fp1...pn)σ and reduct(mr) =
Rσ. For the �rst, we proceed by the de�nition of redex and pattern match-
ing. For the second, we proceed by the de�nition of reduct and graph.

Now, we come to the most important theorem, the correctness of algo-
rithmic debugging.

13

Theorem 3. (Correctness of Algorithmic Debugging) Let G be an
ART, T its EDT and m a faulty node in T . If the equation for the faulty
node m is fb1...bn = M , then the de�nition of f in the program is faulty.

Proof. By Lemma 7 and Corollary 1, we have redex(m) →P reduct(mr)
and reduct(mr) 'I mef (m). Since fb1...bn ≡ redex(m) 6'I mef (m) ≡
M , we have fb1...bn →P reduct(mr) and fb1...bn 6'I reduct(mr). The
computation from fb1...bn to reduct(mr) is a single step computation,
but fb1...bn is not semantically equal to reduct(mr). So the de�nition of
f in the program must be faulty.

14

