
M. Denko et al. (Eds.): EUC Workshops 2007, LNCS 4809, pp. 69–81, 2007.
© IFIP International Federation for Information Processing 2007

Obligations for Privacy and Confidentiality in
Distributed Transactions

U.M. Mbanaso1, G.S. Cooper1, David Chadwick2, and Anne Anderson3

1 Informatics Research Institute (IRIS), University of Salford, UK
2 Computing Laboratory, University of Kent, UK

3 Sun Microsystems Inc, Burlington MA USA

Abstract. Existing access control systems are typically unilateral in that the
enterprise service provider assigns the access rights and makes the access
control decisions, and there is no negotiation between the client and the service
provider. As access management systems lean towards being user-centric,
unilateral approaches can no longer adequately preserve the user’s privacy,
particularly where the communicating parties have no pre-existing trust
relationships. Establishing sufficient trust is therefore essential before parties
can exchange sensitive information. This paper describes a bilateral symmetric
approach to access control which deals with privacy and confidentiality
simultaneously in distributed transactions. We introduce the concept of
Obligation of Trust (OoT) as a privacy assurance mechanism that is built upon
the XACML standard. The OoT allows communicating parties to dynamically
exchange their privacy requirements, which we term Notification of Obligations
(NOB) as well as their committed obligations, which we term Signed
Acceptance of Obligations (SAO). We describe some applicability of these
concepts and show how they can be integrated into distributed access control
systems for stricter privacy and confidentiality control.

1 Introduction

Trends in emerging access management systems raise an interesting paradox. On the
one hand, service providers’ applications require identity/attribute related information
in order to validate a user’s request. On the other hand, users may not wish to disclose
their information or attributes to a remote Service Provider (SP) without determining
in advance whether the service provider can be trusted to comply with their privacy
preferences. Conventionally, privacy is often considered from the users’ perspective,
just as access control is considered from the SP’s standpoint. That is, the user is
concerned about the confidentiality of their personal identifying information (PII),
and the resource provider is concerned about the confidentiality and integrity of the
resource information. These assumptions have resulted in unilateral asymmetric
approaches. Yet the SP may also have sensitive attributes such as membership
certificates of consortia, or trust relationships with third parties (TTPs) or policies of
various kinds that a resource user may demand to see before releasing their PII. This
suggests a symmetrical approach may be more appropriate, and has led to the research

70 U.M. Mbanaso et al.

topic called trust negotiation where each party’s attributes are released incrementally
to the other, as trust is established between them [1]. In B2B transactions, both parties
may require the dynamic exchange of service level agreements (SLA) or business
level agreement (BLA) in order to assess the mutual benefits and associated risks.
This may also require the establishment of trust and a guarantee of compliance to
agreed business rules. One way to achieve this is for each party to issue to the other a
proof of acceptance of the requirements contained in the SLA or BLA. Enabling the
runtime exchange of these requires a bilateral symmetric approach to allow the
communicating parties to indicate their willingness to accept constraints imposed by
the other party, before the latter is prepared to reveal their sensitive information.
There is therefore some overlap between user privacy requirements and business
requirements.

To address confidentiality and privacy problems simultaneously and symme-
trically, the parties in distributed transactions should have a standard means of
declaring their privacy requirements and the respect they will give to the other party’s
privacy requirements before sharing their resources. All parties need to evaluate the
risk of giving out their PII and determine the degree to which they are prepared to
trust the other participating actors. They will need to identify any constraints and
obligations they may wish to place on the others. Trust negotiation [1] has been
proposed to address this dilemma, but as will be pointed out later it has its limitations.
We therefore approach the subject of resources control in a slightly different manner.
We propose a technical solution that derives its concepts from well established
standards. We describe the concept of an Obligation of Trust (OoT) protocol,
whereby two parties can exchange difficult-to-repudiate1 digitally signed obligating
constraints (or Notification of Obligations (NOB) which detail their requirements for
sending their sensitive information to the other party), and proof of acceptances (or
Signed Acceptance of Obligations (SAO), which acknowledge the conditions they
have accepted for receiving the other party’s sensitive information). The OoT
protocol provides the negotiating mechanism for carrying obligating constraints and
proof of acceptances between security domains. Being signed, they help the
communicating parties to produce difficult-to-repudiate technical evidence in the
event of disputes. The OoT protocol also provides a mechanism for dynamically
exchanging other obligating documents such as service level agreements (SLAs),
business level agreements (BLAs), contractual documents, etc. In effect, the OoT
protocol merges technical solutions (mechanical exchange and matching, digital
signature) with potential social/judicial solutions (non-repudiation, technical legal
recourse). The rest of this paper is structured as follows. Section 2 describes related
research. Section 3 presents the OoT protocol as well as how matching of obligation
constraints and proof of acceptances is achieved. Section 4 describes the system
architecture of a reference engine and its core subsystems, which we are currently
constructing. In section 5, we provide an example use of the model and section 6
concludes the paper.

1 We use the term “difficult-to-repudiate” rather than non-repudiation, since repudiation is a

legal issue that has to be determined in a court of law. The technical constructs proposed in
this paper should make it more difficult for an entity to repudiate their actions.

 Obligations for Privacy and Confidentiality in Distributed Transactions 71

2 Related Research

The Platform for Privacy Preferences (P3P) [2] is one approach that attempts to
address privacy in commercial service provider (SP) websites. Whilst it has provided
some degree of privacy awareness, it has not particularly addressed privacy concerns
in distributed access control systems. The fact that P3P is widely implemented by
most websites and processed by compliant user-agents by comparing the P3P policy
statement against an APPEL [3] statement that describes the user’s privacy
preferences is beneficial. By contrast, in distributed access control systems, SPs don’t
usually convey their privacy policy statements to the service users during access
request. Even if a user in a distributed access control system retrieves the remote P3P
policy, the policy may not necessarily meet the user’s preference. Thus, the user may
abort the service or continue without the choice for further negotiations. Also P3P
doesn’t support provider-side requirements; the SP may have some privacy
constraints that require enforcement at the client’s side. The main components of a
P3P privacy statement include the recipient of the data, the purpose for which that
data is requested, the retention period at the collector’s store, and the data category. It
can include other components such as disputes and remedies, as well as whether
disclosure to third parties is allowed. Though P3P covers most of the basic principles
of privacy [4], the fact that it has not satisfactorily resolved the requirements for
bilateral privacy negotiation [5] limits its use in access control.

Shibboleth [6] from Internet2 provides a mechanism for federated access
management based on the SAML security standard [7]. Shibboleth provide single sign
on (SSO) and a mechanism for an IdP in one security domain to securely convey
attributes about a web-browsing user to a SP in another security domain. In
Shibboleth, privacy is addressed in two ways. Firstly, after the user authenticates to
the IdP, the Shibboleth authentication service generates a one time handle to identify
the user and transmits this to the SP. Secondly, the IdP uses Attribute Release Policies
(ARP's) to decide whether to release specific attributes to the SP or not. This is fine as
long as the remote site doesn’t require any identifying attributes to complete the
service. But this is unlikely to be the case in most transaction scenarios. Furthermore,
the Shibboleth infrastructure doesn’t provide any support for bilateral negotiation of
service parameters. If the user doesn’t provide the requested attributes, access to the
services is unilaterally denied. Another significant privacy flaw is that the ARP is
coarse and doesn’t support most of the known privacy principles [4].

ID-WSF from the Liberty Alliance is an open standard for federated identity
management that is built upon the extensibility of SAML security assertions [7]. It
provides a framework for the discovery and communication of identity information
among federated domains. When a client authenticates to an IdP, a SAML-based
assertion handle (SSO) is generated and communicated to a relying party or SP with
optional information which the relying party may use to call-back the user’s IdP. The
ID-WSF framework provides a flexible security model for a highly distributed set
of IdPs.

Microsoft, IBM and VeriSign have been working on a set of specifications (called
"WS-Security roadmap" or "WS-Identity Policy Framework") for their next
generation platform of Web services. The WS-Policy suite of policies, which includes

72 U.M. Mbanaso et al.

Security Policy, Reliable Messaging Policy, etc. are not designed primarily for
implementing access control. They are predominantly designed to enable Services to
advertise what requirements (especially authorization requirements) a requesting
party must satisfy in order to use the services. The idea is that a requesting party can
consider what it is willing and able to accept, before sending attributes that can satisfy
the requirements. However, WS-policies do not necessarily provide a means to
enforce access control policies since typically they are not to be consumed by Policy
Decision Points (PDPs).

One approach that addresses bilateral access control is the Automatic Trust
Negotiation (ATN) technique [8, 9]. ATN introduces a trust negotiation layer for
symmetrical interactions. Research efforts in this area have developed advanced
ATN techniques to cover a variety of scenarios [10] [11] [12]. Recent initiatives in
preserving privacy [13, 14] also favour the use of negotiation techniques for solving
privacy problem. ATN is an access control technique that permits the gradual release
of policies and credentials so that trust can be incrementally increased until the
communicating parties are sufficiently satisfied of each others trustworthiness to send
all their confidential information. However, ATN doesn’t provides mechanisms
whereby the relying party can convey proof of acceptance for obligating constraints -
assurance that the attributes contained in the assertions will be used in accordance
with the party’s privacy preferences. Recent work in this area by Spantzel et al [15]
introduces a framework that integrates ATN with Identity Management Systems
(IdM). Based on their comparison of ATN and IdM systems, it shows that ATNs have
not truly explored access security standards such as XACML, SAML, etc which may
limit their practical implementation.

To the best of our knowledge, none of the above systems provides a mechanism for
the remote enforcement of privacy obligations. So there is uncertainty that the
receiving party will adhere to them. Further, the receiving party may not accept any
liability if the sender’s PII is compromised. Without privacy assurances there is the
possibility that the receiving party may even misuse the sender’s PII without any form
of liability. Privacy negotiation will provide a mechanism that relies less on trusted
external third parties and more on the communicating parties themselves. Privacy is
governed by laws, legislation and principles requiring that privacy solutions should
provide tenable difficult-to-repudiate technical evidence in the case of a privacy
dispute. Consequently, there is a need to provide a mechanism for providing tamper-
proof technical evidence that may be used in the event of disputes when parties do not
conform to their commitments. One approach to achieve this is to provide a protocol
to enable participating parties to exchange digitally signed commitments. We
acknowledge that a technical “non-repudiable signature” on its own may not be
sufficient evidence for a court of law since other factors also contribute to a digital
signature being legally non-repudiable, such as: how much active participation the
user had in deciding to sign, how free the user is to use the signed-for sensitive
information, whether the software automatically generated the signature, and how
complex the signed agreement is. However, these legal issues are not within the scope
of the current paper. We consider the technical issues only that will help to provide
difficult-to-repudiate evidence.

 Obligations for Privacy and Confidentiality in Distributed Transactions 73

3 Obligation of Trust (OoT) Protocol

Obligation of Trust is a protocol that defines a standard mechanism enabling two or
more communicating parties to exchange obligating constraints as well as proof of
acceptances. The basic concept is built upon the assumption that a requesting party
has no means of enforcing obligations placed on a remote party. In traditional access
control systems, an obligation is an action that should be performed by a Policy
Enforcement Point (PEP) in conjunction with the enforcement of an access control
decision [13]. XACML [16] describes an Obligation element as a set of attribute
assignments, with an attribute FulFillOn which signifies whether the consuming PEP
must fulfill the obligation if the access control decision is “Permit” or “Deny”. When
a Policy Decision Point (PDP) evaluates a policy containing obligations, it returns the
access control decision and set of obligations back to the PEP. However, in a
distributed environment the SP’s PEP is unlikely to be in the same security domain as
the service requestor; therefore there is no guarantee that any obligations required by
the requestor can either be incorporated into the policy used by the SP’s PDP, or even
if they can, be enforced by the SP’s PEP. Given this, it makes sense to address the
remote enforcement of obligations by allowing a SP to convey back to the requestor
an acceptance or rejection of their obligating constraints. The OoT protocol addresses
this interaction. We divide the OoT protocol into two steps: Notification of Obligation
(NOB) (which may be signed or unsigned) and Signed Acceptance of Obligation
(SAO) (which must be signed). The OoT protocol is symmetric. An initiating party
sends a NOB outlining the obligating constraints it is placing on the other party and
the commitments it is willing to make if the other party accepts its obligations. The
other party, after evaluation, sends back either a signed acceptance (SAO) of the
constraints it accepts and the commitments it requires, or initiates more service
negotiations with its own NOB, or rejects the request and terminates the session.
Because the NOB and SAO are constructed using standard XACML obligations
elements, both communicating parties have a common language for expressing their
requirements and commitments, and are able to feed these obligations directly into
their PDPs for automatic decision making, and ultimate enforcement by their
respective obligations services.

OoT Encoding Scheme

The Web Services Profile of XACML (WS-XACML) [17] describes a way for
carrying XACML policies between communicating parties. WS-XACML specifies
formats for four information types:

• an authorization token or credential for carrying an authorization decision across
realms,

• a policy assertion type that is based on XACML elements which can embed WS-
Policy or other XML constructs,

• ways to wrap P3P policy preferences and match them using XACML assertions,
and

• XACML Attributes in SOAP Message Headers in such a way that they can be
authenticated as having been issued by a trusted authority.

74 U.M. Mbanaso et al.

The WS-XACML Assertion Type is an abstract framework that describes an
entity’s Web Service’s policy in the context of different policy domains, such as
authorization or privacy domains. The name of the Assertion’s element indicates the
domain to which it applies, such as XCMLPrivacyAssertion for the privacy domain
and XACMLAuthzAssertion for the authorization domain. The XACMLPrivacy
Assertion deals with privacy specific Assertions which can carry Requirements i.e.
what the asserter requires of the other party, and Capabilities i.e. what the asserter is
willing and able to do for the other party if its Requirements are satisfied. The inner
box in Figure 1 depicts the WS-XACML model which defines an XACMLAssertion
AbstractType. This allows constraints on a policy vocabulary to be expressed as
XACML Apply functions. The XACMLAssertion contains two sets of constraints as
shown in figure 1. The first set, called Requirements, describes the information or
behavior that the policy owner requires from the other party. The second set, called
Capabilities, describes the information or behavior that the policy owner is willing
and able to provide to the other party. One instance of this type is the
XACMLPrivacyAssertion whose Capabilities element describes the Obligations that
are being accepted and the information that will be provided. The Requirements
element specifies the Obligations that the sender requires of the other party in order to
proceed.

Fig. 1. SAML Obligation Of Trust Model

Using the built-in extensibility mechanism of WS-XACML and SAML Assertions,
we can conveniently encode the components of the OoT protocol as extensions of
standard elements. The NOB can be expressed as an instance of a XACMLPrivacy
Assertion in which the desired obligating constraints are placed in the Requirements

 Obligations for Privacy and Confidentiality in Distributed Transactions 75

<Apply FunctionId="urn:oasis:names:tc:xacml:2.0:function:xpath-expression-subset">
<AttributeSelector
RequestContextPath="//P3P10/POLICIES/POLICY/STATEMENT/PURPOSE/*"
DataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-expression" />
<Apply FunctionId="urn:oasis:names:tc:xacml:2.0:function:xpath-expression-bag">

<AttributeValue DataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-
expression">//P3P10/POLICIES/POLICY/STATEMENT/PURPOSE/current</At
tributeValue
<AttributeValueDataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-
expression">//P3P10/POLICIES/POLICY/STATEMENT/PURPOSE/admin</Att
ributeValue>
<AttributeValueDataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-
expression">//P3P10/POLICIES/POLICY/STATEMENT/RECIPIENT/ours</Att
ributeValue>

</Apply>
</Apply>

Fig. 2. Example of WS-XACML constraint on P3P PURPOSE

section of the Assertion, and any obligations that the sender is willing and able to
fulfill in the Capabilities section. The SAO can be expressed as an instance of a
XACMLPrivacyAssertion in which the Requirements section specifies the sender’s
understanding of what the recipient has committed to do and the Capabilities section
specifies the obligations that the sender has committed to undertake. By signing the
SOA the signer is stating in a difficult-to-repudiate form their commitment to fulfill
the Obligations contained in the Capabilities element, so long as their Requirements
are satisfied. Figure 1 shows the extensions of WS-XACML and SAML that map into
our Obligation of Trust model. The OoT schema is available at [18], but basically it
defines a new SAML protocol request type (the Obligation of Trust Query Type) and
a new SAML statement type (the Obligation of Trust Statement Type).

In the privacy domain, these elements can be used to describe either the acceptable
(Requirements) or supported (Capabilities) P3P policy contents. For example, if a
recipient will only use the sender’s sensitive information for the “current” transaction
and “admin” purposes, and the information is only for the designated recipient, this
can be sent as a P3P policy STATEMENT of PURPOSE expressed as a WS-XACML
constraint as shown in figure 2.

OoT Protocol Scheme

Figure 3 is a simplified sketch of the OoT protocol in operation, and shows how two
parties may exchange signed components of the OoT. Party A wishes to access item
X from party B, but it is assumed that party A knows nothing about the privacy or
access control requirements for item X. Similarly, Party B knows nothing about the
privacy requirements of Party A’s attributes. Party A sends a request for item X and
Party B responds with a NOB containing its Requirements and Capabilities. Figure 4
shows an outline of an algorithm for the decision making when a party receives a
NOB. Party A checks whether it can satisfy Party B’s Requirements, and whether

76 U.M. Mbanaso et al.

Fig. 3. The OoT Protocol Sketch

party B’s Capabilities can satisfy its own (party A’s) Requirements. If Party B’s
Capabilities are acceptable and sufficient for Party A, and A can fully meet B’s
requirements, then A can send an SAO to B stating its pick of the offered capabilities
and its own capabilities to meet party B’s requirements. If B’s capabilities are
acceptable but not sufficient, or A has additional requirements, A may send a counter
NOB to B containing its additional or alternative Requirements. A’s Requirements
will determine the subset of B’s Capabilities that it requires, and A may supplement
them with additional ones of its own. A’s Capabilities will include the subset of B’s
Requirements that it can provide, along with any additional ones it may be willing to
provide. If Party B’s Capabilities are insufficient for Party A, then A will either
terminate the session or return a NOB with Requirements that supercede B’s stated
Capabilities. If A cannot meet all the stated requirements of B, then A may decide to
terminate the session or add a reduced set of Capabilities to the NOB.

Party B evaluates party A’s NOB and if satisfied with A’s Capabilities and
Requirements it returns a signed SAO stating in its Capabilities that it can fullfil all of
party A’s Requirements, and in its Requirements which of Party A’s Capabilities it
has chosen. If B is satisfied with A’s Capabilities but not with A’s Requirements, B
may either send another NOB to A showing less Capabilities than A requires (along
with its own Requirements), or terminate the session. If B is not satisfied with the
Capabilities of A’s NOB, it will either terminate the session or return a NOB with
increased Requirements. If Party A receives another NOB, and this is satisfactory, it
returns a signed SAO, otherwise it behaves as last time around. If Party A receives
party B’s SAO, and if satisfied with it, it returns its own signed SAO. Thus the parties
continue to exchange NOBs until either one party terminates the session (negotiated
agreement not possible) or returns a signed SAO. Once a signed SAO has been
delivered the recipient must either accept this by returning its own signed SAO or

 Obligations for Privacy and Confidentiality in Distributed Transactions 77

• Set flag initially to “SAO”
• Evaluate received requirements to determine whether I can meet them with my

capabilities
o If so, construct offered Capabilities to match received requirements
o If not, either

 terminate or
• determine* whether additional capabilities should be offered to match,

and/or
• construct capabilities to match a subset of the received requirements, plus

additional alternative capabilities to be offered, and set flag to “NOB”
• Analyse capabilities to be offered by me (as determined above) and construct a

revised list of (my) requirements.
• Analyse sets of capabilities received and compare with my list(s) of

requirements (as determined above).
o If all my requirements are met from one set of offered capabilities, keep the

above-defined requirements.
o If all my requirements are met from merged sets of offered capabilities,

construct Requirements from these, set flag to “NOB”
o If my requirements are not met, either

 terminate or
 determine* whether requirements can be relaxed due to alternative
capabilities being offered and modify requirements accordingly and set flag
to “NOB”

• If SAO flagged, send SAO, else send NOB.
(* “determine” could include the possibility to ask a human operator.)

Fig. 4. Outline Algorithm for handling a NOB

terminate the session. It is not allowed to return a NOB in response to a signed SAO,
since this is in effect rejecting what one had previously offered in a prior protocol
exchange. Once the negotiation is complete, and each party is in possession of the
signed SAO of the other party, then Party A delivers the attribute values defined in
Requirement B and Party B delivers item X to A.

As indicated above, in some transactions it will be the case that either a user’s
configured capabilities are insufficient to match an SP’s requirements, or a user’s
requirements are too great for an SP’s capabilities. In this case the software might
indicate to the user that the SP’s (or user’s) requirements are not covered by any of
the user’s (or SP’s) sets of capabilities. The user should be able to view the NOB
request and possibly extend their capabilities or reduce their requirements. As an
example, suppose a user has configured his requirement’s policy so that recipients are
not to reveal the user's PII to 3rd parties, but a Service X offers very generous
compensation to Service C's users who are willing to sign up for X’s new services. In
this case, Service C could send the user a NOB containing a Requirement to provide
permission for Service C to release PII to Service X, in exchange for compensation.
The user’s agent does not have a Capability to match this Requirement, so the user's

78 U.M. Mbanaso et al.

client software could display Service C’s Requirement for the granting of permission
to forward the PII to Service X, along with Service C’s Capability to offer
compensation to the user. If the user dynamically chooses to accept this contract, a
new Capability is added to the user's set of XACMLPrivacyAssertions, for this and
future use, and a signed SAO is sent to Service C.

XACML Assertion Type

Alice’s Requirements
What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,
if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements
What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,
if conditions in

Requirements
are met

Alice Bob

XACML Assertion Type

Alice’s Requirements
What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,
if conditions in

Requirements
are met

XACML Assertion Type

Alice’s Requirements
What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,
if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements
What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,
if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements
What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,
if conditions in

Requirements
are met

Alice Bob

Fig. 5. Matching of Two WS-XACML Assertion Type

Matching and Evaluation

Requirements are logically connected by AND: the policy owner requires the other
party to satisfy all of the constraints listed in the Requirements section. Capabilities
on the other hand are logically connected by a non-exclusive OR: the policy owner is
willing and able to provide any subset of the capabilities described by these
constraints. Figure 5 illustrates the matching of the two WS-XACML Assertions.
Two XACMLAssertions match if, for each assertion, all constraint in the Requirements
section are satisfied by (at least) one of the statements in the Capabilities section of
the other assertion. WS-XACML specifies efficient generic algorithms for
determining that one constraint “satisfies” another. We can use this mechanism to
evaluate an XACML-P3P policy against an XACML privacy profile (or any policy
expressed in XML), provided we have matching semantics between them. Once the
matching is done, the next step is to extract the capability that matches the recipient’s
requirements, produce the SOA and generate the signatures.

4 Example of WS-XACML Aware Applications

The OoT protocol provides a platform which permits two or more communicating
parties to negotiate obligating constraints in a tamper proof manner. Privacy
Negotiation is one such good example of using the OoT principles.

 Obligations for Privacy and Confidentiality in Distributed Transactions 79

As an example, an Internet-based ticket service (ITS) provides online ticketing
services to both consumers and partners through automated Web services. The ITS
can provide special price offers to certain categories of clients in particular seasons.
The ITS requires prospective clients to provide or show proof of possession of certain
properties and then to make firm commitments that they will not disclose its price list
to third parties (i.e. competitors) before it can decide whether they qualify for special
offers. On the other hand, the clients may not wish to give out their sensitive attributes
without receiving proof from the ITS that it will not disclose them. The ITS therefore
needs to assure the clients that their attributes will be held according to their privacy
preferences. Figure 6 depicts the ITS’s internal XACMLPrivacyAssertion and

XACMLPrivacyAssertion (ITS)
Requirements

Client Name
IATA membership certificate
Certified Quarterly Sales > £12,000.00
Price List not given to 3rd parties

Capabilities
PURPOSE: PII used internally for this transaction
RETENTION: PII kept only until transaction is completed
RECIPIENT: PII not given to any 3rd party

Fig. 6. ITS’s Internal XACMLPrivacyAssertion

XACMLPrivacyAssertion (customer)
Requirements

RETENTION: PII kept only until transaction is completed
RECIPIENT: PII not given to any 3rd party

 Capabilities
Name
IATA membership certificate
Certificate of Incorporation
Certified Quarterly Sales > £12,000.00
Price List not given to 3rd parties

Fig. 7. Customer’s Internal XACMLPrivacyAssertion

figure 7 is the customer’s internal XACMLPrivacyAssertion. Looking at the
assertions, the customer’s Requirements are really “Obligations” to be fulfilled by the
ITS. Similarly, the ITS’s Capabilities are really “Obligations” that the ITS is able and
willing to meet. The OoT provides the mechanism to assure each participant of the
other’s commitment to respecting their security preferences. Each party can save the
digitally signed XACMLPrivacyAssertion with the complete Capabilities as difficult-
to-repudiate evidence in the case of disputes.

80 U.M. Mbanaso et al.

5 Conclusion

This paper describes one concrete approach to enhancing privacy assurance, by
permitting the bilateral exchange of privacy Requirements and the Capabilities to
satisfy them. The OoT mechanism merges technical solutions with possible
social/judicial solutions for security assurance in distributed open systems. This
mechanism demonstrates a secure way of using P3P policies in WS-XACML which
provides a framework for the dynamic exchange of requirements and capabilities,
meaning that this framework can support the P3P platform with minimal effort. Our
solution demonstrates significant improvement in the provision of privacy in
distributed transactions where technically “difficult-to-repudiate” services are vital.
Again, the benefit of this framework is that the same security engine can apply to the
four types of information described in WS-XACML, meaning that privacy and
confidentiality can be achieved simultaneously for both service providers and
consumers. This approach is currently being implemented.

An additional benefit of this approach over traditional ATN is that it has the
potential to reduce the number of interactions between parties and therefore the
effects of network latency since both requirements and capabilities can be transmitted
in a single payload rather that separately. A mechanism that assures each party that
their information will be used in accordance with their wishes will increase the level
of trust and confidence between the communicating parties and may even reduce the
liabilities of regulated organizations.

The OoT protocol has a couple of limitations. Firstly it assumes that the other party
exists as a physical entity that can be sued if violations occur. This requires either a
robust PKI system to exist or some other mechanism to establish whether the subject
of a certificate is a legal entity, and will put meaningful identifying information in the
issued certificate. Secondly, it is open to probing attacks. A malicious party can probe
another party by providing bogus capabilities in order to gather the other party’s
requirements and capabilities and then terminate the connection before any actual data
is transferred. In [19], we described how XACML can be used to address the probing
attack by a trust negotiation involving the gradual and incremental exchange of
information. This requires that the XACML policy is expressed in such a way that the
level of trust established can determine what other information (policy/attributes) is
released at any phase. The order and sequence are controlled by the crafting of policy
rule expressions. Furthermore, we have not dealt with refinements for multiple
assertions and multiple set of Capabilities. These are the subject of further work.

Work is currently being carried out on a reference implementation of the proposed
approach, and the testing and evaluation of this will be published in due course.

References

1. Bertino, E., Ferrari, E., Squicciarini, A.: Trust Negotiations: Concepts, Systems and
Languages, pp. 27–34. IEEE Computer, Los Alamitos (2004)

2. W3C: The Platform for Privacy Preferences 1.0 (P3P 1.0). Technical Report (2002)
3. Langheinrich, E.Z.M.: A P3P Preference Exchange Language 1.0 (APPEL1.0). W3C

(April 5, 2002)

 Obligations for Privacy and Confidentiality in Distributed Transactions 81

4. OECD: Fair Information Practice. In The Electronic Marketplace A Report To Congress
(May 2000), http://www.ftc.gov/reports/privacy2000/privacy2000.pdf

5. W3C: Platform for Privacy Preferences (P3P) (2004)
6. Cantor, S.: Shibboleth Architecture. Internet2 Middleware (2005),

http://shibboleth.internet2.edu/shibboleth-documents.html
7. Cantor, S., Kemp, J., Philpott, R., Maler, E.: Security Assertion Markup Language

(SAML) V2.0 (March 2005),
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

8. Seamons, K.E., Ryutov, T., Zhou, L., Neuman, C., Leithead, T.: Adaptive Trust
Negotiation and Access Control. In: 10th ACM Symposium on Access Control Models
and Technologies, Stockholm, Sweden (2005)

9. Winsborough, W.H., Li, N.: Towards Practical Automated Trust Negotiation. In: Policy
2002. Proceedings of the Third International Workshop on Policies for Distributed
Systems and Networks (2002)

10. Seamons, K.E., Winslett, M., Yu, T., Yu, L., Jarvis, R.: Protecting Privacy during On-line
Trust Negotiation. In: 2nd Workshop on Privacy Enhancing Technologies, San Francisco,
CA (2002)

11. Winsborough, W.H., Seamons, K.E., Jones, V.E.: Negotiating Disclosure of Sensitive
Credentials. In: 2nd Conference on Security in Communication Networks, Amlfi, Italy
(1999)

12. Bertino, E.F.E., Squicciarini, A.: TNL: An XML-based Language for Trust Negotiations.
In: IEEE 4th International Workshop on policies for Distributed Systems and Networks,
Lake Como Italy (2003)

13. Pau, L.-F.: Privacy Negotiation and Implications on Implementations. In: W3C Workshop
on Languages for Privacy Policy Negotiation and Semantics-Driven Enforcement (2006)

14. Preibusch, S.: Privacy Negotiations with P3P. In: W3C Workshop on Languages for
Privacy Policy Negotiation and Semantics-Driven Enforcement (2006)

15. Spantzel, A.B., Squicciarini, A.C., Bertino, E.: Trust Negotiation in Identity Management.
IEEE Security & Privacy, 55–63 (2007)

16. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS
Standard (February 1, 2005)

17. Anderson, A.: Web Services Profile of XACML (WS-XACML) Version 1.0, WD 8.
OASIS XACML Technical Committee (December 12, 2006)

18. University of Salford: Schema for Obligation of Trust (OoT) (December 2006),
http://infosec.salford.ac.uk/names/oot/ootSchema/

19. Mbanaso, U., Cooper, G.S., Chadwick, D.W., Proctor, S.: Privacy Preserving Trust
Authorization using XACML. In: TSPUC 2006. Second International Workshop on Trust,
Security and Privacy for Ubiquitous Computing, Niagara-Falls, Buffalo-NY (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

