
Obligation for Role based Access Control
Gansen Zhao, David Chadwick, Sassa Otenko

The computing Lab

University of Kent, UK

{gz7, d.w.chadwick, o.otenko}@kent.ac.uk

Abstract:

Role based access control has been widely used in

security critical systems. Conventional role based

access control is a passive model, which makes

authorization decisions on requests, and the

authorization decisions contain only information about

whether the corresponding requests are authorised or

not. One of the potential improvements for role based

access control is the augmentation of obligations,

where obligations are tasked and requirements to be

fulfilled together with the enforcement of authorization

decisions.

This paper conducts a comprehensive literature

review about role based access control and obligation

related research, and proposes a design of the

augmentation of obligations in the context of RBAC

standard. The design is then further consolidated in the

PERMIS RBAC authorization infrastructure. Details of

incorporating obligations into the PERMIS RBAC

authorization infrastructure are given. This paper also

discusses the possible nondeterminism caused by

overlapped authorisation.

1. Introduction

Role based access control systems make access control

decisions based on the roles that users hold. Traditional

output of the access control decisions are “Granted”

and “Denied”, which dictate whether the requests are

authorised or not. In conventional systems,

applications submit authorization requests to decision

making servers when users attempt to perform

operations on protected resources. Authorization

responses, which specifies whether the requests are

authorized or not, will be produced in reply to the

requests.

The conventional decisions are generally passive,

and do not provide ways of instructing systems for

further operations besides ``Granted'' and ``Denied''.

There are some scenarios where conventional

responses of “Granted” and “Denied” do not suffice,

where certain operations need to be performed together

with the enforcement of the decisions. Such as, an

authorization response might contain information such

as “the request is authorized, and the final transaction

result must be posted to the administrator”.

Obligations are requirements and tasks to be

fulfilled, which can be augmented into conventional

systems to allow extras information to be specified

when responding to authorization requests.

Administrators can associated obligations with

permissions, and required the fulfillment of the

obligations when the permissions are exercised.

Systems can produce authorization responses

containing the authorization decisions, either “granted”

or “denied”, and the corresponding obligations.

The organization of the rest of this paper is as the

followings. Section 2 presents a comprehensive

literature review of the research of role based access

control and the research of obligations. Section 3

briefly introduces the NIST RBAC core model, and

proposes an enhanced RBAC core model which is

augmented with obligations. Section 4 presents the

PERMIS RBAC authorization infrastructure, focusing

on the structure of PERMIS policy and the monotonic

decision making algorithm. Section 5 proposes a

design for incorporating obligations into PERMIS

based on the enhanced RBAC core model in Section 3.

Section 6 dedicates to the discussion of overlapped

authorization that can cause nondeterminism. Section 7

concludes the paper.

2 Related Work

2.1 RBAC

Sandhu et al. [14] identified the motivation of using

roles as basic constructs in access control models, and

introduced several models of role based access control,

expecting the models to be treated as reference models.

Sandhu et al. conceptualized role based access control

into four different models, the base model, the

hierarchical model, the constrained model, and the

consolidated model. The hierarchical model and the

constrained model are advanced model evolved from

the based model, and the consolidated model is a

combination of the hierarchical model and the

constrained model. The base model associated users

with roles, and roles with permissions. Users, being

members of roles, acquired all permissions associated

with the roles. The hierarchical model enhanced the

base model by allowing senior roles to acquire

permissions of their junior roles. The constrained

model improved the based model by imposing a set of

constraints to be satisfied by the base model, thus

providing further control over the system. The

consolidated model combined both the hierarchical

model and the constrained model into a sophisticated

model, to meet most of the possible complicated

requirements. This work has been partially adopted by

the NIST RBAC standard [13, 15] discussed later.

Ferraolo and Kuhn [6] presented a detailed

description of RBAC model, and provided the

definition of roles, transactions and a formalization of

RBAC. Roles were defined by using a set of

transactions, and transactions were a set of high level

activities that users could perform. A user had the right

to perform a transaction if the transaction was a

permitted transaction of his current active role.

Sandhu et al [13] presented the NIST standard

model for role based access control. The general idea

of the role based access control model is that,

permissions are associated with functional roles in

organisations, and members of the roles acquire all

permissions associated with the roles. Allocation of

permission to users is achieved by assigning roles to

users. In this way, roles serve as an abstraction of

permissions, as well as groups of related permissions.

Roles are expected to be persistent, thus a RBAC based

system mainly needs to manage the role memberships

only, In this way, it is expected the manageability and

scalability of systems can be improved.

Oppliger et al [11] proposed a way of implementing

role based access control based on Attribute

Certificates. Attribute certificates are used as protected

tokens to convey attribute information. A commercial

application running in Switzerland was highlighted to

show that the proposed system was realistic and

practical.

Gavrila and Barkley [7] formally specified the role

management of RBAC system, and defined the

consistency of a RBAC system using a set of

properties. Gavrila and Barkley also showed that, given

a consistent RBAC system, performing legitimate

management operations maintained the consistency of

the system.

2.2 Obligations

Minsky and Lockman [9] presented the motivation of

associating obligations with privileges, thought it's

mainly focusing on data integrity instead of security.

The idea is that violation of data integrity can be

tolerated if the violation can be recovered by an

obligation in the foreseeable future. Minsky and

Lockman also identified the need for associating

obligations with privileges for protecting data integrity

and presented a model of associating obligations with

privileges. An obligation is associated with a

privileges, and when an operation is performed, the

obligation associated to the privilege which authorizes

the operation is activated. Obligations are requirements

to be performed by a specific deadline. Failure of the

fulfilling an obligation will incur a sanction. Different

types of requirements and sanctions have been

discussed.

Jonscher [8] suggested to incorporate duties into

RBAC systems, where duties are tasks users need to be

performed, which is very similar to the notion of

obligation.

Bettini et al [3] formalized policies with obligations

and provisions, allowing policies to specify actions and

conditions to be fulfilled before or after user'

exercising of the granted privileges. The formalization

also provides a reasoning mechanism for systems to

deduce the set of provisions and obligations to be

fulfilled given a policy.

Bettini et al [2] proposed a model of specifying

obligations and managing obligations. Bettini et al also

presented a discusson on the topics of policy

refinement based on obligation fulfillment/defaulting,

hierarchical obligations and obligation monitoring,

including monitoring in the presence of quantitative

temporal constraints.

Extensible Access Control Markup Language

(XACML) [10] is a standardised markup language for

policy management and access decisions. Security

control rules are specified in a set of policies. Each

policy is composed of a set of rules, specifying the

authorisation in different situations. Rules have

different effects. Positive rules grant authorisation,

denoted as PERMIT effect. Negative rules deny

authorisation, denoted as DENY effect. A rule-

combination algorithm will be specified for each

policy, to resolve conflicts when different rules have

conflicting decisions. A set of obligations can also be

associated with a policy, which are actions must be

performed by the PEP when enforcing the

authorisation decisions. XACML is not designed based

on Role based Access Control model, but an XACML

RBAC Profile [1] has been developed that provides

constructs that can be used to build RBAC systems.

Ribeiro et al. [12] identified a limited type of

obligations, which are obligations with two actions

having interdependencies on between each other.

Ribeiro et al. argued that these obligations can be

enforced with the boundary of transactions.

Transactions can be committed only when all required

obligations have been fulfilled. On checking the

fulfillment of obligations, obligation augmented

policies are converted into history based policies, and

systems check all history to have information about the

fulfillment of obligations.

3. NIST RBAC and Obligations

NIST proposed a reference model of role based access

control which was approved as a standard, published in

the document ANSI INCITS 359-2004 [15]. The

RBAC reference model is defined in terms of four

different model components, including the Core

RBAC, the Hierarchical RBAC, the Static Separation

of Duty Relations, and the Dynamic Separation of

Duty Relations. The Core RBAC specifies the essential

elements for RBAC model, which comprise of the

minimum set of elements. The other three components

can be integrated with the Core RBAC component to

add more features.

3.1. The Core RBAC

The Core RBAC[15] is consisted of five basic

elements, which are the USERS, ROLES, OPS, OBS,

and SESSIONS, and five relations, which are the UA,

the PA, the U-S, the S-R, and the PRMS. The model

can be illustrated by Figure 1.

Figure 1: The Core RBAC

USERS refers to the set of legitimate users in the

system. ROLES is the set of roles existing in the

system. OPS is the operations that are recognized by

the system, and OBS is the set of objects that are

protected by the system. The SESSIONS is the set of

sessions in the system that are handling business.

Operations and objects are bound to each other to

construct permissions, denoted by PRMS where PRMS

⊆ OPS × OBS. A permission is an approval of

performing an operation on a specified target. Users

are allocated with roles, as specified by the UA

relation where UA ⊆ USERS × ROLES, which is the

user assignment relation. Permissions are allocated to

roles, and it is specified by the permission assignment

(PA) relation where PA ⊆ ROLES × PRMS. U-S (s :

SESSIONS) → USERS is a mapping of a session onto

the corresponding users, and the S-R (s : SESSIONS)

→ 2ROLES is a mapping of a session onto a set of roles.

The authorization decision making function

CheckAccess takes as inputs the current session, the

requested operation, and the object that is the target of

the operation. The CheckAccess function will return a

Boolean value as a result to indicate whether the

request is authorized or not. According to the RBAC

standard, this can be formalized as the followings.

CheckAccess(s,op,obj) =

 ∃r ROLES, r S-R(U-S(s)) ((op,obj)

PRMS (r, (op,obj)) PA)

The inputs to CheckAccess are s, op, and obj, where

s is the current session that requests the authorization,

op is the requested operation, and obj is the object of

that the operation op targets at. The request permission

is identified by the input op and obj.

The CheckAccess function checks if there exists a

role r mapped from the current session, such that the

role r has been allocated the permission to perform the

operation op on the object obj. If such a role exists, a

True value will be returned as the decision. Otherwise,

a False value will be returned.

3.2 Augmentation of Obligations

NIST RBAC model allocates privileges to roles based

on the PA relationships, which associates roles with

permissions. To accommodate obligations in the

RBAC model, roles can be allocated with permissions

and obligations, such that every permission allocated to

a role is associated with a set of obligations. The same

permission allocated to different roles can be

associated with the same obligations, or with different

obligations.
Figure 2 shows the Core RBAC model with the

augmentation of obligations as proposed above. The

new model introduces a new basic element to the NIST

core RBAC model, the OBLGS, which is the set of

valid obligations. These obligations are the tasks that

can be fulfilled by the system, and will be associated

with the permissions allocated to roles.

A new relation OPRMS ⊆ PRMS × 2
OBLGS

 is also

introduced into the obligation augmented core RBAC

model, which is a relation between permissions

(PRMS) and obligations (OBLGS). For oprm =

(prm,oblgs) �OPRMS, oprm is an obligation

augmented permission that specifies if the permission

prm is exercised, the set of obligations as oblgs shall be

fulfilled.

Figure 2: Obligation Augmented Core RBAC

The PA relation is modified into the form of PA ⊆

ROLES × OPRMS. To each p=(r,oprm)�PA, it states

that, the role r is allocated with the obligation

augmented permission oprm.

For example, let oprm=((park, car), {pay, report}),

the oprm indicates that, the role r is allocated the

permission (park,car) , but r must fulfill the

obligations {pay, report} when r exercises the

permission {park,car}. This can be interpreted as

follows. Users who are member of the role r are

allocated with the permission of parking their cars with

the obligations that they must report and pay for their

parking.

3.3. Rendering Responses with Obligaitons

With the obligation augmentation, the RBAC

authorization function shall be enhanced to cope with

the enhanced permission allocation relation, and it

shall also be modified to produce response that contain

both the Boolean type authorization decisions and the

associated obligations. Thus type of the CheckAccess

function shall be changed from

CheckAccess : (SESSIONS,OPS,OBS) ->Boolean

to

CheckAccess : (SESSIONS,OPS,OBS) ->(Boolean,

2
OBLGS

)

The new CheckAccess function allows users request

permissions based on the session, the requested

operation, and the targeted object. The new

CheckAccess function will response with a Boolean

authorization decision and the set of associated

obligations. The Boolean authorization decision

indicates whether the request is authorized or not. The

set of associated obligations are the tasks that must be

fulfilled together with the enforcement of the

authorization decision.

The new reasoning algorithm of CheckAccess is as

follows. It checks if there is the requested permission

has been allocated to any subset of roles of the set of

roles mapped from the session. If it has not been

allocated to any of the roles, then return a decision of

False with an empty set of obligation. If it has been

allocated to the roles, then return a decision of True

with a set of obligations that are combined from all the

associated obligations. The combination algorithm of

obligations is left to be decided according to

application requirements.

For example, the current session s can be mapped to

a set of roles {r1,r2}. And the PA relation contains the

following rules
Rule1 {r1,((park,car),pay)}

Rule2 {r2,((park,car),report)}

Rule1 allocates the permission (park,car) to the role

r1 with the obligation of pay, and rule2 allocates the

permission (park,car) to the role r2 with the obligation

of report. If a user with only the role r3 requests the

permission of (park,car), the request will be denied

and the CheckAccess function will return (false, null).

The false value indicates the request is denied, and the

null indicates an empty set of obligation is associated

with the decision. If a user with the roles of r1 and r2

requests for the permission of (park,car), both rule1

and rule2 can authorize the request. But rule1 and

rule2 contain different obligations. A combination

algorithm must be specified for the CheckAccess

function to produce a set of obligations based on these

two set of obligations. Possible combination algorithm

can be

1. Union. The Union combination algorithm

calculates a union of all the obligation sets.

2. Any. The Any combination algorithm randomly

selects one of the obligation sets.

3. First-Applicable. The First-Applicable

combination algorithm selects the set of

obligations in the first applicable rule. The first

applicable rule depends on the order of applying

the PA rules.

The produced set will be returned to the requester as

part of the authorization response by the CheckAccess

function. Notice that, the Any combination algorithm is

a non-deterministic algorithm. In other words, with the

Any combination algorithm, the same request might be

replied with responses that contain different

obligations.

4. PERMIS RBAC Authorization Engine

PERMIS[4] is a role based access control authorisation

infrastructure. It provides facilities for privilege

management, trust management, and decision making.

It’s not this paper’s position to provide a

comprehensive specification of the PERMIS

authorization infrastructure. Interested readers are

referred to other publication of PERMIS, including [4],

and [5]

PERMIS uses security policies to define the RBAC

model. The security policies [5] are consisted of

several sub policies, which specify the legitimate set of

users, roles, actions, targets, and the permission

allocation to roles respectively. Note that actions and

targets are terms used by PERMIS to refer to

operations and objects in the core RBAC. The sub

policy, TargetAccessPolicy, is the policy that specifies

the permission allocation to roles in PERMIS.

Figure 3: PERMIS Target Access Policy

4.1. Target Access Policy

The structure of Target Access Policy is illustrated in

Figure 3. The target access policy comprises of a set of

target access rules. Each target access rule associates a

set of permissions to access a specified resource to

roles under a certain conditions.

Let R is the set of all roles that are defined in the

system, A is the set of all legitimate actions, T is the set

of all legitimate targets, and C is the set of valid

conditions. The target access policy defines a relation

K, where K ⊆ 2R × 2A × 2T × 2C , that represents the

allocation of permissions to roles regarding to different

targets subject to various conditions.

Target access rules are in the form of (r,a,t,c), where

r, a, t, and c are subsets of R, A, T, and C respectively.

The target access rule (r,a,t,c) allocates permissions of

performing all actions in a over any target in t to users

who hold all the roles in r, if the condition c can be

satisfied.

Let suppose there is a policy, which specifies that

there are only two roles, Manager and Staff, and only

one target to be protected, the phone. There is one

action, dial that can be performed on the phone. The

policy may be as defined as follows. R={Manager,

Staff}, A={dial}, T={phone}, and C={}. The target

access policy allocates the dial permission to the

Manager role. The target access policy shall contains

only one rule, which is ({Manager},{dial},{phone},{}).

As the target access policy has not allocatedd the

permission to the role Staff, Staff is not allowed to dial

the phone.

The TargetAccessPolicy specifies the permission

allocations to roles, and it contains only possible

authorization rules. Thus the TargetAccessPolicy is

considered as monotonic.

4.2. Authorization Algorithm

On requesting authorisation, an authorisation request is

submitted to PERMIS. PERMIS will produce an

authorisation response, containing the corresponding

authorisation decision. The application enforces the

authorisation decision to protect the system.

Authorization requests describe the situation where

the authorisation is needed. Authorisation requests are

in the form of <rq,aq,tq>, where rq is a set of roles, of

whom the user is a directly or indirectly member; aq is

the action the user requests the authorisation to

perform; tq is the target of the requested action. The

interpretation of an authorisation request <rq,aq,tq> is

that, a user holding a set of roles as rq, requests to

perform the action aq over the target tq.

The authorization response, computed by the

authorisation function, is a Boolean value, which is

either true or false. The authorisation response dictates

the PERMIS's decision towards the request of

authorisation. The authorisation response is computed

based on the authorisation function, which is defined as

follows.

 auth(rq,aq,tq) =





True
iff ∃ (r,a,t,c)∈ K (r ⊆ rq ∧ aq ∈ a

∧ tq∈ t ∧ c =true)

False otherwise

The authorization function takes an authorisation

request as the input, and produces an authorisation decision.

The request (rq,aq,tq) will be authorised only when there

exists a target access rule l=(r,a,t,c) in the target access

policy, such that the following conditions are met.

1. The roles hold by the user, represented by rq, is a

superset of the required roles r in the target access

rule l.

2. The requested action aq is contained in a of l. The

set a of l specifies the set of actions allowed to be

performed. Authorised users are allowed to

perform any one of the action.

3. The target tq is contained in t of l. t of l is the set of

legitimate targets for the actions allowed by a. The

target tq must be one of the legitimate targets

specified by t.

4. The current context satisfies the condition c of l.

If the above rule l does not exist in K, the

authorisation request is denied. It is obvious that the

above authorization function is a monotonic function in

the sense that, allocating new roles to users or adding

new permission allocation rules will only result in the

possible conversion some of previously denied

requests into authorized requests, but it will not convert

any previously authorized requests into denied

requests. This allows PERMIS to be optimized in a

way that, it can stop the reasoning on the encounter of

the first rule that authorizes the current request and

produce a granted decision to the PEP. This is also an

advantage of PERMIS over XACML, as XACML

needs to evaluate all policies and rules if it does not use

the combination algorithm such as “First-Applicable”

etc.

5. Obligations for PERMIS

This section proposes a design to augment obligations

for the PERMIS RBAC authorization engine. The

proposal design modifies PERMIS policy to attach

obligations to permissions, thus exercising permissions

will be required to fulfill the associated obligations.

For the purpose of providing obligations when

authorization request are denied, a new sub policy, the

denial obligation policy, is introduced into the current

PERMIS policy. The denial obligation policy specifies

obligations to be fulfilled when authorization requests

are denied. The authorization algorithm of the

proposed design is formalized and presented, showing

the exact authorization reasoning process of PERMIS.

5.1 Obligation Enhancement

The incorporation of obligations into PERMIS will

need to change the syntax of PERMIS's security

policies, to allow system administrators to specify

obligations when composing security policies.

Obligation enabled PERMIS policy will associate a set

of obligations to each target access rule in the target

access policy.

The enhancement of the target access policy for

the associated of obligations is shown in Figure 4.

Each target access rule is associated with a set of

obligations. The obligation can be empty. With the

obligation augmentation, the target access Policy can

be reformulated as K ⊆ 2R × 2A × 2T × 2C × 2O, where

O is the set of valid obligations. A target access rule k

∈ K is a tuple of five, denoted as k=(r,a,t,c,o), where

r,a, t, and c are sets of roles, actions, targets, and

conditions respectively. o is a set of obligations, which

will be returned as part of the authorization response

when k grants authorization to the request.

Figure 4: PERMIS Target Access Policy with

Obligation

5.2 Obligations on Denial

PERMIS’s RBAC model describes a close world,

where roles have no permissions initially and all

actions are denied by default. A role is authorized to

perform an action on an object only when the

corresponding permission is allocated to the role.

Policies thus contain only positive rules and criteria.

This results in the fact that there are no specific rules

that reject authorisation requests, therefore it is not

possible to find a rule that causes the rejection of an

authorisation requests.

Obligations on denial are the obligations that are

returned with negative authorisation decisions. As

RBAC model fails to provide a rule for the rejection of

a request, we augment the RBAC model with a Denial

Obligation Policy (DOP). The DOP has the same

structure as the TAP. The difference between the DOP

and the TAP is that, the TAP specifies the access rules

for roles under different condition, while the DOP

specifies the obligation when authorisation requests are

not authorised.

The DOP D ⊆ 2R × 2A × 2T × 2C× 2O. The DOP

contains multiple denial obligation rules. Let

d=(r,a,t,c,o) be a denial obligation rule in the DOP. d

specifies that, given any request of a user u, if the

request stratifies d, then o can be used as the set of

obligations when the request is denied by the policy.

The satisfaction relation can be further specified as

follows. Suppose the user u with a set of trusted role ru,

requests to perform action au on the target tu. The

request satisfies the DOP rule d if and only if the

following conditions are met.

1. The set of roles ru is a superset of r.

2. The action au is contained in the set a.

3. The target tu is contained in the set t.

4. The current context satisfies the conditions in c.

5. The request is denied.

For example, if r is empty, and a is the set of

actions available on top secret resource t, then any user

who is denied any action on the top secret resource will

cause the obligation o to be enacted, such as sending a

message to a log and notifying the security officer.

A formal specification is that, the request q =

(ru,au, tu) satisfies the target access rule d=(r,a,t,c,o) if

and only if r ⊆ ru ∧ au ∈ a ∧ tu ∈ t∧ c= true.

Figure 5: Authorization Decision Making

5.3 Authorization Function

With the augmentation of obligations for both positive

and negative authorisation, the authorisation function

has been changed.

Figure 5 shows the control flow of the decision

making of PERMIS after PERMIS is augmented with

obligation and denial obligation. In response to every

authorisation request, PERMIS will first test the

request against the TARs. When a TAR is matched,

authorisation is granted and the obligation in the

matched TAR will be returned together with the

decision. When no TAR is matched, authorisation is

denied. PERMIS will continue to test the request

against the DOP. If a DOP rule is matched, the

obligation of the DOP rule will be returned as the

obligation for denial. Otherwise no obligation is

required.

A more formal specification of the authorisation

function auth: 2R × 2A × 2T -> BOOLEAN × 2O can be

represented as the followings.

 autho(uq,aq,tq) =





(True,o)
iff ∃ ((r,a,t,c,o)∈ K (r ⊆ uq ∧ aq ∈

a ∧ tq∈ t ∧ c =true))

(False, o)
elseif ∃ ((r,a,t,c,o) ∈ D ∧ r ⊆ uq

∧ aq ∈ a ∧ tq∈ t ∧ c =true))

(False,φ) otherwise

6. Overlapped Authorization

Overlapped rules are target access rules that can

authorise the same actions but to different roles and/or

with different conditions attached. Overlapped rules

may associate different obligations to the same actions,

leading to multiple possible authorisation responses

which have different obligations but the same

authorisation decision. For example, let target access

rules l1 and l2 defined as follows.

l1

:
({student},{buy},{discountedTicket},

{},{Record on Log1})

l2

:
({disabled},{buy},{discountedTicket},

{},{Record on Log2})

Rule l1 specifies that, students can buy discounted

tickets with the obligation that the activity needs to be

recorded on Log1, and rule l2 states that, disabled

persons can buy discounted tickets with the obligation

that the activity needs to be recorded on Log2. Both l1

and l2 authorise to buy discounted tickets. When a

student, who is also registered as disabled, requests

authorization for buying discounted tickets, there are

several possible responses. When l1 is applied, the

request is authorised with the obligation of ``Recorded

on Log1''. When r2 is applied, the request is authorised

with the obligation of ``Recorded on Log2''. This may

be confusing in some circumstance, as administrators

may have preference over different rules, and would

like the system to be deterministic as to which rule

(and obligation) takes precedence when a subject

passes multiple rules.

PERMIS argues that overlapped rules are of

equivalent priority, and they all provide the same

security for the system. Thus it is acceptable to choose

one role from the overlapped roles without applying

any criteria to the selection of the role to authorise the

action the user requests. From this perspective, we take

the overlapped roles take equivalent alternatives of

each other instead of redefinitions, and consider any

one of the alternatives is suitable for the authorization

and provides the same security for the system. As a

result, PERMIS uses the Random combination

algorithm and will select one TAR randomly from all

applicable TARs without specific preference or order.

Treating all overlapped roles equally also avoids the

computation task of selecting the preferred role from

the overlapped roles, and helps PERMIS to run more

efficiently and to provide a better response time when

handling authorisation requests. When imposing

preference or priority on TARs, PERMIS would have

to test all the TARs before it can make a decision, to

make sure that the result is sound and complete.

Further, PERMIS may need to sort all the applicable

TARs according to the preference and the priority,

which will for sure incur extra computation and

resource consumption, leading to longer response

times.

To some extend, PERMIS’s treatment of the

nondeterminism is also in line of XACML. XACML is

capable of combining multiple decisions of different

policies and policies sets, each of which might return

its own decision and obligations. The decision

combining is specified by policy combining

algorithms, some of which are not deterministic. It is

argued that, these non-deterministic combining

algorithms provide better performance and demand

less resources, and these are wanted by a significant

amount of applications. In situations where

nondeterminism is not acceptable, XACML suggests

users to use deterministic combining algorithms.

7 Conclusion

7.1. Conclusion

This paper discusses the augmentation of obligations

with RBAC models. The purpose of the augmentation

is to provide more active and flexible security controls

for RBAC models. The discussion is mainly based on

the PERMIS's implementation of RBAC model. We

envisage the discussion can be easily generalized to

implementations that comply with the RBAC standard.

This paper proposes a design for augmenting

obligations with role based access control. The

proposed design modifies the association between roles

and permissions in the way that, roles are associated

with permissions and obligations. When a permission

of a role is to be exercised, the associated obligations

shall be fulfilled.

Negative obligations to be fulfilled when

authorization requests are denied are also defined in

the proposed design. Negative obligations must be

fulfilled only when authorization requests are denied

and the requests fall in some specific situations as

defined by the policies.

The nondeterminism that is caused by overlapped

authorization is also discussed. We argue that

overlapped rules are alternatives and equivalent to each

other, all of which are suffice to provide the expected

security. Further, eliminating the nondeterminism will

incur extra computation cost as well as administration

cost. Thus we consider the nondeterminism as a

reasonable phenomenon. .

The security policy format of PERMIS has been

modified to accommodate the association of

obligations in the allocation of permissions to roles,

and a new sub policy, Obligations on denial. These

changes allow security administrators to specify

obligations for both the situations of granting

authorisation and denying authorization.

7.2 Contributions

The contributions of this work are six-folded. Firstly,

we identified the need of augmenting obligations with

RBAC and proposed a model for the integration of

RBAC and obligations. The proposed model is capable

of providing obligations for the situation of

authorisation granted and the situation of authorisation

denied. Secondly, we provided a discussion on the

nondeterminism caused by overlapped authorisation in

the proposed model. We considered that

nondeterminism is acceptable and will not compromise

the system security. Thirdly, we provided a

specification of the security policy that can

accommodate obligations, and defined an interface for

consulting PERMIS decision engine for authorization

response. Fourthly, we implemented the proposed

design into PERMIS authorization infrastructure. The

implementation is backward compatible, and does not

require any changes to the original applications.

Fifthly, the proposed design and the implementation

can be considered as an improvement to PERMIS, so

that PERMIS can be an alternative to XACML in most

of the scenarios. Lastly, the obligation definition is

XACML compatible, which will allow the

authorization response to be easily converted to

XACML response context. It is envisaged that,

XACML PEPs can easily switch between XACML and

PERMIS.

7.3 Future Work

Currently the proposed design of augmenting

obligations into PERMIS has been partially finished,

except the obligations on denial feature. The future

work of this research will be the testing and trial

deployment of the current implemented features. User

feedbacks will be reviewed and revision of the current

design might be considered.

As this paper focus on the computation of

obligations, and deliberately leave the fulfillment of

obligations for separate work, we will investigate the

necessary infrastructures for applications to fulfill

obligations. We also envisage that the monitoring of

the obligation fulfillment is an important part of the

infrastructures.

ACKNOWLEDGEMENTS

The author would like to thank Nexor who is

sponsoring the Gansen Zhao's research.

References

[1] Anne Anderson. OASIS Standard: Core and hierarchical

role based access control (RBAC) profile of XACML v2.0,

February 2005.

[2] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera.

Obligation Monitoring in Policy Management. In

Proceedings of the 3rd International Workshop on Policies

for Distributed Systems and Networks (POLICY'02), 2002.

[3] Claudio Bettini, Sushil Jajodia, Xiaoyang Sean Wang,

and Duminda Wijesekera. Provisions and Obligations in

Policy Management and Security Applications. In VLDB,
2002.

[4] David Chadwick and Alexander Otenko. The PERMIS

X.509 Role Based Privilege Management Infrastructure.

Future Generation Computer System, 19(2):277--289, 2003.

[5] D.W. Chadwick and A. Otenko. RBAC Policies in XML

for X.509 Based Privilege Management. In M. A. Ghonaimy,

M. T. El-Hadidi, and H.K. Aslan, editors, Security in the

Information Society: Visions and Perspectives: IFIP TC11

17th Int. Conf. On Information Security (SEC2002), Cairo,

Egypt. Kluwer Academic Publishers, May 2002.
[6] David Ferraiolo and Richard Kuhn. Role-based Access

Control. In Proceedings of 15th National Computer Security

Conference, 1992.

[7] S. Gavrila and J. Barkley. Formal Specification for Role

Based Access Control User/Role and Role/Role Relationship

Management. In Third ACM Workshop on Role-Based

Access Control, 1998.

[8] Dirk Jonscher. Extending access controls with duties -

realized by active mechanisms. In Database Security VI:

Status and Prospects. North-Holland, 1993.

[9] Naftaly H. Minsky and Abe D. Lockman. Ensuring

integrity by adding obligations to privileges. In ICSE '85:

Proceedings of the 8th international conference on Software

engineering, 1985.

[10] OASIS XACML TC. XACML 2.0 Core: eXtensible

Access Control Markup Language (XACML) Version 2.0,

Oct, 2005. Available on http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml#XAC

ML20.

[11] Rolf Oppliger, G unther Pernul, and Christine Strauss.

Using attribute certificates to implement role-based

authorization and access controls. In S. Teufel K. Bauknecht,

editor, Sicherheit in Informationssystemen (SIS 2000), pages

169--184, Zurich, 2000.

[12] Carlos Ribeiro, Andre Zuquete, and Paulo Ferreira.

Enforcing Obligation with Security Monitors. In ICICS '01:

Proceedings of the Third International Conference on

Information and Communications Security, 2001.

[13] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST Model

for Role Based Access Control: Towards a Unified Standard.

In 5th ACM Workshop on Role Based Access Control, July
2000.

[14] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and

Charles E. Youman. Role-based access control models. IEEE

Computer, 29(2), 1996.

[15] ANSI INCITS 359-2004. Role Based Access Control.

American National Standards Institute, Inc., February 2004.

Formatted: Italian Italy

