
Recognition of Authority in Virtual

Organisations

Tuan-Anh Nguyen, David Chadwick, and Bassem Nasser

University of Kent, Canterbury, England

Abstract. A Virtual Organisation (VO) is a temporary alliance of au-
tonomous, diverse, and geographically dispersed organisations, where the
participants pool resources, information and knowledge in order to meet
common objectives. This requires dynamic security policy management.
We propose an authorisation policy management model called recogni-
tion of authority (ROA) which allows dynamically trusted authorities to
adjust the authorisation policies for VO resources. The model supports
dynamic delegation of authority, and the expansion and contraction of
organizations in a VO, so that the underlying authorisation system is able
to use existing user credentials issued by participating organisations to
evaluate the user’s access rights to VO resources.

1 Introduction

A Virtual Organisation (VO) is a temporary alliance of autonomous, diverse, and
geographically dispersed organisations, where the participants pool resources,
information and knowledge in order to meet common objectives. The objectives
of an alliance can evolve and the relationships between the different parties may
change. Therefore virtual organisations are naturally dynamic. Consequently,
management, especially security management in such a dynamic environment
must be provided with suitable dynamic mechanisms. There are several areas of
security under consideration for VOs but in this paper we are concerned with
authorisation and access control.

The behaviour of an organisation’s authorisation system is normally governed
by an authorisation policy, written by the policy officer (or Source of Authority
- SoA). In a dynamic environment like a VO, organisations may continually
join or leave the collaboration. When joining a VO, an organisation may need
to provide access to its protected resources to users from other organisations
in the VO. When the organisation leaves the VO, access rights to its protected
resources from users outside the organisation have to be removed. In these cases,
the authorisation policy of the organisation has to be dynamically modified and

updated to cater for these dynamic changes. However,

1. in a VO, which is a pan-organisational system, the number of attributes and
users can be in the hundreds or thousands. Managing these attributes and
users and their relationships is a formidable task that can not realistically
be done by one person ([16]).

2. in reality, an authorisation policy is a set of low-level policies derived from
high-level ones and the refinement process requires the involvement of many
people, within the same or partner organisations ([6], [11]).

3. the exact form of collaboration between an organisation and a partner in
the VO is normally not known beforehand, so the permissions to modify the
authorisation policy need to be delegated on demand to the people that deal
with the collaboration.

Therefore, the permissions to modify and update the policy may need to be dy-

namically delegated from the SoA to other delegates on demand. Consequently,
these delegates are allowed to adjust the organisation’s policy, in order to ac-
commodate requirements in the collaborations and to give users in partner or-
ganisations access rights to the protected resources of the organisation.

In the RBAC model ([5], [17]), an authorisation policy includes a set of role-
permission assignments (RPA), a role hierarchy (optional) and a set of rules
that regulate the assignments of roles to users (user-role assignments, URA).
In order to avoid policy conflicts, especially when the same organisations are
simultaneously members of multiple VOs, we require that each collaboration be
independent with its own security objectives and requirements. For example,
within one collaboration, a Student role may be considered the subordinate role
of a Staff role and the later to inherit the permissions of the former, but within
another collaboration, the two roles may be independent with no permission
inheritance. If the two collaborations are not independent, it is possible that the
requirements of one collaboration cannot be fulfilled or they may conflict with
those of the other.

On the other hand, in a VO there may be several organisations that support
an inter-organisational workflow and these organisations may need to be changed
during the workflow’s life cycle. Furthermore, the workflow’s requirements (or
specification) may also need to be changed. The workflow’s security infrastruc-
ture should not be tied to users or attributes from any of the partner organisa-
tions. Otherwise, if one partner is replaced by another then the workflow security
infrastructure would have to be modified to account for this change. Addition-
ally, the partner organisations should not tie permissions used by the workflow
to their own users or attributes because if the permissions needed for the work-
flow change, the partner organisation would need to modify the permissions
given to its users or attributes to accommodate these changes. Consequently
there needs to be a level of indirection between the workflow’s security infras-
tructure and the organisation’s security infrastructure. Since each organisation
may support several inter-organisational workflows, it is not realistic for each
organisation to restructure its organisational level security infrastructure when
workflow security infrastructure changes occur and vice versa. Therefore, the
workflow security infrastructure needs to be separated from the organisational-
level security infrastructure as stated in [8] and [14]. Our model provides this
separation through the dynamic on demand specification of organizational level
attributes that grant access to a VO’s workflow resources. The organizational

level attributes are dynamically mapped into either workflow roles or workflow
privileges.

1.1 Objectives and Contribution

In the VO environment, there are issuing domains that issue credentials to users
and target domains that consume credentials ([3]). The authorization policy
of the target domain decides whether an issued credential is to be trusted or
not i.e. is valid or not, and whether it provides sufficient permissions or not to
the accessed resource. In an attribute (or role) based authorisation policy, the
permission-attribute assignments (or RPA) form the access control policy. The
URA form the credential validation policy ([3]). Thus, an authorisation policy
includes an access control policy and a credential validation policy.

In this paper, we propose a model called recognition of authority which
provides the following features for authorisation administration in a virtual or-
ganisation:

– Administrative roles are defined which grant permission to dynamically up-
date limited parts of the authorisation policy in the target domain, more
specifically, to assign organizational level attributes to a subset of the privi-
leges which grant access to the VO’s workflow resources.

– Administrators are dynamically created by assigning these administrative
roles to them. These roles can be dynamically delegated, and also dynami-
cally revoked, thereby dynamically adding and removing administrators from
the system.

– An administrator can dynamically assign a subset of the permissions granted
by the administrative role, to any organizational level user attributes (i.e.
perform RPA). In addition, the administrator can provide the policy infor-
mation for validating the user credentials that contain these attributes (i.e.
URA validation).

– Collaborations between organisations are independent of each other, since a
VO’s workflow privileges are independent of those of other VOs.

– Application-level (workflow) security infrastructures are separated from or-
ganisational level security infrastructures since workflow permissions are dy-
namically assigned to organizational level attributes.

By allowing authorization policies to be dynamically updated as above, our
model allows the authorisation system of a target domain to dynamically recog-

nise trusted administrators, to dynamically recognise the new attributes they
are trusted to issue, and to dynamically recognise new users of the VO. The
initial definition of the administrative roles means that the authorization sys-
tem knows the limit of their administrative authority in assigning permissions
to users.

The rest of this paper is structured as follows: section 2 reviews some related
research, section 3 compares and contrasts two approaches for assigning permis-
sions to attributes, section 4 presents our recognition of authority management
model in detail and the last section provides a conclusion and indicates where
future research is still needed.

2 Related Works

In [7], the authorisation policy in a target domain is only modified and updated
by the security officer in that domain, so that the model is not appropriate for
dynamic and large environments like VOs. The RT model (Role-based Trust-
management – [9], [10]) is a very powerful framework for representing policies
and credentials in distributed authorisation system. It provides the capability of
role mapping i.e. one role issued in one domain is mapped to another role issued
in another domain. In this way, permissions in one organisation are assigned to
roles issued in another organisation and users from one organisation can access
protected resources in another. The disadvantage of the RT model is that it only
supports RT formatted credentials, ignoring the fact that users’ credentials in
VOs are organisation-dependent. In [14], the policy of an organisation is only
updated by its administrator and does not have a mechanism to separate collab-
orations from each other. Furthermore, the policy for role mapping is statically
set by the administrator in a system-site. The current PERMIS infrastructure
([1], [2]) supports the dynamic assignment of roles to users in different domains
but does not have the capability of dynamically adjusting the authorisation
policy. The CAS model ([15]) is used for authorisation in Grid environments
but the policy of a CAS server is only modified and updated by its predefined
administrators. Furthermore, it can not separate the workflow security infras-
tructure from the organisation level security infrastructure or explicitly deal with
multiple collaborations. If there is a change of participant in the collaboration,
the CAS server has to be re-configured with a new set of users and users’ per-
missions. The framework proposed in [6] does not separate inter-organisational
workflows from organisation-level changes because if there is a change in partic-
ipation, the inter-organisational workflow specification which specifies who can
have which permissions will have to be changed. Furthermore, the framework has
no mechanism to separate collaborations from each other. In [12], the authors
proposed the dynamic coalition-based access control (DCBAC) model that facil-
itates the formation of dynamic coalitions through the use of a registry service,
where available services can be advertised by potential coalition members. This
model does not consider the decentralised administration of collaborations, so
that only the SoA in an organisation can register the organisation’s services to
coalitions. Furthermore, the workflow security infrastructures are not separated
from the organisation level security infrastructures. The major contribution of
our paper is bring together in one model the various advantages of the differ-
ent models above, by allowing the dynamic update of authorization policies by
a dynamically changing decentralized pool of administrators, whilst keeping a
tight separation between workflow security infrastructure and organisation level
security infrastructure and also between one collaboration and another.

3 Direct Permission Assignment vs. Role Mapping

There are two approaches for assigning permissions in a local organisation to
users in partner organisations. The first is to directly assign permissions to re-

mote user attributes ([4], [6], [7], [15]) and the second is to map remote user
attributes into local user roles by attribute-role mapping ([9], [14]). Both ap-
proaches can facilitate collaboration between organisations. In the attribute-role
mapping approach, the permission given to a remote attribute is the permission
of the local role, which is fixed. Thus, this approach limits the granularity of del-
egation to that of the pre-defined local roles (and their subordinate roles), whilst
direct permission assignment allows each permission to be delegated or assigned
separately. On the other hand, by mapping remote user attributes to local roles
(used for workflows), the changes of participants in a workflow are confined to
the modification of mappings from an organisation’s attributes to the local user
roles (it does not affect the workflow’s specification) and changes to the speci-
fication of local roles do not require modifications to the remote user attribute
specifications. Thus, this approach supports the separation of workflows from
organisational changes ([8], [14]). Since both approaches have their merits, our
model is designed to support both approaches. When an administrative role is
defined, its administrative permissions are defined as either an ability to assign
permissions to user attributes, or an ability to map user attributes into existing
local user roles.

4 Recognition of Authority Management Model

Fig. 1. User Roles and Administrative Roles

We identify two types of permission: a normal permission (or user permis-

sion) and an administrative permission. A user permission is a consent (for a
user) to perform an action on a particular resource under certain conditions. An

administrative permission is a consent (for an administrator) to perform role
permission assignments i.e. to either assign one or more user permissions to a
set of (one or more) user attributes, or to perform role mappings between user
attributes.

When a set of user permissions is given to an attribute, we say that the at-
tribute is a user attribute. When a set of administrative permissions is given to
a role we say the role is an administrative role. Someone who holds an admin-
istrative role is called an administrator. The set of user permissions and user
attributes that an administrator can assign or map to new user attributes is
called his administrative scope.

The recognition of authority management model for facilitating dynamic col-
laboration between organisations comprises the following steps:

Fig. 2. Collaboration Policy

1. The policy writer (SoA) of the target domain defines a set of administrative
roles for the target domain, an administrative role credential validation pol-
icy, and the workflow permissions that are attached to these administrative
roles (i.e. the administrative scope).

2. The SoA dynamically delegates these administrative roles to trusted people
in remote domains with whom there is to be a collaboration, by issuing
administrative role credentials to them.

3. To establish a collaboration, one of these administrators must update the
SoA’s authorisation policy by writing a collaboration policy. The collabora-
tion policy includes an access control policy and/or a role mapping policy,
and a user credential validation policy. The latter specifies validation rules
for user credentials containing newly defined (organizational level) user at-
tributes, whilst the former specifies either role permission assignments or

role mappings for the newly defined user attributes. In this way, users who
hold credentials containing these new attributes will gain access to the ap-
propriate target resources.

4. In order to ensure that no administrator can overstep his delegated authority,
the authorisation system has to validate that the collaboration policy lies
within the the administrative scope specified in Figure 1 above. If it does, it
is accepted, and its policy rules become dynamically incorporated into the
SoA’s policy. If it does not, it is rejected, and its policy rules will be ignored.

5. When a user from a collaborating domain wants to access a protected re-
source in the target domain, assuming the collaboration policy has been
accepted, the authorisation system retrieves and validates the user’s creden-
tials/attributes against the now enlarged credential validation policy. Only
valid attributes will then be used by the access control system to make ac-
cess control decisions for the user’s request against the now enlarged access
control policy ([3]).

6. An administrator may dynamically delegate his administrative role to an-
other person, providing the delegate falls within the scope of the adminis-
trative role credential validation policy set by the resource SoA (see Figure
1). In [13] we have proposed a delegation of authority model that has the
capability to further constrain the authority of administrators so that they
may not only delegate their administrative roles, but also a subset of them.
However, this refined delegation of administrative roles is not considered fur-
ther in the scope of this paper. We will assume for now that administrators
may delegate their (unconstrained) roles to other administrators.

4.1 Administrative Roles

The SoA of a target domain is the person who is fully trusted by the authorisation
system to set its authorisation policy. The SoA’s administrative scope is all the
user permissions that are under his control in the target domain. In our model,
we propose that the SoA defines a set of administrative roles which each control
either a subset of the user permissions or mappings to subsets of local user
attributes. The SoA may then delegate these administrative roles to other people
on demand as the need arises, so that the delegates can control subsets of user
permissions or role mappings. We express an administrative role as:

– Either a finite set of user permissions piwhich can be assigned to (new or
existing) user attributes: aRole = {p1, p2, . . . , pn}. The holder of this kind
of administrative role is trusted to assign any of the user permissions that
comprise the definition of the administrative role, to any set of user at-
tributes provided that the assignments satisfy the restrictions placed on the
administrative role.

– Or a set of existing user attributes to which new user attributes can be
mapped: aRole = {uR1, uR2, . . . , uRn}. The holder of this kind of adminis-
trative role is trusted to map any set of new user attributes into any set of

existing local user attributes that comprise the definition of the administra-
tive role, provided that the mappings satisfy the restrictions placed on the
administrative role.

Note that the remote administrator who deals with a collaboration needs to
know either the existing permissions or user attributes in the target domain in
order to perform either role permission assignments or role mappings. A DTD
for role-permission assignments and attribute-role mappings is provided in the
Appendix.

4.2 Validation of an Administrator’s Administrative Roles

Validating an administrator’s administrative roles is no different to validating
a user’s credential. The authorisation system validates credentials based on its
credential validation policy. We have proposed a model for validating users’
credentials, called the Credential Validation Service (CVS) in [3]. In general,
the CVS is provided with a trust model that tells it which attribute issuers to
trust (roots of trust), and a credential validation policy that provides the rules
to control which delegates are allowed to receive which delegated roles.

The formal representation of the CVS’s credential validation policy is as
follows:

1. a set of attributes ATTRIBUTES,
2. a set of attribute hierarchies SRH = {RH}, RH is a attribute hierarchy,
3. a set of delegation rights RIGHTS = {d},
4. a set of trusted root credential issuers or AAs AAS = {AA},
5. HAS ⊂ AASxRIGHTS is a AA – Delegation Rights table, which says which

trusted credential issuers have which delegation rights.

We formulate a delegation right (or the right to delegate or assign an attribute)
as d = d(attr,Q, n,DT) where Q is a restriction of the delegation right – the
holder of the delegation right can only delegate or assign attr to a user (delegate)
that satisfies the restriction Q. Restrictions will be presented shortly. n > 0 is
the maximum delegation depth of a delegation chain that can be made by the
holder. DT is the maximum validity period of the delegations that can be made
by the holder.

The CVS is able to retrieve (in pull mode) or obtain (in push mode) user
credentials, find the delegation chain(s) from a trusted credential issuer to a
user’s credential and validate the credentials in the delegation chain(s). Trusted
credential issuers are only allowed to delegate (or assign) attributes to users who
satisfy the restrictions placed on their delegation rights.

For collaborations between organisations, the CVS is able to validate admin-
istrative role credentials as well as user attribute credentials. The administrative
role credential validation policy provides the rules used to control the validation
of administrative role credentials according to the same trust model as user cre-
dentials. In this case, the SoA is the only trusted root credential issuer for the
delegation of administrative roles.

In our model, Q is an expression of the attributes a user must have in order
to become a delegate. Because a user’s attributes are the user’s properties in
his organisation, the expression of user attributes varies between organisations
and is application-dependent. User attributes may be the roles of the user in
the organisation, the user’s age, credit limit, or the domain of the user etc. An
example expression of user attributes is (Role = Researcher) ∧ (Age > 35) i.e.
i.e. in order to be a delegate, the user must have a ”Researcher” role and be
aged greater than 35.

4.3 Validation of Collaboration Policies

A collaboration policy made by an administrator includes an access control pol-
icy (or role mapping policy) and a credential validation policy. This will control
which users are able to access the target resource. The authorisation system in
the target domain has to check whether the access control or role mapping pol-
icy is within the administrative scope of the administrator, but the credential
validation policy does not have any restrictions placed on it, since the adminis-
trator is trusted to say which users should have access to the resource. In reality,
the VO agreement will state which target resources should be made available to
the collaborating organizations, and so the SoA only sets restrictions on which
resources can be accessed, via the administrative scope. It is then left up to
the various collaborating administrators to decide which of their users should
have this access, and to set their credential validation policies accordingly. In
this way, the policy that validates the users is delegated to the collaborating
administrators, but is enforced by the target resource’s PDP.

If we assume that an administrator has a set of valid administrative roles
aRoles = {aRolei}, i = 1..n, where an administrative role has a set of user per-
missions aRolei = {pi

1
, pi

2
, . . . , pi

ii
} or user attributes aRolei = {uRi

1
, uRi

2
, . . . ,

uRi
ii
} then a role-permission assignment attribute ← {p1, p2, . . . , pk} is valid if

and only if ∀p ∈ {p1, p2, . . . , pk}, ∃l, 1 ≤ l ≤ n, p ∈ aRolel and an attribute-role
mapping uR← attribute is valid if and only if ∃aRolei, uR ∈ aRolei or uR is a
subordinate of uRR in which ∃aRolei, uRR ∈ aRolei.

If the above policies are valid, then the target resource will add these policies
to its existing ones. The CVS will add the administrator’s credential validation
policy to its existing ones, and the PDP will add the role-permission assign-
ments to its existing ones. We believe that role mappings are logically part of
the CVS’s functionality, and that after validating a user’s credentials, the CVS
should return the mapped roles to the PEP. In this way the PDP can make an
access control decision based on its existing rule set.

5 Conclusion

Dynamically decentralising the administration of an authorisation system for a
VO’s requirements without loosing central control over broad policy is a chal-
lenging goal for system designers and architects. Our work provides a signifi-
cant and practical advance towards this goal by proposing the recognition of

authority management model. The ROA model allows dynamically assigned ad-
ministrators to dynamically adjust the authorisation policy of a target domain.
Therefore, our model supports decentralised authorisation administration. By
separating authorisation policies created for each collaboration, the collabora-
tions remain independent, so that the policies for one collaboration do not affect
other collaborations and the policies can be added and removed independently.
By supporting attribute-role mapping, our model can separate workflows from
organisational changes. By supporting delegated role-permission assignments we
maximize the granularity of administrative delegation. Another benefit of del-
egated role-permission assignments is that administrators can assign target re-
source permissions to local organizational level user attributes and it facilitates
decentralised management of permissions to VO resources.

Currently, an implementation of the recognition of authority model in the
PERMIS authorisation infrastructure is under way. We hope that with the im-
plementation, we can evaluate the usability and performance of the model.

References

1. David Chadwick and Sassa Otenko. The permis x.509 role based privilege man-
agement infrastructure. In Proceedings of 7th ACM Symoisium on Access Control
Models and Technologies (SACMAT 2002).

2. David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Linying Su, and
Tuan Anh Nguyen. Building a modular authorization infrastructure. In Fifth All
Hands Meeting. UK e-science, Achievements, Challenges & New Opportunities,
September 2006.

3. David W Chadwick, Sassa Otenko, and Tuan Anh Nguyen. Adding support to
xacml for dynamic delegation of authority in multiple domains. In 10th IFIP Open
Conference on Communications and Multimedia Security, Heraklion Crete, 2006.

4. Marlena Erdos and Scott Cantor. Shibboleth-architecture draft v05. Technical
report, Internet2, May 2002.

5. David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed nist standard for role-based access control.
ACM Transactions on Information and System Security, 4(3):224–274, 2001.

6. Babak Sadighi Firozabadi, Olle Olsson, and Erik Rissanen. Managing authorisa-
tions in dynamic coalitions. In Swedish Institute of Computer Science, 2003.

7. Lalana Kagal, Timothy Finin, and Yun Peng. A delegation based model for dis-
tributed trust. In Proceedings of the IJCAI01 Workshop on Autonomy, Delegation
and Control: Interacting with Autonomous Agent, Seattle, pages 73–80, 2001.

8. Myong H. Kang, Joon S. Park, and Judith N. Froscher. Access control mechanisms
for inter-organizational workflow. In The sixth ACM symposium on Access control
models and technologies, pages 66–74, Chantilly, Virginia, United States, 2001.
ACM Press.

9. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-
based trust-management framework. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 114–130. IEEE Computer Society Press, 2002.

10. Ninghui Li, John C. Mitchell, and William H. Winsborough. Distributed credential
chain discovery in trust management. Journal of Computer Security, pages 35–86,
2003.

11. Jonathan D. Moffett and Morris S. Sloman. Policy hierarchies for distributed
systems management. IEEE Journal on Selected Areas in Communications,
11(9):1404–1414, 1993.

12. Ravi Mukkamala, Vijayalakshmi Atluri, Janice Warner, and Ranjit Abbadasari.
A distributed coalition service registry for ad-hoc dynamic coalitions: A service-
oriented approach. In E. Damiani and P. Liu (Eds.): Data and Applications Se-
curity 2006, LNCS 4127, pages 209–223. IFIP, 2006.

13. Tuan-Anh Nguyen, Linying Su, George Inman, and David Chadwick. Flexible and
manageable delegation of authority in rbac. In Proceedings of The IEEE Ubisafe07,
Ontario, Canada, 21-23 May 2007. IEEE Computer Society Press.

14. Joon S. Park, Keith P. Costello, Teresa M. Neven, and Josh A. Diosomito. A
composite rbac approach for large, complex organizations. In ACM SACMAT’04
Yorktown Heights, New York, USA, 2004.

15. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. Community au-
thorization service for group collaboration. IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002.

16. Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model for
role-based administration of roles. ACM Transactions on Information and System
Security, 2(1):105–135, 1999.

17. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Computer Society Press, Loas Alamitos, CA,
USA, 29(2):38–47, 1996.

Appendix

A DTD for Attribute-Permission Assignment and Attribute-Role Map-

ping

<!ELEMENT AttributeAssignmentPolicy (AttributeAssignment)+ >

<!ELEMENT AttributeAssignment (SubjectDomain, AttributeList, Delegate, Truste-

dIssuer, Validity) >

<!ELEMENT SubjectDomain EMPTY>

<!ATTLIST SubjectDomain ID IDREF #REQUIRED>

<!ELEMENT AttributeList (Attribute*) >

<!ELEMENT Attribute EMPTY >

<!ATTLIST Attribute Type IDREF #IMPLIED Value IDREF #IMPLIED >

<!ELEMENT TrustedIssuer EMPTY>

<!ATTLIST TrustedIssuer ID IDREF #REQUIRED>

<!ELEMENT Validity (Absolute?, Age?, Maximum?, Minimum?) >

<!ELEMENT Delegate EMPTY >

<!ATTLIST Delegate Depth CDATA #IMPLIED >

<!ELEMENT TargetPolicy (TargetDomainSpec+) >

<!ELEMENT TargetDomainSpec ((Include, Exclude*)+, ObjectClass*) >

<!ATTLIST TargetDomainSpec ID IDREF #REQUIRED>

<!ELEMENT ActionPolicy (Action+) >

<!ELEMENT Action EMPTY>

<!ATTLIST Action Name NMTOKEN #REQUIRED Args NMTOKENS #IMPLIED>

<!ELEMENT TargetAccessPolicy (TargetAccess) >

<!ELEMENT TargetAccess (AttributeList, TargetList, IF?) >

<!ELEMENT TargetList (Target+) >

<!ELEMENT Target (TargetName —TargetDomain) >

<!ATTLIST Target Actions NMTOKENS #IMPLIED >

<!ELEMENT TargetName EMPTY>

<!ATTLIST TargetName LDAPDN CDATA #REQUIRED>

<!ELEMENT TargetDomain EMPTY>

<!ATTLIST TargetDomain ID IDREF #REQUIRED>

<!ELEMENT AttributeMappingPolicy (AttributeMapping) >

<!ELEMENT AttributeMapping (Attribute, LocalRole)+ >

<!ELEMENT LocalRole EMPTY >

<!ATTLIST LocalRole Type IDREF #IMPLIED Value IDREF #IMPLIED >

