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Abstract:  

Role based access control has been widely used in 

security critical systems. Conventional role based 

access control is a passive model, which makes 

authorization decisions on requests, and the 

authorization decisions contain only information about 

whether the corresponding requests are authorised or 

not. One of the potential improvements for role based 

access control is the augmentation of obligations, 

where obligations are tasked and requirements to be 

fulfilled together with the enforcement of authorization 

decisions. 

This paper conducts a comprehensive literature 

review about role based access control and obligation 

related research, and proposes a design of the 

augmentation of obligations in the context of RBAC 

standard. The design is then further consolidated in the 

PERMIS RBAC authorization infrastructure. Details of 

incorporating obligations into the PERMIS RBAC 

authorization infrastructure are given. This paper also 

discusses the possible nondeterminism caused by 

overlapped authorisation.  

 

1. Introduction 

 
Role based access control systems make access control 

decisions based on the roles that users hold. Traditional 

output of the access control decisions are “Granted” 

and “Denied”, which dictate whether the requests are 

authorised or not. In conventional systems, 

applications submit authorization requests to decision 

making servers when users attempt to perform  

operations on protected resources. Authorization 

responses, which specifies whether the requests are 

authorized or not, will be produced in reply to the 

requests.  

The conventional decisions are generally passive, 

and do not provide ways of instructing systems for 

further operations besides ``Granted'' and ``Denied''. 

There are some scenarios where conventional 

responses of “Granted” and “Denied” do not suffice, 

where certain operations need to be performed together 

with the enforcement of the decisions. Such as, an 

authorization response might contain information such 

as “the request is authorized, and the final transaction 

result must be posted to the administrator”.  

Obligations are requirements and tasks to be 

fulfilled, which can be augmented into conventional 

systems to allow extras information to be specified 

when responding to authorization requests. 

Administrators can associated obligations with 

permissions, and required the fulfillment of the 

obligations when the permissions are exercised. 

Systems can produce authorization responses 

containing the authorization decisions, either “granted” 

or “denied”, and the corresponding obligations. 

The organization of the rest of this paper is as the 

followings. Section 2 presents a comprehensive 

literature review of the research of role based access 

control and the research of obligations.  Section 3 

briefly introduces the NIST RBAC core model, and 

proposes an enhanced RBAC core model which is 

augmented with obligations. Section 4 presents the 

PERMIS RBAC authorization infrastructure, focusing 

on the structure of PERMIS policy and the monotonic 

decision making algorithm. Section 5 proposes a 

design for incorporating obligations into PERMIS 

based on the enhanced RBAC core model in Section 3. 

Section 6 dedicates to the discussion of overlapped 

authorization that can cause nondeterminism. Section 7 

concludes the paper. 

 

2 Related Work 
 

2.1 RBAC 
 

Sandhu et al. [14] identified the motivation of using 

roles as basic constructs in access control models, and 

introduced several models of role based access control, 

expecting the models to be treated as reference models. 

Sandhu et al. conceptualized role based access control 

into four different models, the base model, the 

hierarchical model, the constrained model, and the 

consolidated model. The hierarchical model and the 

constrained model are advanced model evolved from 

the based model, and the consolidated model is a 

combination of the hierarchical model and the 

constrained model. The base model associated users 



with roles, and roles with permissions. Users, being 

members of roles, acquired all permissions associated 

with the roles. The hierarchical model enhanced the 

base model by allowing senior roles to acquire 

permissions of their junior roles. The constrained 

model improved the based model by imposing a set of 

constraints to be satisfied by the base model, thus 

providing further control over the system. The 

consolidated model combined both the hierarchical 

model and the constrained model into a sophisticated 

model, to meet most of the possible complicated 

requirements. This work has been partially adopted by 

the NIST RBAC standard [13, 15] discussed later.  

Ferraolo and Kuhn [6] presented a detailed 

description of RBAC model, and provided the 

definition of roles, transactions and a formalization of 

RBAC. Roles were defined by using a set of 

transactions, and transactions were a set of high level 

activities that users could perform. A user had the right 

to perform a transaction if the transaction was a 

permitted transaction of his current active role. 

Sandhu et al [13] presented the NIST standard 

model for role based access control. The general idea 

of the role based access control model is that, 

permissions are associated with functional roles in 

organisations, and members of the roles acquire all 

permissions associated with the roles. Allocation of 

permission to users is achieved by assigning roles to 

users. In this way, roles serve as an abstraction of 

permissions, as well as groups of related permissions. 

Roles are expected to be persistent, thus a RBAC based 

system mainly needs to manage the role memberships 

only, In this way, it is expected the manageability and 

scalability of systems can be improved. 

Oppliger et al [11] proposed a way of implementing 

role based access control based on Attribute 

Certificates. Attribute certificates are used as protected 

tokens to convey attribute information. A commercial 

application running in Switzerland was highlighted to 

show that the proposed system was realistic and 

practical. 

Gavrila and Barkley [7] formally specified the role 

management of RBAC system, and defined the 

consistency of a RBAC system using a set of 

properties. Gavrila and Barkley also showed that, given 

a consistent RBAC system, performing legitimate 

management operations maintained the consistency of 

the system. 

 

2.2 Obligations 

 
Minsky and Lockman [9] presented the motivation of 

associating obligations with privileges, thought it's 

mainly focusing on data integrity instead of security. 

The idea is that violation of data integrity can be 

tolerated if the violation can be recovered by an 

obligation in the foreseeable future. Minsky and 

Lockman also identified the need for associating 

obligations with privileges for protecting data integrity 

and presented a model of associating obligations with 

privileges. An obligation is associated with a 

privileges, and when an operation is performed, the 

obligation associated to the privilege which authorizes 

the operation is activated. Obligations are requirements 

to be performed by a specific deadline. Failure of the 

fulfilling an obligation will incur a sanction. Different 

types of requirements and sanctions have been 

discussed. 

Jonscher [8] suggested to incorporate duties into 

RBAC systems, where duties are tasks users need to be 

performed, which is very similar to the notion of 

obligation. 

Bettini et al [3] formalized policies with obligations 

and provisions, allowing policies to specify actions and 

conditions to be fulfilled before or after user' 

exercising of the granted privileges. The formalization 

also provides a reasoning mechanism for systems to 

deduce the set of provisions and obligations to be 

fulfilled given a policy. 

Bettini et al [2] proposed a model of specifying 

obligations and managing obligations. Bettini et al also 

presented a discusson on the topics of policy 

refinement based on obligation fulfillment/defaulting, 

hierarchical obligations and obligation monitoring, 

including monitoring in the presence of quantitative 

temporal constraints. 

Extensible Access Control Markup Language 

(XACML) [10] is a standardised markup language for 

policy management and access decisions. Security 

control rules are specified in a set of policies. Each 

policy is composed of a set of rules, specifying the 

authorisation in different situations. Rules have 

different effects. Positive rules grant authorisation, 

denoted as PERMIT effect. Negative rules deny 

authorisation, denoted as DENY effect. A rule-

combination algorithm will be specified for each 

policy, to resolve conflicts when different rules have 

conflicting decisions. A set of obligations can also be 

associated with a policy, which are actions must be 

performed by the PEP when enforcing the 

authorisation decisions. XACML is not designed based 

on Role based Access Control model, but an XACML 

RBAC Profile [1] has been developed that provides 

constructs that can be used to build RBAC systems.  

Ribeiro et al. [12] identified a limited type of 

obligations, which are obligations with two actions 

having interdependencies on between each other. 

Ribeiro et al. argued that these obligations can be 

enforced with the boundary of transactions. 



Transactions can be committed only when all required 

obligations have been fulfilled. On checking the 

fulfillment of obligations, obligation augmented 

policies are converted into history based policies, and 

systems check all history to have information about the 

fulfillment of obligations.  

3. NIST RBAC and Obligations 

NIST proposed a reference model of role based access 

control which was approved as a standard, published in 

the document ANSI INCITS 359-2004 [15]. The 

RBAC reference model is defined in terms of four 

different model components, including the Core 

RBAC, the Hierarchical RBAC, the Static Separation 

of Duty Relations, and the Dynamic Separation of 

Duty Relations. The Core RBAC specifies the essential 

elements for RBAC model, which comprise of the 

minimum set of elements. The other three components 

can be integrated with the Core RBAC component to 

add more features. 

 

3.1. The Core RBAC 
 

The Core RBAC[15] is consisted of five basic 

elements, which are the USERS, ROLES, OPS, OBS, 

and SESSIONS, and five relations, which are the UA, 

the PA, the U-S, the S-R, and the PRMS. The model 

can be illustrated by Figure 1.  

Figure 1: The Core RBAC 

 
USERS refers to the set of legitimate users in the 

system. ROLES is the set of roles existing in the 

system. OPS is the operations that are recognized by 

the system, and OBS is the set of objects that are 

protected by the system. The SESSIONS is the set of 

sessions in the system that are handling business.  

Operations and objects are bound to each other to 

construct permissions, denoted by PRMS where PRMS 

⊆  OPS × OBS. A permission is an approval of 

performing an operation on a specified target. Users 

are allocated with roles, as specified  by the UA 

relation where UA ⊆ USERS × ROLES, which is the 

user assignment relation. Permissions are allocated to 

roles, and it is specified by the permission assignment 

(PA) relation where PA ⊆ ROLES × PRMS. U-S (s : 

SESSIONS) → USERS is a mapping of a session onto 

the corresponding users, and the S-R (s : SESSIONS) 

→ 2ROLES is a mapping of a session onto a set of roles.  

The authorization decision making function 

CheckAccess takes as inputs the current session, the 

requested operation, and the object that is the target of 

the operation. The CheckAccess function will return a 

Boolean value as a result to indicate whether the 

request is authorized or not. According to the RBAC 

standard, this can be formalized as the followings. 

CheckAccess(s,op,obj) =  

 ∃r ROLES,  r S-R(U-S(s)) ((op,obj) 

PRMS  (r, (op,obj)) PA) 

The inputs to CheckAccess are s, op, and obj, where 

s is the current session that requests the authorization, 

op is the requested operation, and obj is the object of 

that the operation op targets at. The request permission 

is identified by the input op and obj.  

The CheckAccess function checks if there exists a 

role r mapped from the current session, such that the 

role r has been allocated the permission to perform the 

operation op on the object obj. If such a role exists, a 

True value will be returned as the decision. Otherwise, 

a False value will be returned. 

 

3.2 Augmentation of Obligations 
 

NIST RBAC model allocates privileges to roles based 

on the PA relationships, which associates roles with 

permissions. To accommodate obligations in the 

RBAC model, roles can be allocated with permissions 

and obligations, such that every permission allocated to 

a role is associated with a set of obligations. The same 

permission allocated to different roles can be 

associated with the same obligations, or with different 

obligations.  
Figure 2 shows the Core RBAC model with the 

augmentation of obligations as proposed above. The 

new model introduces a new basic element to the NIST 

core RBAC model, the OBLGS, which is the set of 

valid obligations. These obligations are the tasks that 

can be fulfilled by the system, and will be associated 

with the permissions allocated to roles. 

A new relation OPRMS ⊆ PRMS × 2
OBLGS 

 is also 

introduced into the obligation augmented core RBAC 

model, which is a relation between permissions 

(PRMS) and obligations (OBLGS). For oprm = 

(prm,oblgs) �OPRMS, oprm is an obligation 

augmented permission that specifies if the permission 

prm is exercised, the set of obligations as oblgs shall be 

fulfilled.  



 
Figure 2: Obligation Augmented Core RBAC 

 

The PA relation is modified into the form of PA ⊆ 

ROLES × OPRMS. To each p=(r,oprm)�PA, it states 

that, the role r is allocated with the obligation 

augmented permission oprm.  

For example, let oprm=((park, car), {pay, report}), 

the oprm indicates that, the role r is allocated the 

permission (park,car) , but r must fulfill the 

obligations {pay, report} when r exercises the 

permission {park,car}. This can be interpreted as 

follows. Users who are member of the role r are 

allocated with the permission of parking their cars with 

the obligations that they must report and pay for their 

parking. 

 

3.3. Rendering Responses with Obligaitons 
 

With the obligation augmentation, the RBAC 

authorization function shall be enhanced to cope with 

the enhanced permission allocation relation, and it 

shall also be modified to produce response that contain 

both the Boolean type authorization decisions and the 

associated obligations. Thus type of the CheckAccess 

function shall be changed from 

CheckAccess : (SESSIONS,OPS,OBS) ->Boolean 

to  

CheckAccess : (SESSIONS,OPS,OBS) ->(Boolean, 

2
OBLGS

) 

The new CheckAccess function allows users request 

permissions based on the session, the requested 

operation, and the targeted object. The new 

CheckAccess function will response with a Boolean 

authorization decision and the set of associated 

obligations. The Boolean authorization decision 

indicates whether the request is authorized or not. The 

set of associated obligations are the tasks that must be 

fulfilled together with the enforcement of the 

authorization decision.  

The new reasoning algorithm of CheckAccess is as 

follows. It checks if there is the requested permission 

has been allocated to any subset of roles of the set of 

roles mapped from the session. If it has not been 

allocated to any of the roles, then return a decision of 

False with an empty set of obligation. If it has been 

allocated to the roles, then return a decision of True 

with a set of obligations that are combined from all the 

associated obligations. The combination algorithm of 

obligations is left to be decided according to 

application requirements.  

For example, the current session s can be mapped to 

a set of roles {r1,r2}. And the PA relation contains the 

following rules 
Rule1      {r1,((park,car),pay)} 

Rule2      {r2,((park,car),report)} 

Rule1 allocates the permission (park,car) to the role 

r1 with the obligation of pay, and rule2 allocates the 

permission (park,car) to the role r2 with the obligation 

of report. If a user with only the role r3 requests the 

permission of (park,car), the request will be denied 

and the CheckAccess function will return (false, null). 

The false value indicates the request is denied, and the 

null indicates an empty set of obligation is associated 

with the decision. If a user with the roles of r1 and r2 

requests for the permission of (park,car), both rule1 

and rule2 can authorize the request. But rule1 and 

rule2 contain different obligations. A combination 

algorithm must be specified for the CheckAccess 

function to produce a set of obligations based on these 

two set of obligations. Possible combination algorithm 

can be  

1. Union. The Union combination algorithm 

calculates a union of all the obligation sets.  

2. Any. The Any combination algorithm randomly 

selects one of the obligation sets.  

3. First-Applicable. The First-Applicable 

combination algorithm selects the set of 

obligations in the first applicable rule. The first 

applicable rule depends on the order of applying 

the PA rules. 

The produced set will be returned to the requester as 

part of the authorization response by the CheckAccess 

function. Notice that, the Any combination algorithm is 

a non-deterministic algorithm. In other words, with the 

Any combination algorithm, the same request might be 

replied with responses that contain different 

obligations.  

 

4.  PERMIS RBAC Authorization Engine 

 
PERMIS[4] is a role based access control authorisation 

infrastructure. It provides facilities for privilege 

management, trust management, and decision making. 

It’s not this paper’s position to provide a 

comprehensive specification of the PERMIS 



authorization infrastructure. Interested readers are 

referred to other publication of PERMIS, including [4], 

and [5] 

PERMIS uses security policies to define the RBAC 

model. The security policies [5] are consisted of 

several sub policies, which specify the legitimate set of 

users, roles, actions, targets, and the permission 

allocation to roles respectively. Note that actions and 

targets are terms used by PERMIS to refer to 

operations and objects in the core RBAC. The sub 

policy, TargetAccessPolicy, is the policy that specifies 

the permission allocation to roles in PERMIS.  

Figure 3: PERMIS Target Access Policy 

 

4.1. Target Access Policy 

 
The structure of Target Access Policy is illustrated in 

Figure 3. The target access policy comprises of a set of 

target access rules. Each target access rule associates a 

set of permissions to access a specified resource to 

roles under a certain conditions.  

Let R is the set of all roles that are defined in the 

system, A is the set of all legitimate actions, T is the set 

of all legitimate targets, and C is the set of valid 

conditions. The target access policy defines a relation 

K, where  K ⊆ 2R × 2A × 2T × 2C , that represents the 

allocation of permissions to roles regarding to different 

targets subject to various conditions.  

Target access rules are in the form of (r,a,t,c), where 

r, a, t, and c are subsets of R, A, T, and C respectively. 

The target access rule (r,a,t,c) allocates permissions of 

performing all actions in a over any target in t to users 

who hold all the roles in r, if the condition c can be 

satisfied. 

Let suppose there is a policy, which specifies that 

there are only two roles, Manager and Staff, and only 

one target to be protected, the phone. There is one 

action, dial that can be performed on the phone. The 

policy may be as defined as follows. R={Manager, 

Staff}, A={dial}, T={phone}, and C={}. The target 

access policy allocates the dial permission to the 

Manager role. The target access policy shall contains 

only one rule, which is ({Manager},{dial},{phone},{}). 

As the target access policy has not allocatedd the 

permission to the role Staff, Staff is not allowed to dial 

the phone. 

The TargetAccessPolicy specifies the permission 

allocations to roles, and it contains only possible 

authorization rules. Thus the TargetAccessPolicy is 

considered as monotonic.  

 

4.2. Authorization Algorithm 
 
On requesting authorisation, an authorisation request is 

submitted to PERMIS. PERMIS will produce an 

authorisation response, containing the corresponding 

authorisation decision. The application enforces the 

authorisation decision to protect the system. 

Authorization requests describe the situation where 

the authorisation is needed. Authorisation requests are 

in the form of <rq,aq,tq>, where rq is a set of roles, of 

whom the user is a directly or indirectly member; aq is 

the action the user requests the authorisation to 

perform; tq is the target of the requested action. The 

interpretation of an authorisation request <rq,aq,tq> is 

that, a user holding a set of roles as rq, requests to 

perform the action aq over the target tq. 

The authorization response, computed by the 

authorisation function, is a Boolean value, which is 

either true or false. The authorisation response dictates 

the PERMIS's decision towards the request of 

authorisation. The authorisation response is computed 

based on the authorisation function, which is defined as 

follows.  

 

    auth(rq,aq,tq) =    

    





True   
iff ∃ (r,a,t,c)∈ K (r ⊆ rq ∧ aq ∈ a 

∧ tq∈ t ∧ c =true) 

False otherwise   

 

 

  

 

The authorization function takes an authorisation 

request as the input, and produces an authorisation decision. 

The request (rq,aq,tq) will be authorised only when there 

exists a target access rule l=(r,a,t,c) in the target access 

policy, such that the following conditions are met.  

1. The roles hold by the user, represented by rq, is a 

superset of the required roles r in the target access 

rule l.  

2. The requested action aq is contained in a of l. The 

set a of l specifies the set of actions allowed to be 

performed. Authorised users are allowed to 

perform any one of the action.  



3. The target tq is contained in t of l. t of l is the set of 

legitimate targets for the actions allowed by a. The 

target tq must be one of the legitimate targets 

specified by t.  

4. The current context satisfies the condition c of l.  

If the above rule l does not exist in K, the 

authorisation request is denied. It is obvious that the 

above authorization function is a monotonic function in 

the sense that, allocating new roles to users or adding 

new permission allocation rules will only result in the 

possible conversion some of previously denied 

requests into authorized requests, but it will not convert 

any previously authorized requests into denied 

requests. This allows PERMIS to be optimized in a 

way that, it can stop the reasoning on the encounter of 

the first rule that authorizes the current request and 

produce a granted decision to the PEP. This is also an 

advantage of PERMIS over XACML, as XACML 

needs to evaluate all policies and rules if it does not use 

the combination algorithm such as “First-Applicable” 

etc. 

 

5. Obligations for PERMIS 
 

This section proposes a design to augment obligations 

for the PERMIS RBAC authorization engine. The 

proposal design modifies PERMIS policy to attach 

obligations to permissions, thus exercising permissions 

will be required to fulfill the associated obligations. 

For the purpose of providing obligations when 

authorization request are denied, a new sub policy, the 

denial obligation policy, is introduced into the current 

PERMIS policy. The denial obligation policy specifies 

obligations to be fulfilled when authorization requests 

are denied. The authorization algorithm of the 

proposed design is formalized and presented, showing 

the exact authorization reasoning process of PERMIS. 

 

5.1 Obligation Enhancement 
 

The incorporation of obligations into PERMIS will 

need to change the syntax of PERMIS's security 

policies, to allow system administrators to specify 

obligations when composing security policies. 

Obligation enabled PERMIS policy will associate a set 

of obligations to each target access rule in the target 

access policy.  

The enhancement of the target access policy for 

the associated of obligations is shown in Figure 4. 

Each target access rule is associated with a set of 

obligations. The obligation can be empty. With the 

obligation augmentation, the target access Policy can 

be reformulated as K ⊆ 2R × 2A × 2T × 2C × 2O, where 

O is the set of valid obligations. A target access rule k 

∈ K is a tuple of five, denoted as k=(r,a,t,c,o), where 

r,a, t, and c are sets of roles, actions, targets, and 

conditions respectively. o is a set of obligations, which 

will be returned as part of the authorization response 

when k grants authorization to the request. 

 
Figure 4: PERMIS Target Access Policy with 

Obligation 

 

5.2 Obligations on Denial 
 

PERMIS’s RBAC model describes a close world, 

where roles have no permissions initially and all 

actions are denied by default. A role is authorized to 

perform an action on an object only when the 

corresponding permission is allocated to the role. 

Policies thus contain only positive rules and criteria. 

This results in the fact that there are no specific rules 

that reject authorisation requests, therefore it is not 

possible to find a rule that causes the rejection of an 

authorisation requests.  

Obligations on denial are the obligations that are 

returned with negative authorisation decisions. As 

RBAC model fails to provide a rule for the rejection of 

a request, we augment the RBAC model with a Denial 

Obligation Policy (DOP). The DOP has the same 

structure as the TAP. The difference between the DOP 

and the TAP is that, the TAP specifies the access rules 

for roles under different condition, while the DOP 

specifies the obligation when authorisation requests are 

not authorised.  

The DOP D ⊆ 2R × 2A × 2T × 2C× 2O. The DOP 

contains multiple denial obligation rules. Let 

d=(r,a,t,c,o) be a denial obligation rule in the DOP. d 

specifies that, given any request of a user u, if the 

request stratifies d, then o can be used as the set of 

obligations when the request is denied by the policy. 

The satisfaction relation can be further specified as 



follows. Suppose the user u with a set of trusted role ru, 

requests to perform action au on the target tu. The 

request satisfies the DOP rule d if and only if the 

following conditions are met.  

1. The set of roles ru is a superset of r.  

2. The action au is contained in the set a.  

3. The target tu is contained in the set t.  

4. The current context satisfies the conditions in c.  

5. The request is denied. 

For example, if r is empty, and a is the set of 

actions available on top secret resource t, then any user 

who is denied any action on the top secret resource will 

cause the obligation o to be enacted, such as sending a 

message to a log and notifying the security officer.  

A formal specification is that, the request q = 

(ru,au, tu) satisfies the target access rule d=(r,a,t,c,o) if 

and only if r ⊆ ru ∧ au ∈ a ∧ tu ∈ t∧ c= true.  

 
Figure 5: Authorization Decision Making 

 

5.3 Authorization Function 

 
With the augmentation of obligations for both positive 

and negative authorisation, the authorisation function 

has been changed.  

Figure 5 shows the control flow of the decision 

making of PERMIS after PERMIS is augmented with 

obligation and denial obligation. In response to every 

authorisation request, PERMIS will first test the 

request against the TARs. When a TAR is matched, 

authorisation is granted and the obligation in the 

matched TAR will be returned together with the 

decision. When no TAR is matched, authorisation is 

denied. PERMIS will continue to test the request 

against the DOP. If a DOP rule is matched, the 

obligation of the DOP rule will be returned as the 

obligation for denial. Otherwise no obligation is 

required.  

A more formal specification of the authorisation 

function auth: 2R × 2A × 2T -> BOOLEAN × 2O can be 

represented as the followings.  

 

    autho(uq,aq,tq) =    

    





(True,o)     
iff ∃ ((r,a,t,c,o)∈ K (r ⊆ uq ∧ aq ∈ 

a ∧ tq∈ t ∧ c =true)) 

(False, o) 
elseif ∃ ( (r,a,t,c,o) ∈ D ∧ r ⊆ uq 

∧ aq ∈ a ∧ tq∈ t ∧ c =true)) 

(False,φ) otherwise   

 

 

  

 
 

6. Overlapped Authorization 

 
Overlapped rules are target access rules that can 

authorise the same actions but to different roles and/or 

with different conditions attached. Overlapped rules 

may associate different obligations to the same actions, 

leading to multiple possible authorisation responses 

which have different obligations but the same 

authorisation decision. For example, let target access 

rules l1 and l2 defined as follows.  

 

l1 

 
:  
({student},{buy},{discountedTicket},  

{},{Record on Log1})  
  

l2 

 
: 
({disabled},{buy},{discountedTicket}, 

{},{Record on Log2})  
  

 

Rule l1 specifies that, students can buy discounted 

tickets with the obligation that the activity needs to be 

recorded on Log1, and rule l2 states that, disabled 

persons can buy discounted tickets with the obligation 

that the activity needs to be recorded on Log2. Both l1 

and l2 authorise to buy discounted tickets. When a 

student, who is also registered as disabled, requests 

authorization for buying discounted tickets, there are 

several possible responses. When l1 is applied, the 

request is authorised with the obligation of ``Recorded 

on Log1''. When r2 is applied, the request is authorised 

with the obligation of ``Recorded on Log2''. This may 

be confusing in some circumstance, as administrators 

may have preference over different rules, and would 

like the system to be deterministic as to which rule 

(and obligation) takes precedence when a subject 

passes multiple rules. 

PERMIS argues that overlapped rules are of 

equivalent priority, and they all provide the same 

security for the system. Thus it is acceptable to choose 

one role from the overlapped roles without applying 

any criteria to the selection of the role to authorise the 



action the user requests. From this perspective, we take 

the overlapped roles take equivalent alternatives of 

each other instead of redefinitions, and consider any 

one of the alternatives is suitable for the authorization 

and provides the same security for the system. As a 

result, PERMIS uses the Random combination 

algorithm and will select one TAR randomly from all 

applicable TARs without specific preference or order.  

Treating all overlapped roles equally also avoids the 

computation task of selecting the preferred role from 

the overlapped roles, and helps PERMIS to run more 

efficiently and to provide a better response time when 

handling authorisation requests. When imposing 

preference or priority on TARs, PERMIS would have 

to test all the TARs before it can make a decision, to 

make sure that the result is sound and complete. 

Further, PERMIS may need to sort all the applicable 

TARs according to the preference and the priority, 

which will for sure incur extra computation and 

resource consumption, leading to longer response 

times. 

To some extend, PERMIS’s treatment of the 

nondeterminism is also in line of XACML. XACML is 

capable of combining multiple decisions of different 

policies and policies sets, each of which might return 

its own decision and obligations. The decision 

combining is specified by policy combining 

algorithms, some of which are not deterministic. It is 

argued that, these non-deterministic combining 

algorithms provide better performance and demand 

less resources, and these are wanted by a significant 

amount of applications. In situations where 

nondeterminism is not acceptable, XACML suggests 

users to use deterministic combining algorithms.  

 

7 Conclusion 

 
7.1. Conclusion 
 
This paper discusses the augmentation of obligations 

with RBAC models. The purpose of the augmentation 

is to provide more active and flexible security controls 

for RBAC models. The discussion is mainly based on 

the PERMIS's implementation of RBAC model. We 

envisage the discussion can be easily generalized to 

implementations that comply with the RBAC standard.  

This paper proposes a design for augmenting 

obligations with role based access control. The 

proposed design modifies the association between roles 

and permissions in the way that, roles are associated 

with permissions and obligations. When a permission 

of a role is to be exercised, the associated obligations 

shall be fulfilled.   

Negative obligations to be fulfilled when 

authorization requests are denied are also defined in 

the proposed design. Negative obligations must be 

fulfilled only when authorization requests are denied 

and the requests fall in some specific situations as 

defined by the policies.  

The nondeterminism that is caused by overlapped 

authorization is also discussed. We argue that 

overlapped rules are alternatives and equivalent to each 

other, all of which are suffice to provide the expected 

security. Further, eliminating the nondeterminism will 

incur extra computation cost as well as administration 

cost. Thus we consider the nondeterminism as a 

reasonable phenomenon.  .  

The security policy format of PERMIS has been 

modified to accommodate the association of 

obligations in the allocation of permissions to roles, 

and a new sub policy, Obligations on denial. These 

changes allow security administrators to specify 

obligations for both the situations of granting 

authorisation and denying authorization. 

 

7.2 Contributions 
 

The contributions of this work are six-folded. Firstly, 

we identified the need of augmenting obligations with 

RBAC and proposed a model for the integration of 

RBAC and obligations. The proposed model is capable 

of providing obligations for the situation of 

authorisation granted and the situation of authorisation 

denied. Secondly, we provided a discussion on the 

nondeterminism caused by overlapped authorisation in 

the proposed model. We considered that 

nondeterminism is acceptable and will not compromise 

the system security. Thirdly, we provided a 

specification of the security policy that can 

accommodate obligations, and defined an interface for 

consulting PERMIS decision engine for authorization 

response. Fourthly, we implemented the proposed 

design into PERMIS authorization infrastructure. The 

implementation is backward compatible, and does not 

require any changes to the original applications. 

Fifthly, the proposed design and the implementation 

can be considered as an improvement to PERMIS, so 

that PERMIS can be an alternative to XACML in most 

of the scenarios. Lastly, the obligation definition is 

XACML compatible, which will allow the 

authorization response to be easily converted to 

XACML response context. It is envisaged that, 

XACML PEPs can easily switch between XACML and 

PERMIS. 

 

7.3 Future Work 
 



Currently the proposed design of augmenting 

obligations into PERMIS has been partially finished, 

except the obligations on denial feature. The future 

work of this research will be the testing and trial 

deployment of the current implemented features. User 

feedbacks will be reviewed and revision of the current 

design might be considered.  

As this paper focus on the computation of 

obligations, and deliberately leave the fulfillment of 

obligations for separate work, we will investigate the 

necessary infrastructures for applications to fulfill 

obligations. We also envisage that the monitoring of 

the obligation fulfillment is an important part of the 

infrastructures.  
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