Computer Science at Kent

Algorithmic Debugging for Locally Defined Functions

Yong Luo and Olaf Chitil

Technical Report No. 8-07
August 2007

Copyright © 2007 University of Kent
Published by the Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK

Algorithmic Debugging for Locally Defined Functions

Yong Luo and Olaf Chitil
Computing Laboratory, University of Kent

Abstract

The purpose of the document is to prove the correctness of Algorithmic Debugging where the traces for local functions are generated in a new way. The processes of generating computation graphs follow exactly what we might do by hand. Therefore, we can be confident that the graphs are correct. We do not need to justify the graphs by comparing λ-lifted programs.

1 Basic Definitions

In this section we give some basic definitions.
Definition 1. (Nodes, Atoms)

- A node is a sequence of letters r, f and a, i.e. $\{\mathrm{r}, \mathrm{f}, \mathrm{a}\}^{*}$.
- Atoms:

1. a constructor is an atom;
2. a function symbol is an atom;
3. a node combined with a function symbol is an atom. For example, m. f is an atom where m is a node and f is a function symbol.

Notation: In the future, we shall say that g is a function if g is an atom but not a constructor.

Definition 2. (Terms, Patterns, Rewriting rule and Program)

- Terms:

1. an atom is a term;
2. a node is a term;
3. a variable is a term;
4. (Application) $M N$ is a term if M and N are terms.

- Patterns:

1. a variable is a pattern;
2. $c p_{1} \ldots p_{n}$ is a pattern if c is a constructor and p_{1}, \ldots, p_{n} are patterns, and the arity of c is n.

- A simple rewriting rule is of the form $f p_{1} \ldots p_{n}=R$ where f is a function and $p_{1}, \ldots, p_{n}(n \geq 0)$ are patterns and R is a term.
- A rewriting rule is in one of two forms:

1. (top-level functions without local functions) a simple rewriting rule.
2. (top-level functions with local functions) the form

$$
\begin{aligned}
& f p_{1} \ldots p_{n}=R \\
& \text { where } g_{1} q_{1_{1}} \ldots q_{m_{1}}=R_{1} \\
& \ldots \ldots . \\
& g_{k} q_{1_{k}} \ldots q_{m_{k}}=R_{k}
\end{aligned}
$$

where $f p_{1} \ldots p_{n}=R$ and $g_{j} q_{1_{j}} \ldots q_{m_{j}}=R_{j}$ are simple rewriting rules. g_{1}, \ldots, g_{k} are the local functions of f.

- A program is a finite set of rewriting rules.

If a simple rewriting rule is of the form $f=R$ we call it a constant rewriting rule and f is a constant.

Definition 3. (Node expression and Computation graph)

- A node expression is either
- an atom, or
- a node, or
- an application of two nodes, which is of the form $m \circ n$.
- A computation graph is a set of pairs which are of the form (n, e), where n is a node and e is a node expression.

Notation: $\operatorname{dom}(G)$ denotes the set of nodes in a computation graph G.

2 Pattern matching

The pattern matching algorithm for a graph has two different results, either a set of substitutions or "doesn't match".

- Let G be a computation graph, and $m \in \operatorname{dom}(G)$. The final node in a sequence of reductions starting at $m, \operatorname{last}_{G}(m)$:

$$
\operatorname{last}_{G}(m)= \begin{cases}\operatorname{last}_{G}(m \mathbf{r}) & \text { if } m \mathbf{r} \in \operatorname{dom}(G) \\ \operatorname{last}_{G}(n) & \text { if }(m, n) \in G \text { and } n \text { is a node } \\ m & \text { otherwise }\end{cases}
$$

The purpose of this function is to find out the most evaluated point for m.

- Let G be a computation graph, and $m \in \operatorname{dom}(G)$. The head of the term at $m, \operatorname{head}_{G}(m)$:

$$
\operatorname{head}_{G}(m)= \begin{cases}\operatorname{head}_{G}\left(\operatorname{last}_{G}(i)\right) & \text { if }(m, i \circ j) \in G \\ a & \text { if }(m, a) \in G \text { and } a \text { is an atom } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Let G be a computation graph, and $m \in \operatorname{dom}(G)$. The arguments of the function at $m, \operatorname{args}_{G}(m)$, is defined as follows.

$$
\operatorname{args}_{G}(m)= \begin{cases}\left\langle\operatorname{args}_{G}(\operatorname{last}(G, i)), j\right\rangle & \text { if }(m, i \circ j) \in G \\ \langle \rangle & \text { otherwise }\end{cases}
$$

Note that the arguments of a function are a sequence of nodes.
Now, we define two functions match $_{1}$ and match $_{2}$ which are mutually recursive. The arguments of match h_{1} are a node and a pattern. The arguments of match h_{2} are a sequence of nodes and a sequence of patterns.

- match ${ }_{1}$:

$$
\begin{aligned}
& \operatorname{match}_{1 G}(m, x)=[m / x] \text { where } x \text { is a variable } \\
& \text { match }_{1 G}\left(m, \operatorname{cq}_{1} \ldots q_{k}\right) \\
& = \begin{cases}\operatorname{match}_{2 G}\left(\operatorname{args}\left(G, m^{\prime}\right),\left\langle q_{1}, \ldots, q_{k}\right\rangle\right) & \text { if } \operatorname{head}_{G}\left(m^{\prime}\right)=c \\
\text { does not match } & \text { otherwise }\end{cases}
\end{aligned}
$$

where $m^{\prime}=$ last $_{G}(m)$.

- match ${ }_{2}$:

$$
\begin{aligned}
& \text { match }_{2 G}\left(\left\langle m_{1}, \ldots, m_{n}\right\rangle,\left\langle p_{1}, \ldots, p_{n}\right\rangle\right) \\
& =\operatorname{match}_{1 G}\left(m_{1}, p_{1}\right) \cup \ldots \cup \text { match }_{1 G}\left(m_{n}, p_{n}\right)
\end{aligned}
$$

where \cup is the union operator. Notice that if $n=0$ then

$$
\text { match }_{2 G}(\langle \rangle,\langle \rangle)=[]
$$

If any m_{i} does not match $p_{i},\left\langle m_{1}, \ldots, m_{n}\right\rangle$ does not match $\left\langle p_{1}, \ldots, p_{n}\right\rangle$. If the length of two sequences are not the same, they do not match. For example, $\left\langle m_{1}, \ldots, m_{s}\right\rangle$ does not match $\left\langle p_{1}, \ldots, p_{s^{\prime}}\right\rangle$ if $s \neq s^{\prime}$.

- We say that G at m matches the left-hand side $f p_{1} \ldots p_{n}$ of a rewriting rule with $\left[m_{1} / x_{1}, \ldots, m_{k} / x_{k}\right]$ if $\operatorname{head}_{G}(m)=f$ and

$$
\operatorname{match}_{2 G}\left(\operatorname{args}_{G}(m),\left\langle p_{1}, \ldots, p_{n}\right\rangle\right)=\left[m_{1} / x_{1}, \ldots, m_{k} / x_{k}\right]
$$

In the substitution form $[m / x], m$ is not a term but a node. The definition of pattern matching and its result substitution sequence will become important for making computation order irrelevant when we generate graphs.

3 Renaming and Program for local functions

Suppose that G at m matches the left-hand side of a rewriting rule with [$\left.m_{1} / x_{1}, \ldots, m_{l} / x_{l}\right]$, and the rewriting rule has local functions as follows.

$$
\begin{aligned}
& f p_{1} \ldots p_{n}=R \\
& \text { where } g_{1} q_{1_{1}} \ldots q_{r_{1}}=R_{1} \\
& \quad \ldots \ldots . \\
& \quad g_{k} q_{1_{k}} \ldots q_{r_{k}}=R_{k}
\end{aligned}
$$

We generate a set of new simple rewriting rules, L_{m}, called local functions at m. All the local functions g_{1}, \ldots, g_{k} in the local rewriting rules are renamed to $m . g_{1}, \ldots, m . g_{l}$, and all the free variable in R_{1}, \ldots, R_{k} are substituted by $\left[m_{1} / x_{1}, \ldots, m_{l} / x_{l}\right]$. Then, L_{m} looks like the following:

$$
\begin{gathered}
m \cdot g_{1} q_{1_{1}} \ldots q_{r_{1}}=R_{1}^{\prime} \\
\ldots \ldots \\
m . g_{k} q_{1_{k}} \ldots q_{r_{k}}=R_{k}^{\prime}
\end{gathered}
$$

4 ART

The function graph is defined as follows.
Definition 4. (graph) Let G be a computation graph, and $m \in \operatorname{dom}(G)$. The function graph takes two arguments. The first argument is a node and the second is a term.

$$
\begin{aligned}
\operatorname{graph}(n, e) & =\{(n, e)\} \quad \text { where e is an atom or a node } \\
\operatorname{graph}(n, M N) & = \begin{cases}\{(n, M \circ N)\} & \text { if } M \text { and } N \text { are nodes } \\
\{(n, M \circ n \mathbf{a})\} \cup \operatorname{graph}(n \mathbf{n}, N) & \text { if only } M \text { is a node } \\
\{(n, n f \circ N)\} \cup \operatorname{graph}(n f, M) & \text { if only } N \text { is a node } \\
\{(n, n f \circ n \mathbf{a})\} \cup \operatorname{graph}(n \mathrm{f}, M) & \text { otherwise } \\
\cup \operatorname{graph}(n a, N) & \end{cases}
\end{aligned}
$$

Generate an ART

- For a starting term M, the starting ART is $\operatorname{graph}(\mathrm{r}, M)$. Note that the start term has no nodes inside.
- (ART rule 1) If an ART G at m matches the left-hand side of a simple rewriting rule $f p_{1} \ldots p_{n}=R$ in the program L with $\left[m_{1} / x_{1}, \ldots, m_{l} / x_{l}\right]$, then we generate a new ART.

$$
G \cup \operatorname{graph}\left(m \mathrm{r}, R\left[m_{1} / x_{1}, \ldots, m_{l} / x_{l}\right]\right)
$$

- (ART rule 2) If an ART G at m matches the left-hand side of a rewriting rule in the program L with $\left[m_{1} / x_{1}, \ldots, m_{l} / x_{l}\right]$, and the rewriting rule has local functions as follows.

$$
\begin{aligned}
& f p_{1} \ldots p_{n}=R \\
& \text { where } g_{1} q_{1_{1} \ldots q_{r_{1}}}=R_{1} \\
& \quad \begin{array}{l}
\quad \ldots . . \\
\\
g_{k} q_{1_{k}} \ldots q_{r_{k}}
\end{array}=R_{k}
\end{aligned}
$$

Then we generate a set of new rewriting rules L_{m} and a new ART.

$$
G \cup \operatorname{graph}\left(m \mathbf{r}, R^{\prime}\left[m_{1} / x_{1}, \ldots, m_{l} / x_{l}\right]\right)
$$

where R^{\prime} is obtained from R by renaming all the local functions in R.

- (ART rule 3) If an ART G at m matches the left-hand side of a simple rewriting rule (s.f) $p_{1} \ldots p_{n}=R$ in the program L_{s} with [$m_{1} / x_{1}, \ldots, m_{k} / x_{k}$], then we generate a new ART.

$$
G \cup \operatorname{graph}\left(m \mathbf{r}, R\left[m_{1} / x_{1}, \ldots, m_{k} / x_{k}\right]\right)
$$

- An ART is generated from the starting ART and by applying the ART rules repeatedly. Note that the order in which nodes are chosen to compute has no influence in the final graph.

The following simple properties of an ART will be used later.
Lemma 1. Let G be an ART.

- If $m \in \operatorname{dom}(G)$ then there is at least one letter r in m.
- If $m \mathbf{r} \in \operatorname{dom}(G)$ then $m \in \operatorname{dom}(G)$ or $m=\varepsilon$ where ε is the empty sequence.
- If $m \mathrm{r} \in \operatorname{dom}(G)$ then $(m, n) \notin G$ for any node n.

Proof. The first and second are trivial. The third is proved by contradiction. If $(m, n) \in G$ then $\operatorname{head}_{G}(m)$ is undefined. There cannot be a computation at m, i.e. $m \mathrm{r} \notin G$.

5 EDT

Generating an Evaluation Dependency Tree
Definition 5. (Parent edges)

$$
\begin{aligned}
\operatorname{parent}(n \mathbf{f}) & =\operatorname{parent}(n) \\
\operatorname{parent}(n \mathbf{a}) & =\operatorname{parent}(n) \\
\operatorname{parent}(n \mathbf{r}) & =n
\end{aligned}
$$

Note that $\operatorname{parent}(r)=\varepsilon$ where ε is the empty sequence.
Definition 6. (children and tree) Let G be an ART, and mr a node in G (i.e. $m \mathrm{r} \in \operatorname{dom}(G)$). children and tree are defined as follows.

- children:

$$
\operatorname{children}(m)=\left\{n \mid n \mathbf{r} \in \operatorname{dom}(G) \text { and } \operatorname{parent}_{G}(n)=m\right\}
$$

- tree:

$$
\operatorname{tree}(m)=\left\{\left(m, n_{1}\right), \ldots,\left(m, n_{k}\right)\right\} \cup \operatorname{tree}\left(n_{1}\right) \cup \ldots \cup \operatorname{tree}\left(n_{k}\right)
$$

where $\left\{n_{1}, \ldots, n_{k}\right\}=\operatorname{children}(m)$
Usually, a single node of a computation graph represents many different terms. We are particularly interested in two kinds of terms of nodes, the most evaluated form and the redex.

Definition 7. (Most Evaluated Form) Let G be an ART. The most evaluated form of a node m is a term and is defined as follows.

$$
m e f(m)= \begin{cases}\operatorname{mef}(m \mathbf{r}) & \text { if } m \mathrm{r} \in \operatorname{dom}(G) \\ \operatorname{meft}(m) & \text { otherwise }\end{cases}
$$

where

$$
\operatorname{meft}(m)= \begin{cases}a & (m, a) \in G \text { and } a \text { is an atom } \\ \operatorname{mef}(n) & (m, n) \in G \text { and } n \text { is a node } \\ \operatorname{mef}(i) \operatorname{mef}(j)(m, i \circ j) \in G\end{cases}
$$

One may also use the definition of $\operatorname{last}_{G}(m)$ to define the most evaluated form.

Definition 8. (redex) Let G be an ART, and $m r$ a node in G (i.e. $m r \in$ $\operatorname{dom}(G))$. redex is defined as follows.

- $\operatorname{redex}(\varepsilon)=$ main
- $\operatorname{redex}(m)= \begin{cases}\operatorname{mef}(i) \operatorname{mef}(j) & \text { if }(m, i \circ j) \in G \\ a & \text { if }(m, a) \in G \text { and } a \text { is an atom }\end{cases}$

Generate an EDT

Now, we define the evaluation dependency tree of a graph.
Definition 9. (Evaluation Dependency Tree) Let G be an ART. The evaluation dependency tree (EDT) of G consists of the following two parts.

1. The set tree (ε);
2. The set of equations; for any node m in tree (ε) there is a corresponding equation. If head ${ }_{G}(m)$ is a top-level function, the the equation at m is of the form

$$
\operatorname{redex}(m)=\operatorname{mef}(m)
$$

If head ${ }_{G}(m)$ is a local function of the form n.f, then the equation at m is of the form

$$
\begin{gathered}
\text { redex }(m)=\operatorname{me} f(m) \\
\text { within redex }(n)
\end{gathered}
$$

6 Proofs

Some of the definitions and proofs are as the same before but some are new. The old proofs still need to be checked again because the basic definitions such as rewriting rules and EDT are changed.

The following theorems suggest that the EDT of an ART covers all the computation in the ART. Although two evaluations may rely on the same evaluation in an ART, every evaluation for algorithmic debugging only needs to be examined once.

Lemma 2. Let G be an $A R T$, and T its EDT. If there is a sequence of nodes $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
\begin{gathered}
m \in \operatorname{children}\left(m_{1}\right), m_{1} \in \operatorname{children}\left(m_{2}\right), \ldots, \\
m_{k-1} \in \operatorname{children}\left(m_{k}\right), m_{k} \in \operatorname{children}(\varepsilon)
\end{gathered}
$$

then $m \in \operatorname{dom}(T)$.
Proof. By the definition of tree($($).
Lemma 3. Let G be an ART. If $m r \in \operatorname{dom}(G)$, then $m \equiv \varepsilon$ or there is a sequence of nodes $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
\begin{gathered}
m \in \operatorname{children}\left(m_{1}\right), m_{1} \in \operatorname{children}\left(m_{2}\right), \ldots, \\
m_{k-1} \in \operatorname{children}\left(m_{k}\right), m_{k} \in \operatorname{children}(\varepsilon)
\end{gathered}
$$

Proof. By induction on the size of m, and by Lemma 1 .
Since $m r \in \operatorname{dom}(G)$, by Lemma 1, we only need to consider the following two cases.

- If $m=\varepsilon$, the statement is obviously true.
- If $m \in \operatorname{dom}(G)$, by Lemma 1 , there is at least one letter r in m. We consider the following two sub-cases.
- $m=\mathbf{r} n$, where there is no \mathbf{r} in n. Since $m \mathbf{r} \in \operatorname{dom}(G)$ and parent $(\mathrm{r} n)=$ ε, we have $\mathrm{r} n \in \operatorname{children}(\varepsilon)$.
- $m \equiv m_{1} r n$, where there is no r in n. Since $m r \in \operatorname{dom}(G)$ and parent $(m)=m_{1}$, we have $m \in \operatorname{children}\left(m_{1}\right)$. Now, because m_{1} is a sub-sequence of m, by induction hypothesis, there is a sequence of index numbers m_{2}, \ldots, m_{k} such that

$$
m_{1} \in \operatorname{children}\left(m_{2}\right), \ldots, m_{k-1} \in \operatorname{children}\left(m_{k}\right), m_{k} \in \operatorname{children}(\varepsilon)
$$

So, there is a sequence of index numbers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
m \in \operatorname{children}\left(m_{1}\right), m_{1} \in \operatorname{children}\left(m_{2}\right), \ldots, m_{k} \in \operatorname{children}(\varepsilon)
$$

Theorem 1. Let G be an $A R T$, and T its EDT.
If $m \mathrm{r} \in \operatorname{dom}(G)$, then $m \in \operatorname{dom}(T)$. In other word, T covers all the computations in G.

Proof. By Lemma 3 and 2.
Lemma 4. Let G be an $A R T$, and T its EDT.
If $(m, n) \in T$, then $n \in \operatorname{children}(m)$ and parent $(n) \equiv m$.
Proof. By the definition of tree.
Theorem 2. Let G be an ART, and T its EDT.
If $(m, n) \in T$ and $m \not \equiv k$, then $(k, n) \notin T$.
Proof. By Lemma 4.
The above theorem suggests that every evaluation for algorithmic debugging only needs to be examined once although two evaluations may rely on the same evaluation. For example, g is defined as $g x=($ not x, not x, not $x)$. When we compute g (not True), the equation not True $=$ False only appears once in the EDT.

6.1 Semantical Equality

Notations: $M \simeq_{I} N$ means that M is equal to N with respect to the semantics of the programmer's intention. If the evaluation $M=N$ of a node in an EDT is in the programmer's intended semantics, then $M \simeq_{I} N$. Otherwise, $M \not \chi_{I} N$ i.e. the node is erroneous.

Remark 1. For a local function, the evaluation of a node in an EDT is of the form

$$
\begin{gathered}
(m . g) b_{1}, \ldots, b_{n}=N \\
\text { within } f e_{1}, \ldots e_{k}
\end{gathered}
$$

The "within" part helps the programmer to decide whether the evaluation is intended or not, but it will not be used in proofs. We keep the prefix m in order to make semantics of local functions clear. If both m and "within" are removed, we might have $g b_{1}, \ldots, b_{n}=N$ and $g b_{1}, \ldots, b_{n}=N^{\prime}$ where N and N^{\prime} are different. In practice, one may chose different ways to help the programmer to answer such questions.

6.2 Equivalent rewriting rules

Two kind of rewriting rules, top-level and local-level, are used during the processes of building trace. For a top level rewriting rule, there is no node in the right-hand side. However, for a local rewriting rule of the form ($m . f$) $p_{1} \ldots p_{n}=R$, it is possible that there are nodes in R. When the computation stops and we start to analysis the properties, we regard that the rewriting rule is equivalent to $(m . f) p_{1} \ldots p_{n}=R^{\prime}$ where R^{\prime} is obtained from R by replacing all the nodes by their most evaluated forms. For example, the nodes in R are m_{1}, \ldots, m_{k}, then

$$
R^{\prime} \equiv R\left[\operatorname{mef}\left(m_{1}\right) / m_{1}, \ldots, \operatorname{mef}\left(m_{k}\right) / m_{k}\right]
$$

For a top-level rewriting rule $f p_{1} \ldots p_{n}=R$, if it used at node m and there are local functions in R, we regard that the rewriting rule is equivalent to $f p_{1} \ldots p_{n}=R^{\prime}$ where R^{\prime} is obtained from R by renaming all the local functions in R.

6.3 Program faulty

Definition 10. (Program faulty)

- For a simple rewriting rule $f p_{1} \ldots p_{n}=R$ without local functions, if there exists a substitution σ such that $\left(f p_{1} \ldots p_{n}\right) \sigma \not \chi_{I} R \sigma$, then we say that the definition of the function f in the program is faulty.
- For a rewriting rule without local functions of the following form

$$
\begin{aligned}
& f p_{1} \ldots p_{n}=R \\
& \text { where } g_{1} q_{1_{1}} \ldots q_{m_{1}}=R_{1} \\
& \ldots \ldots . \\
& g_{k} q_{1_{k}} \ldots q_{m_{k}}=R_{k}
\end{aligned}
$$

If there exists a substitution σ such that $\left(f p_{1} \ldots p_{n}\right) \sigma \not{ }_{I}\left(R\right.$ within $\left.f p_{1} \ldots p_{n}\right) \sigma$, then we say that the definition of the function f in the program is faulty. If there exists σ and σ^{\prime} such that $\left\{\left(g_{i} q_{1_{i}} \ldots q_{m_{i}}\right) \sigma^{\prime} \not{ }_{I} R_{i} \sigma^{\prime}\right\}$ within $\left(f p_{1} \ldots p_{n}\right) \sigma$, then we say that the definition of the local function g_{i} within f is faulty.

6.4 Correctness of Algorithmic Debugging

The proofs are the same as before, but we should check them again because the definition of program faulty is changed.

Definition 11. If the following statement is true, then we say that algorithmic debugging is correct.

- If the equation of a faulty node is $f b_{1} \ldots b_{n}=M$, then the definition of the function f in the program is faulty.

For a faulty node m, we have $\operatorname{redex}(m) \not \not_{I} \operatorname{mef}(m)$. We shall find a term N and prove $\operatorname{redex}(m) \rightarrow_{P} N \simeq_{I} \operatorname{mef}(m)$. In order to define N, we need other definitions.

Definition 12. Let G be an $A R T$ and m a node in G. reduct (m) is defined as follows.
$\operatorname{reduct}(m)= \begin{cases}a & \text { if }(m, a) \in G \text { and } a \text { is an atom } \\ \operatorname{mef}(n) & \text { if }(m, n) \in G \text { and } n \text { is a node } \\ \operatorname{reduct}(m \mathrm{f}) \operatorname{reduct}(m \mathrm{a}) & \text { if }(m, m \mathrm{f} \circ m \mathrm{a}) \in G \\ \operatorname{reduct}(m \mathrm{f}) \operatorname{mef}(j) & \text { if }(m, m \mathrm{f} \circ j) \in G \text { and } j \neq m \mathrm{a} \\ \operatorname{mef}(i) \operatorname{reduct}(m \mathrm{a}) & \text { if }(m, i \circ m \mathrm{a}) \in G \text { and } i \neq m \mathrm{mf} \\ \operatorname{mef}(i) \operatorname{mef}(j) & \text { if }(m, i \circ j) \in G \text { and } i \neq m \mathrm{f} \text { and } j \neq m \mathrm{a}\end{cases}$
reduct represents the result of a single-step computation. And we shall prove $\operatorname{redex}(m) \rightarrow_{P} \operatorname{reduct}(m \mathbf{r}) \simeq_{I} m e f(m)$ for a faulty node m. Note that $\operatorname{mef}(m)=\operatorname{mef}(m \mathbf{r})$ and so we want to prove $\operatorname{reduct}(m \mathbf{r}) \simeq_{I} \operatorname{mef}(m \mathbf{r})$. In order to prove this, we prove a more general result reduct $(m) \simeq_{I}$ $m e f(m)$ for all $m \in \operatorname{dom}(G)$ (see Lemma 6 for the conditions).

We define branch and the reduction principle depth in order to prove this general result.

Definition 13. (branch and branch') We say that n is a branch node of m, denoted as branch (n, m), if one of the following holds.

- $\operatorname{branch}(m, m)$;
- $\operatorname{branch}(n \mathrm{f}, m)$ if $\operatorname{branch}(n, m)$;
- $\operatorname{branch}(n \mathrm{a}, m)$ if $\operatorname{branch}(n, m)$.

Let G be an $A R T$.

$$
\operatorname{branch}^{\prime}(m)=\{n \mid n \mathbf{r} \in \operatorname{dom}(G) \text { and } \operatorname{branch}(n, m)\}
$$

Note that branch $^{\prime}(m)$ is the set of all evaluated branch nodes of m.
Lemma 5. Let G be an $A R T$.

- If $n \in \operatorname{branch}^{\prime}(m \mathrm{f})$ or $n \in \operatorname{branch}^{\prime}(m \mathrm{a})$ then $n \in \operatorname{branch}^{\prime}(m)$.
- If $m \mathbf{r} \in \operatorname{dom}(G)$ then children $(m)=\operatorname{branch}^{\prime}(m \mathbf{r})$.

Proof. By the definitions of children and branch ${ }^{\prime}$.
Definition 14. (depth) Let m be a node in an $A R T G$.
$\operatorname{depth}(m)= \begin{cases}1+\max \{\operatorname{depth}(m \mathrm{f}), & \text { if }(m, m \mathrm{f} \circ m \mathrm{a}) \in G \\ \quad \operatorname{depth}(m \mathrm{a})\} & \\ 1+\operatorname{depth}(m \mathrm{f}) & \text { if }(m, m \mathrm{f} \circ j) \in G \text { and } j \neq m \mathrm{a} \\ 1+\operatorname{depth}(m \mathrm{a}) & \text { if }(m, i \circ m \mathrm{a}) \in G \text { and } i \neq m \mathrm{f} \\ 1 & \text { if }(m, i \circ j) \in G \text { and } i \neq m \mathrm{f} \text { and } j \neq m \mathrm{a} \\ 0 & \text { otherwise }\end{cases}$
Lemma 6. Let G be an $A R T$ and m a node in G. If redex $(n) \simeq_{I} \operatorname{mef}(n)$ for all $n \in \operatorname{branch}^{\prime}(m)$, then $\operatorname{reduct}(m) \simeq_{I} \operatorname{mef}(m)$.

Proof. By induction on $\operatorname{depth}(m)$.
When $\operatorname{depth}(m)=0$, we have $(m, e) \in G$ where e is a node or an atom.

- If e is a node, then $m r \in G$ by Lemma 1 . Then by the definitions of reduct and mef, we have $\operatorname{reduct}(m)=\operatorname{mef}(e)$ and $\operatorname{mef}(m)=$ $m e f t(m)=\operatorname{mef}(e)$.
- If e is an atom, we have $\operatorname{reduct}(m)=e$. Now, we consider the following two cases. If $m \in \operatorname{branch}^{\prime}(m)$, then we have $m r \in \operatorname{dom}(G)$ and $\operatorname{mef}(m) \simeq_{I} \operatorname{redex}(m)=e$. If $m \notin \operatorname{branch}^{\prime}(m)$, then we have $m r \notin \operatorname{dom}(G)$ and $\operatorname{mef}(m)=m e f t(m)=e$.

For the step cases, we proceed as follows.

- If $m \in \operatorname{branch}^{\prime}(m)$, then we have $m \mathbf{r} \in \operatorname{dom}(G)$ and $\operatorname{redex}(m) \simeq_{I}$ $m e f(m)$. And we need to prove $\operatorname{redex}(m) \simeq_{I} \operatorname{reduct}(m)$.
Let us consider only one case here. The other cases are similar. Suppose ($m, m \mathrm{f} \circ j$) $\in G$ and $j \neq m$ a, then by the definitions we have

$$
\begin{aligned}
\operatorname{redex}(m) & =\operatorname{mef}(m \mathrm{f}) \operatorname{mef}(j) \\
\operatorname{reduct}(m) & =\operatorname{reduct}(m \mathrm{f}) \operatorname{mef}(j)
\end{aligned}
$$

Since for any $n \in \operatorname{branch}^{\prime}(m \mathrm{f})$, by Lemma 5 , we have $n \in \operatorname{branch}^{\prime}(m)$ and hence $\operatorname{redex}(n) \simeq_{I} \operatorname{mef}(n)$. By the definition of depth, we also have $\operatorname{depth}(m \mathrm{f})<\operatorname{depth}(m)$. Now, by induction hypothesis, we have $\operatorname{reduct}(m \mathrm{f}) \simeq_{I} \operatorname{mef}(m \mathrm{f})$. And hence we have $\operatorname{redex}(m) \simeq_{I} \operatorname{reduct}(m)$.

- If $m \notin \operatorname{branch}^{\prime}(m)$, then $m \mathbf{r} \notin \operatorname{dom}(G)$.

Let us also consider only one case. The other cases are similar. Suppose ($m, m \mathrm{f} \circ j$) $\in G$ and $j \neq m \mathrm{a}$, then by the definitions we have

$$
\begin{aligned}
\operatorname{mef}(m) & =\operatorname{mef}(m \mathrm{f}) \operatorname{mef}(j) \\
\operatorname{reduct}(m) & =\operatorname{reduct}(m \mathrm{f}) \operatorname{mef}(j)
\end{aligned}
$$

The same arguments as above suffice.
Corollary 1. Let G be an $A R T$ and $m r$ a node in G (i.e. $m r \in \operatorname{dom}(G)$). If redex $(n) \simeq_{I} \operatorname{mef}(n)$ for all $n \in \operatorname{children}(m)$, then reduct $(m \mathbf{r}) \simeq_{I}$ $m e f(m)$.

Proof. By Lemma 5 and 6.
The condition, $\operatorname{redex}(n) \simeq_{I} \operatorname{mef}(n)$ for all $n \in \operatorname{children}(m)$, basically means that m does not have any erroneous child nodes.

Lemma 7. Let G be an $A R T$ and $m r$ a node in G (i.e. $m r \in \operatorname{dom}(G)$). Then redex $(m) \rightarrow_{P} \operatorname{reduct}(m \mathbf{r})$.
Proof. Since there is a computation at the node m, we suppose G at node m matches the left-hand side of the rewriting rule $f p_{1} \ldots p_{n}=R$ with [$\left.m_{1} / x_{1}, \ldots, m_{k} / x_{k}\right]$. We need to prove that there exists a substitution σ such that $\operatorname{redex}(m)=\left(f p_{1} \ldots p_{n}\right) \sigma$ and $\operatorname{reduct}(m \mathbf{r})=R \sigma$. In fact $\sigma=$ $\left[\operatorname{mef}\left(m_{1}\right) / x_{1}, \ldots, \operatorname{mef}\left(m_{k}\right) / x_{k}\right]$.

Now, we need to prove that $\operatorname{redex}(m)=\left(f p_{1} \ldots p_{n}\right) \sigma$ and $\operatorname{reduct}(m r)=$ $R \sigma$. For the first, we proceed by the definition of redex and pattern matching. For the second, we proceed by the definition of reduct and graph.

Now, we come to the most important theorem, the correctness of algorithmic debugging.

Theorem 3. (Correctness of Algorithmic Debugging) Let G be an ART, T its $E D T$ and m a faulty node in T. If the equation for the faulty node m is $f b_{1} \ldots b_{n}=M$, then the definition of f in the program is faulty.

Proof. By Lemma 7 and Corollary 1, we have redex $(m) \rightarrow_{P}$ reduct $(m \mathbf{r})$ and $\operatorname{reduct}(m \mathbf{r}) \simeq_{I} \operatorname{mef}(m)$. Since $f b_{1} \ldots b_{n} \equiv \operatorname{redex}(m) \not \chi_{I} \operatorname{mef}(m) \equiv$ M, we have $f b_{1} \ldots b_{n} \rightarrow_{P} \operatorname{reduct}(m r)$ and $f b_{1} \ldots b_{n} \not \chi_{I} \operatorname{reduct}(m r)$. The computation from $f b_{1} \ldots b_{n}$ to reduct($m r$) is a single step computation, but $f b_{1} \ldots b_{n}$ is not semantically equal to reduct (mr). So the definition of f in the program must be faulty.

