
Incorporating Security Behaviour into Business Models using a Model Driven
Approach

Peter F. Linington and Pulitha Liyanagama
University of Kent Computing Laboratory

Canterbury, Kent, UK
{pfl,pll4}@kent.ac.uk

Abstract

There has, in recent years, been growing interest in
Model Driven Engineering (MDE), in which models are the
primary design artifacts and transformations are applied to
these models to generate refinements leading to usable im-
plementations over specific platforms. There is also interest
in factoring out a number of non-functional aspects, such as
security, to provide reusable solutions applicable to a num-
ber of different applications.

This paper brings these two approaches together, inves-
tigating, in particular, the way behaviour from the different
sources can be combined and integrated into a single de-
sign model. Doing so involves transformations that weave
together the constraints from the various aspects and are, as
a result, more complex to specify than the linear pipelines
of transformations used in most MDE work to date. The ap-
proach taken here involves using an aspect model as a tem-
plate for refining particular patterns in the business model,
and the transformations are expressed as graph rewriting
rules for both static and behaviour elements of the models.

1 Introduction

In Model Driven Engineering (MDE), models are the
primary design artifacts and transformations are applied to
these models to generate refinements leading to usable im-
plementations over specific platforms. The main emphasis
in demonstrating the MDE concepts has been on the refine-
ment of general designs to platforms as one of the steps in
a code generation process.

At the same time, there has been considerable interest
in factoring out from application designs a number of non-
functional aspects, such as security, so that it becomes pos-
sible to provide and manage reusable solutions to them.
These solutions can then be woven together with outline de-

signs of the business logic for particular application require-
ments to produce solutions with the desired properties. The
aim should be to maintain the separation of concerns, mini-
mizing the need for additional labeling of the basic business
model with aspect-specific markers.

This paper uses security as a specific case study, but
the main aim is to use this example to explain the require-
ments placed on transformation techniques by support of
the weaving process.

This paper brings these two approaches together, inves-
tigating, in particular, the way behaviour from the different
sources can be combined and integrated into a single design
model. This involves transformations to perform the weav-
ing together of the constraints from the various aspects, and
these transformations are, as a result, more complex to spec-
ify than the linear pipelines of transformations generally
used to date. The approach taken here involves using an as-
pect model as a template for refining particular patterns in
the business model, and the transformations are expressed
as rewriting rules for both static and behaviour elements of
the models.

The requirements for MDE tools to be used for the inte-
gration of security aspects have been reviewed in [14]. An
initial case study carried out within the InterOp Network of
Excellence was published in [12].

The remainder of this paper is organized as follows. In
section 2 we give some background information on previ-
ous work on both model driven engineering and aspect ori-
ented development, and in section 3 we set out a number of
requirements and simple supporting mechanisms for man-
aging security. In section 4 we introduce the style of trans-
formation applied to the weaving of the business logic and
security aspects, and in section 5 outline the implementa-
tion environment in use. Sections 6 and 7 then describe
the detailed approach to structural and behavioural trans-
formations respectively. Section 8 reviews the process de-
scribed with regard to the initial objectives. Finally, section
9 draws conclusions and indicates some future directions
for the work.

2 Previous work

2.1 Model driven techniques

The current model driven movement is the natural next
stage of a steady trend towards stronger tool integration and
progressively higher level representations of designs. This
same process can be seen in the viewpoint separation of
ODP [5] [6], and was espoused by the OMG in their millen-
nial white paper on Model Driven Architecture [19]. OMG
experts provided a specific framework for their MDA ap-
proach [16], in which they introduced the concepts of CIM,
PIM and PSM to capture the trajectory from organizational
to platform specific designs (see figure 1). Subsequently,
via the QVT RFP, a transformation language for use within
MDA has been formulated [17].

T2T1CIM PIM PSM

transformation embodying
computational model

transformation embodying
platform specification

Figure 1. Standard MDA transformation se-
quence.

There are many current activity in the development and
use of model driven tools, for example Atlas [1], Mola [8]
and Tefkat [13]. The web site operated by the PlanetMDE
organization provides an excellent summary of the broader
spread of model drive engineering activities.

Earlier work attempted to perform the necessary trans-
formations in a completely generic way using graph rewrit-
ing techniques and graph grammars. A powerful example
is AToM3 [2]. The MDA tools differ from this in that they
specialize the transformation to allow more domain-specific
tailoring. The current proposal follows this direction of
adding constraints to the transformation, but assumed that
there are two kinds of modeller: those concerned with en-
suring that broad domain specific rules are captured (these
are incorporated in the transformation) and those concerned
with specific designs, who should work in a uniform nota-
tion as close as possible to familiar UML usage. The UML
fragments for specific designs are then linked by the trans-
formations formulated by the specialists.

One of the main issues in the design of model transfor-
mation languages is the role of iteration and reverse engi-
neering in the specification process. Directed, imperative
languages give an easier implementation path, but declar-
ative languages are potentially more concise and closer to
the minimum required semantics. They also fit more natu-

rally into the support for dynamically evolving system re-
quirements. This tension is discussed further below when
describing the details of the approach taken.

2.2 Aspect based techniques

The main thrust of this paper is the incorporation of se-
curity into application logic, but it raises issues that apply to
a broader range of non-functional aspects. As such, it brings
together a number of techniques linking model driven and
aspect oriented approaches. Aspect orientation has been
an active research thread for many years, dating originally
from the work at Xerox Parc in the 1990s [10] [20], [11]
which lead to the development of AspectJ [9].

The basic idea of an aspect is that in any set of applica-
tions there are a number of cross-cutting issues that repre-
sent recurring themes in the various designs. If these can
be extracted and made the subject of a separately main-
tained fragment of specification, then they can be applied
to all applications, both existing and newly designed, and
so current best practice can be shared in an effective man-
ner. We are interested particularly in the extraction of the
non-functional aspects, which are only weakly linked to the
detail of the business logic, such as performance, quality of
service, business value, and, of course, trust and security.

The basic pattern in aspect oriented work is that in a base
specification there are a number of potential join points at
which additional behaviour can be integrated, from which
an active set is extracted by application of a set of con-
straints known as a Pointcut. The weaving process then ap-
plies additional behaviour known as the aspect advice at the
selected points.

Some work has already examined the integration of as-
pects and model driven techniques, such at [18]. However,
the approach taken there has concentrated on the model
driven preparation of primary and aspect specification fol-
lowed by a standard aspect oriented software development
weaving process. Here we integrate both steps within one
transformational framework.

2.3 Modelling security

For completeness, it should be noted that there have been
a number of proposals for enhancing general purpose mod-
elling to support security aspects. Well known examples are
UMLSec [7] and SecureUML [15], which is based on [4].
These are, in essence, UML profiles, and so weave specific
security role information with the business logic in a way
that this paper is trying to avoid.

Our aim is the separation of concerns, not weaving them
together in a single extended language.

3 Target security aspects considered

Before we can concentrate on how, in detail, security is
to be incorporated into business models, we need to identify
where in a system configuration security problems occur.
In general, this will involve the analysis of trust and threat
models with particular emphasis on points at which infor-
mation flows between domains with different security prop-
erties (see figure 2). This allows the key pieces of behaviour
where security precautions are needed to be selected.

trust domain A trust domain B

security
requirements

Figure 2. Trust analysis allows security re-
quirements associated with domain bound-
aries to be identified.

If the key communication paths are known, then apply-
ing a suitable mechanism reduces to performing some trans-
formation local to the selected paths and to the introduction
of any associated shared infrastructure components, such as
credential or policy repositories or domain specific decision
points. As working examples in this paper, we consider

• the provision of secrecy by encryption of the transport
supporting the information flow; the main requirement
for the provision of credentials and marking of the
flow as needing special treatment in a platform-specific
way.

• provision of authentication on each interaction by in-
troducing a gateway to control the information flow,
based on additional parameterization, such as simply
by provision of a user identity and password on each
request(see figure 3).

• more efficient mechanisms in which an initial ex-
change validates credentials and returns some short-
term token that can be included with each interaction
making up an extended session (see figure 4); this re-
quires analysis of the behaviour in the business logic
so as to identify effective candidate sessions and to en-
sure that clients maintain some associated local token
storage (see section 7.2).

Once the right trigger points have been identified and the
appropriate mechanisms incorporated, care must be taken

credentials

gateway serverclient

Figure 3. Providing password-based authen-
tication on each operation.

credentials

authority

serverclient
2: present token

3: check token1: get token

Figure 4. Providing session-token-based au-
thentication on each operation.

that the target security properties are maintained. Non-
functional aspects such as security and performance are par-
ticularly fragile, since further unrelated transformations can
easily invalidate the desired properties by opening back-
doors or invalidating assumptions about worst-case perfor-
mance.

To overcome this problem, a transformation that estab-
lishes some required property should also at the same time
generate constraints that verify the assumptions on which
these properties are based. Thus, for example, if a perfor-
mance requirement is met under the assumption that some
processing element meets a particular real-time deadline, a
constraint should be generated associated with that element
so that there is an explicit check to ensure further transfor-
mations to meet other requirements do not invalidate it.

4 Approach to transformation

The traditional model driven engineering approach is
based on the specification of a transformation that relates
source and target models. The transformation is expressed
in terms of the source and target metamodels, making it
powerful and reusable, but at the cost of requiring consider-
able skill on the part of the transformation author.

To support the composition of business logic and non-
functional aspects, a different form of transformation is
needed. It would be possible, in principle, to codify each
non-functional aspect as a specific transformation, but this
would be hard for the author to do and difficult for others
to understand. It would be much more accessible to capture
the generic weaving process as a transformation that relates
multiple models, and to represent the pointcuts and aspect
advice as separate, more conventional, models. That is the
approach taken here.

The business logic, the form of the pointcut and the ad-
vice are all separate models, with specific roles in a general
weaving process; the aspect models steer the weaving pro-
cess, and are more like patterns or templates than conven-
tional design models. The transformation rules capture the
specific details of the weaving process, which are, in gen-
eral, dependent on the source and target metamodels. This
involves the expression of complex constraints, particularly
when considering the weaving of behaviour, where conse-
quential changes may propagate a long way.

One of the issues to be considered in applying model
driven engineering ideas is the trade-off between imperative
and declarative modelling styles, associated with the bal-
ance between forward and reverse engineering processes.
This becomes more complex in an aspect-oriented setting,
because of the many-to-many nature of the transformation;
there are more possible mutability markings, and more va-
rieties of constraints in finding solutions consistent with
them. We return to this issue below.

set of matching
instances

template

target
model

pattern

source
model

substitute all

match

Figure 5. The model-merging process and the
models involved in it.

The approach taken here is based on graph grammars [3],
and involves two steps, illustrated in figure 5. The first is a
matching process, in which the pattern model is compared
to the source model; the matching process returns the set of
all the situations in which the pattern corresponds to some
part of the source model. The resulting set of matching in-

stances is expressed as a set of labelings of the source model
with role names in the match from the pattern model. A
matching instance is effectively a view of the source model
in which all unlabeled items are hidden, and which then sat-
isfies the constraints from the pattern model on the elements
that remain visible.

The second step constructs the target model by taking
each matching instance in turn and using an instance of the
template model to populate the corresponding fragment of
the target model. This is done by substituting details from
the matching instance for each occurrence of the pattern role
names found in the template model. Finally, any source
model elements not yet used in the substitution process are
included by applying a default copying behaviour.

These two processes of matching and substitution are
generic and are made up of common constraints expressed
in terms of the metamodels of the source, pattern, template
and target. Once the processes have been defined, they can
be performed for any specific sets of these models that as-
sume the same weaving semantics.

T_X

+Proxy : T_X_Y

T_X_Y

+$RefX$: T_Y

T_Y

T_A_B

+SrvA : T_B

T_CT_B_C

+SrvB : T_C

T_B

+Proxy : T_B_C

T_A

+Proxy : T_A_B

X

+RefX : Y

A

+SrvA : B

B

+SrvB : C

Y

C

(c)

(a)

(b)

(d)

Figure 6. An example of a merging transfor-
mation involving four models: (a) source, (b)
pattern, (c) template and (d) target.

Consider the following trivial example, in which, wher-
ever one class refers to another by holding a pointer at-
tribute, we assume there is a requirement to incorporate a
proxy controlling indirection via that reference.

In figure 6, there are four models. Model (a) it the source
model. Model (b) is the pattern model, and expresses the
facts we are interested in all cases in some source model,
where an object, no matter what its class, plays role X be-
cause it has an attribute that plays role RefX as a result
of pointing to an object of a class playing role Y. In other
words, model (b) matches any reference from one class to
another. When the matching process is performed on the
source model (a), the result is two matches. These associate
roles X, RefX and Y in (b) with instances in (a), which leads

to the labelings (X⇒A, RefX⇒SrvA, Y⇒B) and (X⇒B,
RefX⇒SrvB, Y⇒C) respectively.

In the substitution step, the template model (c) is used
for each of these matching instances in turn. Each time,
the information from the role-filling entities in the instance
is substituted to construct model elements in the target (d).
The first match results in construction of the target classes
T A and T B, derived from (a) and identifies the need for
a new proxy class T A B, which has no progenitor in the
source; all the information about it is derived from the tem-
plate, except for the reference name and type, which are
generated from the role correspondences of RefX and Y.
The same process is repeated for the second match, and
yields T C and T B C. However, although the template ref-
erences T B, this has already been added to the target by the
first match, and so the new content is merged into the class
already created.

The final step in the transformation is to copy to the tar-
get any model elements that have not yet been involved in
any match, either operations or attributes of classes already
processed, or completely uninvolved classes; in this exam-
ple there are no such actions to be done. The identifica-
tion of unmatched items is performed by marking model
elements as visited as the pattern matches are processed,
and then iterating over the unmarked items. In this exam-
ple we have been concerned simply with class names and
references, but the same approach can be applied to any
model elements, including attributes, methods, action and
their types.

We call the process of pattern matching and template ap-
plication a transformation rule. A complete transformation
consists of many transformation rules, and these are prior-
itized to establish a required partial order. The definition
of a rule may include a declaration of other rules that must,
for consistency, be applied before or after the current rule,
either immediately or eventually. This might be necessary,
for instance, to normalize or optimize the target structure,
but it may or may not be important to do this immediately
before or after the rule application. We leave to the trans-
formation engine the selection of an optimum linear order
of rule application subject to the constraints given.

In terms of the semantics of the transformation, we can
see the rules from a functional point of view, with each rule
application yielding a new model, which then forms the in-
put for the next rule, together with the pattern and template
for that rule. This does not mean that repeating copying
is required in an implementation, since any optimization
with equivalent results can be applied, but it is the simplest
expression of the transformational behaviour. If a declara-
tive view is taken, the chain of rules form a series of con-
straints linked via intermediate working terms (see figure 7),
and, again, optimization of the structure of the constraints
is clearly possible.

advice

rule one

pattern
model

template
model

rule two

pattern
model

template
model

T2T1business
logic

woven
target

working
model

Figure 7. Linking of rules in a series of trans-
formations.

5 Implementation issues

The approach to aspect merging described in this paper
is the basis of a proof of concept pilot implementation pro-
duced by one of the authors (Liyanagama). This implemen-
tation is currently being tested with a number of scenarios,
including those described here, and the details of the repre-
sentations refined.

This implementation is based on the Eclipse platform
and the Eclipse Modelling Framework. This environment
forms a good basis for collaboration, but has some limita-
tion because the emphasis within EMF is primarily on the
static structure expressed in terms of class diagrams. The
ECore model supports EClass, EAttribute, EReference and
EOperation, but does not have a first-class representation
of behaviour (the ECore distinction between EAttribute and
EReference has also led us to use a redundant diagramming
convention showing both association and reference, as be-
ing a compromise between the abstract and concrete sup-
porting structure).

It would be possible to extend the EMF ECore to include
the modelling of behaviour, but this would be a substan-
tial piece of work in its own right. For the proof of con-
cept implementation we have taken the approach of anno-
tating classes with a separate algebraic representation of be-
haviour, in a process algebra style. The annotation covers
both the behaviour of objects as autonomous entities (which
we say have internal behaviour) and objects as responders
to specific operation invocation (method behaviour). We be-
lieve that this approach demonstrates the requirement on the
transformation mechanisms without undue additional im-
plementation effort.

The rule structure and dependencies are expressed in
a simple constraint language defined in terms of an Antlr
grammar. Details of this language go beyond the aims of
this paper, but it binds pattern and template to the rule and
declared default behaviour (see below). There is also a sep-
arate configuration declaration that binds model names to

Eclipse resources.

6 Transformation rules for structure

Returning to the outline of the transformation process
given in section 4, this section provides detail of the struc-
tural matching and rewriting process. After presenting the
general mechanisms, we illustrate them by reference to the
security scenarios. An almost complete representation of
one of the security examples used is given in figure 8.

6.1 Specific rules

The syntactic structure of the pattern model is taken
from normal UML, but the interpretation the model takes
is slightly, but significantly, different from that in the nor-
mal modelling process. This is because the model is created
to match cases in the base model, rather than to be the basis
of an instantiation process. Model elements in the pattern
are named to identify their roles in the matching process,
but constraints associated with them are evaluated against
potential matches. For example, the class named “X” in
figure 6 (b) represents a role called “X”, but could have an
associated condition, such as X.name().equals(“B”), which
would restrict possible matches to those in which the class
matched by this role has name “B”. Similarly, conditions
can be applied to match attribute values, or test correspon-
dence between properties of entities in different roles. One
might, for example, restrict selection to cases where two en-
tities are associated in a specific way to an anonymous third
party.

The template model is again structurally familiar from
UML, but is extended by allowing any textual item to be re-
placed by a term construction expression that takes names
or other properties from the matched roles to construct tar-
get element names. For the prototype, this string manipu-
lation is kept very simple. Literal strings are represented
directly, but material from the matching elements can be in-
cluded. Role names are bracketed with “$” characters, and
interpreted by reference to the matching elements for the
case being processed. If they are unqualified, the name of
the matching element is used, but OCL navigation expres-
sions can be used to identify other related elements and their
name used instead. In the example above, the role name
“X” substitutes to “A” in the first match and “B” in the
second match. The evaluation can, of course, be trivial, as
in the leftmost element in figure 6 (c), where the attribute
name is simply a literal.

Some pieces of syntactic sugar have been added to sim-
plify common operations. To support transformation of op-
erations, a notation for manipulating signature parameteri-
zation is provided, so that it is easy to specify that the aspect
advice adds additional parameters to an operation signature.

Another requirement is for representing systematic changes
to be applied to all operations of a particular class.

Once a textual term has been constructed, it is used as
a reference within the target model. If the named element
does not yet exist in the target it is created; match process-
ing is sequenced to respect containment constraints, so that
classes are processed before attributes, for example, and an-
notations containing behavioural and other constraints last
of all. If an element already exists, the features from the
template are merged into it to enhance the target model.

In the course of the creation or identification of elements
in the target model, tracing records of correspondence be-
tween the source and target are maintained. This is done
by default by tracing name evaluation with a unique source
term contribution (thus, in the example in figure 6, we have
traces A ⇔ T A, B ⇔ T B, but no trace to T A B). In
some cases, one matched element yield multiple target ele-
ments, so that there is no clear preference for one unique
trace. A syntactic marker in the template is used to re-
solve the ambiguity, and this has proved sufficient for the
test cases treated so far.

If any elements matched by the pattern are not referenced
by the template model, they will not be carried forward into
the target model. In the imperative interpretation, this im-
mediately gives the effect of element deletion. In the declar-
ative interpretation, it removes the requirement to maintain
the target element, enabling it to be pruned.

Finally, a default translation is applied to any items not
marked as participating in any match. This includes unref-
erenced classes and unreferenced attributes and operations
in referenced classes. The default behaviour for the rule is
declared by the rule definition, but may involve systematic
renaming of elements being copied, for example. Default
copying of associations between classes which have been
matched draws on the tracing information to ensure that the
appropriate connectivity is maintained; if the tracing infor-
mation does not yield a target class, the association is dis-
carded.

Tracking has also to be taken into account in perform-
ing the default copy step, because items being copied may
include references that require renaming or retyping as a re-
sult of the transformation (see, for example, the reference in
the client2 class in figure 8 (d)).

6.2 Use in the security scenarios

The selection of places where the security mechanisms
need to be applied is performed by using labeling of the
classes in the business logic with the names of the appro-
priate trust domains, introduced as marker attributes (see
section 8 below for possible generalizations of this mech-
anism). An OCL constraint on the attributes in the two
classes in the pattern representing the client and server roles

T_server

+getCode(token : Token, name : String) : int
+buy(token : Token, code : int) : null
+getCode(name : String) : int
+buy(code : int) : null

Authenticator

+getToken(id : String, pwd : String) : Token
+releaseToken(token : Token) : null
+checkToken(token : Token) : boolean

Authenticator

+getToken(id : String, pwd : String) : Token
+releaseToken(token : Token) : null
+checkToken(token : Token) : boolean

client2

+serverRef : server
+code : int
+domain : SecDomain = secure

client1

+serverRef : server
+code : int
+domain : SecDomain = public

server

+domain : SecDomain = secure

+getCode(name : String) : int
+buy(code : int) : null

client2

+serverRef : server
+code : int
+domain : SecDomain = secure

T_client1

+serverRef : T_server
+code : int
+token : Token
+id : String
+pwd : String
+authRef : Authenticator

+revoke()

T_Y

+auth:Authenticator()
+<op>(token : Token, ...)

T_X

+$Yref$: T_Y
+token : Token
+id : String
+pwd : String
+auth : Authenticator

+revoke() : null

X

+Yref : Y

Y

internal:
 <ss|token = auth.getToken(id,pwd):Token>;
 Y.<op>(t, ...):any;*
 <se|auth.releaseToken(token); token = null>

revoke():
 token = null;

inv:
X.domain=public & X.Yref.domain=secure

getCode(token:Token, name:String):int :
 checkToken(token);
 localGetCode(name);

buy(token:Token, cone:int): null :
 checkToken(token);
 localBuy(name);

internal:
 <ss>;
 code = serverRef.getCode(s:String);
 serverRef.buy(code);
 <se>

internal:
 <ss>;
 code = serverRef.getCode(s:String);
 serverRef.buy(code);
 <se>

internal:
 token = authRef.getToken(id,pwd);
 code = serverRef.getCode(token, s);
 serverRef.buy(token, code);
 authRef.releaseToken(token);
 token = null

revoke():
 token = null;

internal:
 code = serverRef.getCode(s);
 serverRef.buy(code);

<op>(token:Token, ...):
 checkToken(token);
 <op>(...);

(c)

(a)

(b)

(d)

Figure 8. Security session mechanism example.

evaluates to true in the cases where there is a domain cross-
ing from less to more secure, and hence where some inser-
tion is required.

The manipulation of operation parameters is used in the
security examples to add security specific information, such
as user identity and password in the gateway mechanism
and the short-lived token in the extended session mecha-
nism.

In general, a pattern designer will need to decide whether
self-references should be included or excluded, and add any
necessary constraints explicitly. However, in the example
given here, the domain constraint implicitly excludes self
reference.

7 Transformation of behaviour

7.1 Specific rules

The first requirement in order to maintain a coherent be-
haviour specification is to ensure that consistency is main-
tained between the behaviour specification and the opera-
tions invoked by it. In order to do this, it is necessary to
extract from the source model a partial call graph for invo-
cation of operations on one class by another, rooted in the
various matched roles. The call graph contains the same de-
pendency information that would be found in a full set of se-
quence diagrams, but in a form that is more directly usable
for steering the transformation process. Once this graph has
been created, it can immediately be used to update the sig-
natures of operations at the invocation sites to make them
consistent with the target model representations.

Creating a call graph is expensive, but unavoidable if the
merged model is to be a correct representation of the in-
tended behaviour. When incorporation of a non-functional
aspect requires additional information to be added to a
method’s parameters, for example, it is necessary to find all
users of that method and modify them accordingly, recur-
sively repeating this process until another joinpoint capable
of providing the information needed is reached. In practice,
the associated scaling problems are likely to limit the com-
plexity of the aspects that can be woven with large business
models.

Note that the selective application of an aspect may result
in the need for support of more than one instance of, for
example, a service interface. In figure 8 (d), for example,
variants of operations are generated because there exist both
inter and intra-domain references to the service.

The second aspect of behavioural transformation is the
merging of behavioural specification in the source model
and the behavioural specification in the template model.
Ideally, this should be based on the same form of pat-
tern matching as in the static structure above. However,
given the pragmatic simplifications outlined in section 5, the

matching mechanisms in the prototype are currently based
on text matching in the annotations.

The commonest case is the expansion of the behaviour
associated with operation execution, and this forms a sep-
arate named section in the behaviour of the class support-
ing the operation. The second significant requirement is
the modification of behaviour invoking operations in other
classes, and this typically involves addition of supporting
behaviour to establish an aspect-specific context for the
operation invocations. This requires context establishing
and context closing behaviour and decoration of significant
events within the bracketing formed by these. In figure 8
(c), the annotation on T X shows the structure of a tem-
plate context specification.

7.2 Use in the security scenarios

The most significant behavioural transformations are
those associated with the introduction of the session-based
token mechanisms. The duration of the session must be de-
rived from some structural information in the business logic.
We assume here that the scope of appropriate sessions is
represented by annotations the can be recognized within the
business logic.

In practice, one might use existing features, such as
transaction markers to deduce context. It should, in future,
be possible to perform a more detailed flow or escape anal-
ysis to determine context, but this would require a complete
behavioural component in the specification. Minimizing the
residual requirements for annotations on the business logic
remains a research challenge.

8 Additional transformation requirements

In the scenarios analysed above, the classes in the model
are annotated with their trust domains for simplicity. In the
real world, however, different instances of a given class will
be in different trust domains, and so the trust constraints in
the selecting pattern needs to be more selective. This is a
general problem, because one of the ways of simplifying
the class structures in the business logic is to abstract away
from the non-functional aspects.

Indeed, the reliance on static class structure in current
model driven development systems does tend to lead to
some lack of flexibility. Early binding of application com-
ponents to specific platforms leads to rigid solutions, and
speculative generation of multiple solutions increases sys-
tem overhead. Late binding of a PIM to the currently avail-
able platform by just in time generation of the PSM would
be an attractive option if the tool chain can be made suf-
ficiently agile, but this implies that the transformation is
driven in part by properties of instances, not type informa-
tion.

These requirements lead to a need for configuration in-
formation at the instance level to be both an input and, po-
tentially, an output of the transformation process. In the
same way, availability of historical loading data at the in-
stance level would make adaptive generation of systems that
meet quality of service performance targets possible.

9 Conclusions

This paper has introduced an approach to the merging of
security information and business logic that minimizes the
amount of specialist transform specification required and
maximizes the use of model fragments in familiar and well
understood notations.

Whilst the general framework presented here could be
parameterized with sources, patterns and templates that use
different notations, the authors believe that there are ad-
vantages to keeping the notations used by the largest num-
ber of design practitioners the same, and encapsulating the
more challenging parts of the weaving process in broadly
reusable transformation rules. However, some extensions
to the basic modelling language are needed; the need for
template notations for constructing model element names
has been demonstrated, but there are other areas. One such
is the need for an ellipsis mechanism in patterns for repre-
senting a match with any arbitrary piece of model, such as
an arbitrary inheritance chain or invocation path. We expect
other requirements to arise from further case studies.

The current focus of our work is on the completion of our
proof of concept demonstration implementation and evalua-
tion of it using a broader set of test cases. We would expect
this to involve both more complex security solutions and
some investigation of other non-functional aspect require-
ments.

Acknowledgements

The authors would like to acknowledge the contribution
to the initial development of the ideas presented here made
by work done in the InterOp Network of Excellence, IST-
508011, under the Information Society strand of the sixth
European Framework Programme.

References

[1] J. Bézivin, G. Dup, F. Jouault, G. Pitette, and J. E. Rougui.
First experiments with the atl model transformation lan-
guage. In 2nd OOPSLA Workshop on Generative Techniques
in the context of MDA, 2003.

[2] J. de Lara and H. Vangheluwe. AToM3: A tool for multi-
formalism and meta-modelling. In 5th International Confer-
ence on Fundamental Approaches to Software Engineering,
pages 174–188, 2002.

[3] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, ed-
itors. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 2: Applications, Languages and
Tools. World Scientific, Signapore, 1999.

[4] P. Epstein and R. Sandhu. Towards a UML based approach
to role engineering. In Symposium on Access Control Mod-
els and Technologies Proceedings of the fourth ACM work-
shop on Role-based access control, pages 135–143, Fairfax,
Virginia, USA, 1999.

[5] ISO/IEC IS 10746-2, Information Technology - Open Dis-
tributed Processing - Reference Model: Foundations, 1996.

[6] ISO/IEC IS 10746-3, Information Technology - Open Dis-
tributed Processing - Reference Model: Architecture, 1996.

[7] J. Jürjens. Model-based security engineering with uml. In
FOSAD 2004/05. Springer Verlag, 2005. Tutorial volume,
LNCS.

[8] A. Kalnins, J. Barzdins, and E. Celms. Basics of model
transformation language mola. In Workshop on Model
Transformation and execution in the context of MDA,
ECOOP 2004, Oslo, Norway, 2004.

[9] G. Kiczales et al. An overview of AspectJ. In ECOOP 2001 -
Object-Oriented Programming: 15th European Conference,
Budapest, Hungary, 2001.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and I. J. Aspect-oriented program-
ming. In ECOOP, pages 220–242, 1997.

[11] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In ICSE 2005, pages 49–58, 2005.

[12] C. Köllmann, K. Kutvonen, P. Linington, and A. Solberg.
An aspect-oriented approach to manange QoS dependability
dimensions in model driven development. In Proceedings
MDEIS Workshop, page 10, June 2007.

[13] M. Lawley and J. Steel. Practical declarative model trans-
formation with Tefkat. In Model Transformation in Practice
Workshop, part of the MoDELS 2005 Conference, Montego
Bay, Jamaica, 2005.

[14] P. Liyanagama. A study of aspect-driven transformations
to facilitate model driven developmnet. In Interoperability
for Enterprise Software and Applications: Proceedings of
Doctoral Symposium of I-ESA2006, pages 285–296. ISTE,
Mar. 2006.

[15] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A
UML-based modeling language for model-driven security.
In 5th International Conference on The Unified Modeling
Language, pages 426–441, 2002.

[16] OMG. The MDA Reference Model, 2004. ormsc/04-02-01.
[17] OMG. MOF Query / Views / Transformations, 2005. ptc/05-

11-01.
[18] D. Simmonds, A. Solberg, R. Reddy, R. France, and

S. Ghosh. An aspect oriented model driven framework. In
The Enterprise Computing Conference (EDOC 2005), En-
schede, Netherlands, 2005. IEEE.

[19] R. Soley and the OMG staff. The model driven architecture
whitepaper, 2000. OMG document.

[20] R. J. Walker, E. L. Baniassad, and G. C. Murphy. An initial
assessment of aspect-oriented programming. In 21st Inter-
national Conference on Software Engineering, Los Angeles,
CA, USA, 1999.

