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Abstract— Recently there has been significant interest in
evolving genetic regulatory networks with a user-determined
behaviour. It is unclear whether or not artificial evolution
of biochemical networks can be of direct benefit for or bi-
ological relevance to Systems Biology. This article highlights
some pitfalls when concluding from artificially evolved genetic
regulatory networks to real networks. This article also gives
a (brief) review of some previous attempts to evolve genetic
regulatory networks with oscillatory behaviour; it also describes
a new system to evolve networks and describes the networks
that have been evolved. These networks seem to be very diverse
sharing no apparent common motifs either with one another
or with their real-life counterparts.

I. INTRODUCTION

Systems Biology[1], [2], [3] aims to create a precise
understanding of cellular processes by designing and sim-
ulating detailed models of biochemical processes (see for
example [4], [5]. Most of this work includes models that
are directly informed by extensive wet-lab experiments sup-
plying interaction maps and (partially) parameters such as
binding affinities, dissociation rates, transcription/translation
efficiencies etc... This approach is fast producing valuable
results for the biological community, allowing the detailed
understanding and analysis of complex cellular processes.

An important part of Systems Biology is to create models
that are as realistic as possible. One of the main difficulties
to achieve this realism is the lack of quantitative information
about parameters. The qualitative properties of biochemical
systems will crucially depend on the various rates and
affinities between the reacting pairs. Significant uncertainties
in the knowledge about those parameters can result in even
more significant uncertainties about the dynamical properties
of the system under consideration.

There are a number of ways to overcome this problem.
One relatively simple way is to fit the model to some known
data. There are a number of statistical and software tools to
do this [6], [7]; fitting models is under certain circumstances
a very good solution, however, not useful if the available
empirical data is unreliable or if there is simply very little
data available. Also, model fitting will only be effective
if there is not too much uncertainty about the parameters.
Besides model fitting, another way to determine unknown
parameters is to measure them. This method is (in principle)
the best method but has the disadvantage that it is (i)
relatively expensive (in terms of both money and time), (ii)
possibly not feasible, and (iii) itself often plagued by large
uncertainties.

While Systems Biology modelling is rapidly advancing all
this shows that even very sophisticated modelling approaches
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are affected by a certain degree of uncertainty in particular
about parameters. At present, there is no real solution to
this and only gradual progress is made. Given this situation,
complementary methods in Systems Biology might (in some
circumstances) lead to additional insights into the processes
to be modelled. In particular, various methods from com-
putational intelligence can enhance the modelling process in
Systems Biology. It would go beyond the scope of this article
to review possible uses of artificial intelligence and machine
learning in Systems Biology (but see for example [8]).

The focus of this contribution will be on the use of
genetic algorithms[9] (and similar methods) to evolve ge-
netic regulatory networks that display a user-defined target
behavior; for example, this target behaviour might be a
qualitative temporal variation pattern of the concentration of
one (or several) proteins. The question is whether or not
artificial evolution could give valuable insights into how real
biochemical models evolve; what types of insights it can give
and under what conditions.

A. Organisation of this article

This contribution focuses on evolving genetic regulatory
networks with oscillating dynamics. There are no hard bi-
ological reasons why oscillations are chosen as the target
behaviour (rather than any other type of dynamics). Instead,
this choice was motivated by the fact that related previous
work considered oscillations and because oscillations are
conveniently recognised.

This article is organised as follows. The following section
II will briefly review some previous work on oscillating
genetic regulatory network. Section III will describe the
software used to evolve genetic regulatory networks. Sec-
tion IV will summarize some of the results obtained from
simulations of the software. In particular, it will present
some of the networks that have been evolved. Section V
thereafter will discuss the results and compare them to the
results obtained by previous authors; it will also argue that at
present the connection between real and artificially evolved
genetic regulatory networks is unclear and that more research
is needed before artificial evolution of genetic regulatory
networks can make a substantial contribution to concrete
cases in Systems Biology. The article is then concluded by
section VI.

II. PREVIOUS WORK

There have been several previous attempts to understand
oscillatory dynamics in genetic regulatory networks[10],
[11], [12]. A well know example is work by Elowitz and
Leibler[13] who implemented a 3-gene network where the
genes suppress one another in a cyclic fashion; this 3-gene
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repressive system is known as the repressilator. Smith[14]
theoretically predicted networks of genes that repress one
another in a cyclic fashion to produce oscillations as long
as the number of genes is odd. Elowitz and Leibler were
the first to demonstrate this in a synthetic genetic regulatory
network implemented in a live bacterium.

The idea of using artificial evolution to better understand
real biological systems is not new. One early example is
due to Mittenthal and co-workers[15] who attempted to
understand whether or not the Krebs citric-acid metabolic
cycle was optimal or whether it could be further optimized.
Mittenthal and coworkers only modified the reaction rates
but did not evolve the structure of the interaction network.

A more recent attempt to use evolutionary computation to
find genetic regulatory networks that show a user-defined
behaviour is by Francois and Hakim[16]; they describe
an algorithm to evolve genetic regulatory networks with
oscillatory dynamics. Francois and Hakim use a simple
genetic algorithm to evolve both the structure (i.e. number
of genes and their interactions) and the reaction rates of
genetic regulatory networks. Since they essentially evolve
sets of differential equations the standard genetic operator of
crossover is difficult to apply in their case and they only use
mutations as a source of evolutionary variation. They allow
a great variety of different interactions between proteins and
genes but also the formation of protein dimers. In their paper
Francois and Hakim claim that their oscillator is structurally
similar to the network responsible for the circadian rhythm.
While this might well be the case, I think, and will argue,
that any similarity is merely coincidental and is not a pointer
to a deeper universality among oscillating genetic regulatory
networks.

Another problem of the paper by Francois and Hakim
is that they only consider deterministic systems. There are
two broad approaches to modelling systems of interacting
molecules. Deterministic approaches are based on the as-
sumption that the concentration of a molecular species in a
solution is essentially a continuous quantity; such determin-
istic systems are normally modelled as a set of differential
equations and solved using standard numerical integration
techniques. Deterministic approaches are convenient because
they allow the modeler to use very fast techniques to calcu-
late the time-course of the concentrations; however, many
bio-chemical systems are not well modelled as deterministic
systems because particle numbers can be relatively low.
In these cases statistical fluctuations become relevant and
systems need to be modelled using stochastic approaches that
take into account that molecules exist in discrete quantities.
There are specialized algorithms such as the Gillespie[17]
algorithm or the Gibson-Bruck[18] algorithm to simulate
stochastic systems. Particularly in prokaryotic genetic reg-
ulatory systems, stochastic effects can often not be ignored.
Stochastic effects potentially have a significant impact on
the evolution and evolvability of a networks as well. In
the context of artificial evolution it is therefore essential to
consider both types of models.

Another approach to evolve genetic regulatory networks
is taken by Drennan and Beer[19] who describe a genetic
algorithm to evolve the repressilator. Other than Francois
and Hakim these author do not evolve sets of differential
equations; instead the properties of their genetic regulatory
networks are directly determined by a string composed of 4
different letters mimicking the role of real-world DNA. Tran-
scription rates and the modification of these rates through
activators and repressors is directly encoded by the sequence
of the pseudo-DNA. The advantage of this approach is
that it allows straightforward implementation of crossover
thus making the genetic algorithm more efficient. On the
downside, their approach strictly limits the space of possible
models. In the system of Drennan and Beer there is no
scope for protein-protein interactions and it is hard to see
how it could be implemented without significantly changing
the system. Also different to the approach by Francois and
Hakim is that Drennan and Beer use stochastic models.

A similar scheme was used by Knabe and co-workers[20]
to evolve oscillators that interact with the environment.
Again, in this system proteins and their properties are explic-
itly coded for by a single genome string. As in the scheme
of Drennan and Beer this system only allows for protein-
gene interaction but does not include the formation of protein
compounds.

A. Objective of this contribution

The approaches by Drennan/Beer and Knabe and cowork-
ers are useful for the particular questions they ask, but
they rely on a very schematic representation of real cellular
interactions. On the other hand, Francois and Hakim has a
more general approach to evolve genetic regulatory networks,
but does not contain systematic investigation of the types of
oscillators evolutionary processes yield.

The objective of this contribution is twofold. Firstly, on a
technical side, I will introduce a system similar to the one by
Francois and Hakim to evolve oscillating genetic regulatory
networks. This system will be used in order to (i) extend on
the results reported by Francois and Hakim in [16] where
only very little information is given about the performance
of their method and the range of results they obtained. (ii)
Another (minor) objective is to compare these results to
the regulatory networks evolved by Knabe and coworkers
and Drennan and Beer. (iii) Finally, I will also provide a
discussion on how evolving genetic regulatory networks can
(and cannot) contribute to a better understanding of concrete
systems in Systems Biology.

III. DESCRIPTION OF THE SOFTWARE

A simple algorithm is used to evolve a population of
models of genetic regulatory networks. Every individual of
the population is a model of a genetic regulatory network;
each individual/model consists of a number of genes (labeled
X1,X2, . . .), corresponding RNA (labeled R1, R2, . . .) and
protein (or product as it will be called here; labeled
P1, P2, . . .). Each model is defined by a set of reactions and
reaction rates that specify which compounds (gene-protein
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and protein protein compounds are allowed) are formed, the
speed of transcription/translation and association/dissociation
of compounds, as well as degradation rates and other neces-
sary parameters of the model. In the initial population every
model is randomly generated. Subsequently, at every time
step every member of the population is assigned a fitness and
ranked accordingly; then the least fit individual is replaced
by a (mutated) copy of the fittest; similarly the second un-
fittest is replaced by a mutated copy of the next fittest and
so on (the mechanics of mutations is described below). In
this way, at each time-step up to half of the population is
replaced by mutated variants of fitter solutions.

In all simulation runs considered here the fitness of a
model is determined by how well the time course of the
concentration of (the arbitrary) product P1 conforms to a
given target behaviour. In this article the considered target
behaviour is an oscillation given by 200 cos( x

20
). Since

this article is not concerned with matching the model to
a particular phase or amplitude during fitness evaluation
the output of the model is not directly compared to the
target function, but instead the respective autocorrelations
are compared. One disadvantage of using the autocorrelation
rather than an absolute time course of the concentration as
benchmark is that the fitness will strongly depend on the
sampling frequency of the simulator; if for example 10000
samples are taken for every time unit of the simulator, then a
given oscillation will appear of much lower frequency than if
only 10 samples are taken. This is not a very serious problem,
however, because in the current context “real” time units are
not of particular interest. The results are kept comparable
by simply retaining the same sampling frequency for all
experiments.

The simulator used during fitness evaluation of the mod-
els was the freely available “Dizzy” simulator[21]. Dizzy
implements several stochastic and deterministic algorithms;
throughout this article the Gibson-Bruck algorithm was used
for stochastic simulations and the adaptive Runge-Kutta
algorithm for deterministic solutions. In the case of stochastic
simulations each gene Xi is represented as a single molecule;
in the case of deterministic simulations genes are represented
as being present in a concentration of 0.1. This choice is
arbitrary beside the fact that the concentration of genes
should be low.

Evolutionary computation methods of the sort described
above require the entire space of allowed models to be speci-
fied (at least implicitly). In practice this is done by specifying
a range of allowed reactions. Computational experiments of
the sort described here normally require the experimenter to
limit herself to a subset of all biologically and chemically
possible interactions in order to maintain a manageable code
and interpretable results. The overarching principle guiding
the choice of interactions is of course biological plausibility,
yet there is a certain degree of arbitrariness guiding the
details of this choice, i.e. there are a number of different
choices that would be equally plausible. The particular choice
for the system introduced in this contribution is as follows:

• Every model has at least two genes.
• The genes are transcribed into RNA at specific rates and

the RNA is translated into the product of the gene.
• Gene products can bind to genes; this alters the tran-

scription rate of the gene. If the compound is transcribed
at a higher than leak rate (i.e. the transcription rate of
the unbound gene), then the respective product is an
activator, otherwise it is a repressor. The leak rate can
be zero.

• Genes can simultaneously bind to up to two products;
the species of the first and the second product can be
equal and can even be from the same gene. So, there
could be models where gene X1 forms compounds
X1P1 and X1P1P1 where P1 is the product of gene
X1.

• Products can form compounds by homo- or het-
erodimerisation.

• Genes can bind to compounds of products; product
compounds act as perfect inhibitors of gene expression,
i.e. while a gene is bound to a compound it will not
transcribe any RNA (not even at the leak rate).

• Products will decay at a specific rate, although this rate
is allowed to be zero.

• Products can catalyze each others decay. So, for exam-
ple, a molecule of P1 might catalyze the breakdown of
a molecule of P3. Products might catalyze their own
decay.

Every model will typically have only a subset of all possible
features. That is, a given gene might, for example, only bind
to one rather than two compounds (or none). Only some of
the possible product-product compounds will form and only
some of the genes will be inhibited by a product compound.
The source of variation in the software are mutations (as
described above). A mutation involves one of the following
actions:

• Mutate any of the rates (i.e. translation, transcription,
binding or dissociation rates).

• Add/remove gene. Whenever a gene is removed then
all the reactions involving its product are removed as
well. If a new gene is created then initially it will not
be connected to the system through interactions. The
maximal number of genes allowed in the system is
determined by the user.

• Add/remove interactions (i.e. new gene-product or
product-product compounds).

• For a chosen product Pi add/remove a breakdown cata-
lyst. Note that the decay of a product can be catalyzed
by at most one other product.

Mutations of reaction rates are mostly gradual, i.e. only small
changes to rates are made during any mutation. However, the
rate of breakdown of a product by another one can be turned
on/off in a single mutation.

IV. RESULTS

Evolving a genetic network is computationally very costly.
Evaluating the fitness of one generation requires (in the
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current settings) about 50 simulations of different genetic
network models. Finding low fitness candidates can take up
to 20 thousand time steps. So, altogether this then requires of
the order of 1 million of models to be evaluated. As it turns
out, however, the success rate of the evolutionary algorithm
is very low in the sense that most runs never converge to
acceptable solutions. Hence it is necessary to perform many
runs in order to find just a few successful ones. Depending on
the parameters, there will be between 1 and 3 successful runs
in every 30 runs. Determining the exact success rate would
require significant computational resources and is beyond
the scope of this contribution. However, there is significant
scope for improving the performance of the algorithm; this
is not the focus of this contribution and will be left for future
research.

The overall picture emerging from all simulations is as
follows:

• Stochastic oscillators seem to be relatively common in
the (considered) space of all models; this observation
is consistent with theoretical predictions that stochastic
oscillators are more common than deterministic ones.
Furthermore, these stochastic oscillators do not readily
generalise to deterministic oscillators, that is the average
behaviour taken over many runs will be non-oscillating
(usually tending to a steady state average behaviour);
again, this behavior is consistent with theoretical results.

• Stochastic oscillators are often of poor quality in the
sense that both frequency and amplitude is variable
over time. This effect is due to stochastic effects and
therefore stronger in systems with low particle numbers.
High quality stochastic oscillators are difficult to evolve
in the present framework.

• The evolved stochastic systems tend to be small (often
only 2 genes). Deterministic systems are normally larger
and evolve to a size of about 4 or 5. By restricting
the allowed maximal size of a model it is possible to
evolve deterministic oscillators with only 2 genes; this
suggests that the density of oscillators among 4-gene
systems is higher than in 2 gene systems. No example of
oscillators involving more than 5 genes was observed.
It is likely that this is due to an inherent bias of the
evolutionary algorithm for smaller systems, rather than a
reflection of the density of oscillators in larger systems:
Any newly added gene is initially unconnected to the
rest of the system and will as such not contribute to any
oscillations. It is therefore likely to be removed again.

A. Description a specific runs

In this section a few models that have been evolved will
be described. This will give the reader an intuition of the
type of result the evolutionary process leads to. It should be
noted, however, that there is a great variance between the
various evolved networks; in fact one of the results of the
experiments presented here is that there appears to be no
typical network pattern that consistently evolved throughout
a large proportion of the experiments.

1) A deterministic example: In this subsection a specific
(deterministic) oscillator will be described. It consists of 4
genes. The interactions of the system are depicted in figure
IV-A.1. The most important features are:

• The genes X1 and X2 are controlled by the products
of genes X3 and X4: Transcription of X1 and X2 is
suppressed by P3 and by the product compound P4P4.

• Transcription of X3 is suppressed by P4P4 but ac-
tivated by P2. Furthermore breakdown of X3 is cat-
alyzed by P4.

• Transcription of P4 is strongly suppressed by P1 and
the compound P2P3.

In this system the product P4 plays a pivotal role in that
it suppresses every other gene and is itself suppressed by
every other gene. This antagonistic relation between P4 and
the other products is necessary for the oscillatory behavior
yet by no means sufficient. The formation of compounds
of products is, in this particular system, also necessary for
the observed oscillations. This applies both to the product
compounds that repress the genes X1-X3 but also other
product compounds that do not, such as P1P3 that are not
involved in suppressing other genes. This is illustrated in
figure IV-A.1: As the association rate of P1P3 is reduced
the amplitudes of the oscillations become smaller to the point
where oscillations effectively cease to exist. While P1P3
does not itself act on any of the genes, it functions as a sink
for the products P1P3 and as such introduces a delay into
the system that is crucial to the oscillatory behavior.
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Fig. 1. This figure shows the oscillator for 3 different association rates of
the P1P3 compound. Note that this compound is by itself not repressing
any of the genes, yet nonetheless it appears to be crucial for the oscillatory
behavior. The rate that was found by the evolutionary process is 0.9749.
As the figure shows, increasing this value (to 1.9749) leads to a larger
amplitude, whereas decreasing the value leads to smaller amplitude. In
the present case the value was decreased to 0.09749 which led to the
disapearance of the oscillations.

2) A stochastic example: The second example is a
stochastic oscillator. This is an example of a system that
evolved to a size of 4 genes, but, as it turns out two of its
genes are not necessary for the oscillation. The main features
of the system are as follows:

• The product P1 activates both itself and X3.

878 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on November 12, 2009 at 06:14 from IEEE Xplore.  Restrictions apply. 



Fig. 2. A schematic representation of the most important interactions
in the deterministic oscillator described in section IV-A.1. Note that this
diagram is only a schematic representation of the interactions, but does not
contain any reaction rates; in order to simplify the diagram the breakdown
of proteins is also not represented unless it is catalyzed by another product.
As such it does not provide enough information to repeat the simulation.
The complete Dizzy source code of the model can be obtained from the
author upon request.

• X1 is suppressed by P1P2.
• The breakdown of P1, P4 and P2 is catalyzed by P3.
• P2 and P4 suppress their own respective genes and P4

is also suppressed by P1P4.

A closer inspection of this system revealed that removing
genes X2 and X4 will not significantly impact on the
system’s ability to oscillate. So, even though the network
evolved to a size of 4, half of the genes are not required for
the oscillatory behaviour. That only X1 and X3 are required
for the oscillation is rather surprising and not immediately
clear from pure visual inspection of the interaction map of
the system.
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Fig. 3. This figure shows a 5000 time-step window of 3 runs of the same
stochastic oscillator. Clearly, the 3 runs are not in phase but clearly show a
periodic surge in the particle number of P1. Comparison with figure IV-A.1
show that the period is approximately equal, i.e. there are 3 maxima in a
given window of 5000 time steps for all three runs.

Fig. 4. A schematic representation of the most important interactions in
the stochastic oscillator described in section IV-A.2.

B. A maximally simple (stochastic) oscillator

This oscillator is perhaps the simplest type of oscillator
that can be evolved. It is so simple that the oscillatory dy-
namics can be intuitively understood; furthermore, it is clear
that this oscillator will not work in a deterministic version
but strictly relies on the fact that particles are discrete. The
system consists of only 2 genes. In this particular example
there was no intermediate RNA, so products were directly
produced from genes without the delay of producing RNA.
Also, in this test case there was only one activator/repressor
allowed per gene.

The two products in this system repress one another’s
genes totally; so, as long as the compound P1X2 exists no
new P2 will be produced; the same holds for P2X1. Further-
more, the product P2 catalyzes both its own breakdown and
the breakdown of P1. Since P2 has a high affinity for X1
no new P1 will be produced as long as P2 is around. At the
same time, P2 efficiently catalyzes its own breakdown; as a
consequence there will normally only be one (or very few)
molecule of P2 in the system (see below for an explanation).
This molecule will decay at some point, but in the meantime
it will catalyze the breakdown of P1 and hence drive down its
number. Once it has decayed the amount of P1 will increase
again, until, at some point another P2 is expressed. The
resulting behaviour is that there are spikes of P1, whenever
there is no P2 in the system. The evolved parameters work
out such that these spikes occur with (approximately) the
given frequency. Finally, there was another interaction that
turned out not to be essential for the oscillatory behaviour:
Formation of the P1P2 compound. This dimerisation acted
as a temporary sink for P1 and P2 and resulted overall in
smoother oscillations. Yet, other than in the case discussed
above, here the formation of the product compounds was not
essential for the oscillatory behaviour.

There are two features of this system that deserve at-
tention: Firstly, the oscillating behaviour crucially depends
on the fact that molecules are discrete entities. Since P2
efficiently catalyzes its own breakdown, in a deterministic
model the concentration of P2 would quickly approach zero;
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in the stochastic model on the other hand the breakdown of
P2 by itself will stop when there is only a single molecule
left in the system.

Secondly, this system is similar to the repressilator in
that the dynamics of the system depends on the mutual
suppression of the genes. Yet, again theoretical results predict
that a 2-gene deterministic repressilator does not oscillate,
whereas this stochastic system does.
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Fig. 5. This figure shows three runs of the simple oscillator described in
section IV-B. From the figure it is clear that the quality of the oscillator is
not extremely high, but there are about 3 periods for every 5000 time steps.

Fig. 6. A schematic representation of the maximally simple oscillator
described in section IV-B.

V. DISCUSSION

1) Relation between evolved and real networks: Artificial
evolution certainly can play a role in computational Systems
Biology. However, the relation between real and evolved
networks is a subtle one and one needs to tread carefully
when inferring conclusions about real networks based on a
few artificially evolved genetic regulatory networks. Francois
and Hakim claimed that their evolved oscillator is structurally
similar to the networks responsible for the circadian rhythm.
Is this a significant observation?

Simulations with the algorithm described here indicate that
there are no typical networks that appear as a result of the

simulation, at least in the sense that there are no obvious pat-
terns that consistently show up across all oscillating networks
that have been evolved. To be fair, the computational costs
of evolving networks is currently too high to allow a proper
statistical analysis of oscillating networks and a comparison
with random networks. This must be left to future research.
Yet, the absence of consistent circadian rhythm like genetic
regulatory networks in the system described here indicates
the following: Any similarity of Francois and Hakim’s results
to any real oscillator was either coincidental or due to some
special design features of their system. If the former is the
case, then this similarity is of course of no relevance; if the
latter is the case, then Francois and Hakim need to provide
an argument as to why their system is more correct than ours
(or the one of other authors). Only then can the similarity
be considered significant. Bearing in mind, though, that their
system and ours are very similar in terms of the interactions
they allow, the second possibility seems unlikely.

The conclusion from this is that any similarity between
the networks evolved by Francois and Hakim and any real
genetic regulatory network is likely to be coincidental rather
than an indication of a deep universality of oscillators.
It should also be noted at this point that there are no
particular reasons to expect such a universality. Seen from
the perspective of dynamical systems, oscillatory behaviour
can be realized by a great variety of different interactions,
and will not only depend on the structure of a genetic
regulatory network but also on its parameters, i.e. the re-
action/transcription/translation rates.

Apart from this degeneracy of oscillators with respect to
network topologies there is another problem when trying
to interpret results from artificial evolution: The range of
allowed interactions that the evolutionary algorithms can use.
In real biological systems there are many different types
of molecular interactions: Steric effects or methylation can
modify binding affinities/dissociation rates, the concentration
of global regulators can change over time, there are various
types of protein-protein interactions that can act back on the
properties of individual proteins, RNA decay can be modified
in various ways, and so on and so forth. In practice, the
designer of artificial evolutionary algorithms will have to
concentrate on a rather small subset of these interactions.
This choice will by itself limit the kinds of networks that
can evolve and how fast they will evolve. For example, in
the case of the model of Drennan and Beer, the repressilator
readily evolves, whereas in the present system, among all the
evolved networks there was not one repressilator. Part of the
explanation for this is of course that the system described in
this contribution searches for oscillators in a different space
of allowed networks than Drennan and Beer’s system. In
the space considered here repressilator type oscillators are
presumably rare compared to non-repressilator oscillators.
Seen in a more general context, the bias introduced by the
design of the system becomes clear.

Finally, real genetic regulatory networks are likely to
be subjected to a number of constraints that are hard to
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reproduce in artificial evolution. Firstly, the oscillator (or any
other system) likely needed to evolve in a gradual fashion;
it also needs to remain functional at every step the system
in the sense that it is fit to perform at least some task; this
restricts the possible pathways evolution can take. Secondly,
the cell does not start from a random genome but has existing
genetic and proteomic material at its disposition; again, this
could limit the possible pathways of evolution. Thirdly, any
regulatory network in a cell must avoid interactions that
interfere with other regulatory networks in the cell thus
potentially disrupting cell function.

All these constraints are not taken into account, either in
the system presented here or any other system attempting
to evolve genetic regulatory networks in silico. Whether or
not this materially affects the plausibility of the models is a
question that needs to be clarified before artificially evolved
genetic regulatory networks can be of significant relevance
in Systems Biology.

Taken all of this into account it seems unlikely that a
similarity between Francois and Hakim’s evolved oscillator
indicates a deep universality of oscillators. None of the
oscillators evolved in this contribution are particularly similar
to Francois and Hakim’s system, or indeed to one another.
This indicates that the similarity reported by Francois and
Hakim is likely to be coincidental.

2) Efficiency: Possibly relevant with respect to real ge-
netic regulatory networks is another observation (that was not
reported by Francois and Hakim (yet confirmed in a private
communication)): It is very difficult for the evolutionary
algorithm to find oscillators in the following sense: Firstly
many runs fail to find any oscillator and those that do find
one take a very long time. Notably, the approaches by Knabe
and coworkers and Drennan and Beer seem unaffected by
this problem. This difference in efficiency might be due to a
number of reasons:

• Francois and Hakim’s systems and the present system
use a very simple algorithm without crossover. This
might be partially responsible for the difference in effi-
ciency. Experiments (not reported here) with crossover
and with various variations of the selection regime did
however not make a clear difference to the performance
of the evolutionary algorithm; this, again, is not surpris-
ing because there is no natural way to define a crossover
operator in the present scheme. Clearly more research
needs to be done to resolve this question and/or improve
the performance of the evolutionary system.

• Drennan and Beer’s system operated on a much smaller
search space than the system presented here. This might
be a contributing factor for the difference in perfor-
mance but is unlikely to be very important. In the system
discussed here the search space can be restricted, but
experiments (data not shown) indicate that this does not
lead to significant improvements.

• Likely to be important is the fitness function itself.
Drennan and Beer selected for a wide range of oscil-
lating systems; Francois and Hakim on the other hand

selected for a specific oscillating function with given
phase and amplitude. In this contribution I use an in-
between approach selecting for a given frequency based
on the autocorrelation function. It is plausible to assume
that a fitness function such as Drennan’s leads to an
easier fitness function with clearer pathways towards a
good solution.

Amongst biological systems, oscillating behaviour is not
particularly important, although there are some systems that
do show oscillations (again an example is the circadian
rhythm). While, as discussed above, artificially evolved ge-
netic regulatory networks are not necessarily very instructive
with respect to real networks, attempting to evolve artificial
genetic networks can give some insights into the challenges
that cells face themselves in their evolution. If the variation
mechanisms cells employ are similar to the mechanisms de-
scribed in this contribution (and one can plausibly argue so)
then the cell will face similar difficulties in finding oscillators
as the evolutionary algorithm does. If this is so, then there
are restrictions regarding the likely evolutionary routes that
lead to oscillators in cells: Oscillating systems are unlikely
to have evolved in a direct response to adaptive pressures
from the environment because finding oscillating behaviour
(at least with a specific frequency) seems to be difficult (at
least this is what the experiments by Francois and Hakim
and the results shown here indicate). Instead oscillations will
have evolved via (what evolutionary biologists call) a pre-
adaptation route. According to this model oscillations have
emerged as a coincidental by-product of a genetic regulatory
network that did not require oscillatory behaviour in order to
function. Drennan and Beer’s work suggest that as long as
one does not look for a specific frequency, oscillation readily
emerge. Once the oscillator was more or less functional it
would then be much easier for the cell to fine tune the
frequency and network and use it for a specific purpose.

VI. CONCLUSION

Artificially evolving biochemical networks with a specific
function is certainly of intrinsic interest. Does it also have
valuable contributions to make for concrete modelling tasks
in Systems Biology? Possibly, but at present it is not suffi-
ciently developed for this task. At present there are a number
of open problems regarding the methodology of evolving
genetic regulatory (or other biochemical) networks. The main
problem is a lack of understanding of the constraints that the
evolution of real networks is subject to. When this and similar
methodological problems are resolved, evolving artificial
biochemical networks certainly could contribute to a better
understanding of concrete real networks. Once developed the
main benefit will possibly not be the estimation of unknown
parameters, but rather broad explorations of evolutionary
pathways leading to specific types of networks. For example
statistical features of evolved networks could be compared to
real networks, leading to a better insight into the conditions
and constraints under which biochemical networks evolved.

Artificial evolution will probably not (at least not at first)
be a method of choice to answer specific “how questions,”

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 881

Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on November 12, 2009 at 06:14 from IEEE Xplore.  Restrictions apply. 



i.e. to find out about the mechanistic details of particular
biochemical networks. However, it has the potential to be a
tool for biologists to ask “why questions” about the origin
and current function of systems.
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