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Abstract— A common problem in multi-target tracking is to
approximate a Gaussian mixture by one containing fewer com-
ponents; similar problems can arise in integrated navigation. A
common approach is successively to merge pairs of components,
replacing the pair with a single Gaussian component whose
moments up to second order match those of the merged pair.
Salmond [1] and Williams [2], [3] have each proposed algorithms
along these lines, but using different criteria for selecting the pair
to be merged at each stage. The paper shows how under certain
circumstances each of these pair-selection criteria can give rise
to anomalous behaviour, and proposes that a key consideration
should be the Kullback-Leibler discrimination of the reduced
mixture with respect to the original mixture. Although computing
this directly would normally be impractical, the paper shows how
an easily-computed upper bound can be used as a pair-selection
criterion which avoids the anomalies of the earlier approaches.
The behaviour of the three algorithms is compared using a high-
dimensional example drawn from terrain-referenced navigation.

Index Terms— Gaussian mixture, data fusion, integrated nav-
igation, tracking.

I. INTRODUCTION

SEVERAL data fusion algorithms, usually derived in some
way from the Kalman filter, represent the state of the

observed system as a mixture of Gaussian distributions. An
important example is the multiple hypothesis approach to
tracking multiple targets where there is ambiguity in assigning
observations to tracks—see for example [4, Sec. 6.7]—and
this is the application motivating Salmond’s and Williams’s
papers cited below. However, Gaussian mixture approaches
are also useful in integrated navigation applications where, for
example, there is some ambiguity in the position fixes used to
augment an inertial navigation system: this is the application
motivating the present note [5], [6].
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A common drawback with these Gaussian mixture algo-
rithms is that there is a tendency for the number of components
of the mixture to grow without bound: indeed, if the algorithm
were to simply to follow the statistical model on which the
method is based, the number of components would increase
exponentially over time. To combat this, various pragmatic
measures must be taken to keep the number of components
in check. Typically this will be achieved either by discarding
components with low probability, and/or by merging compo-
nents which represent similar state hypotheses.

Salmond [1] proposed a mixture reduction algorithm in
which the number of components is reduced by repeatedly
choosing the two components that appear to be most similar
to each other, and merging them. His criterion of similarity is
based on concepts from the statistical analysis of variance, and
seeks to minimise the increase in ‘within-component’ variance
resulting from merging the two chosen components.

Williams [2], [3] proposed a mixture reduction algorithm
based on an integrated squared difference (ISD) similarity
measure, which as he points out has the big advantage that
the similarity between two arbitrary Gaussian mixtures can
be expressed in closed form. The algorithm he proposes uses
a hill-climbing optimisation to search for a reduced mixture
with the greatest similarity to the original mixture; however,
to find starting points for the optimisation process, he uses a
pairwise merge algorithm similar to Salmond’s, but using the
ISD similarity measure.

In the present paper, we propose a third variation on the
pairwise-merge approach, in which the measure of similarity
between two components is based on the Kullback-Leibler
(KL) discrimination measure [7].

The layout is as follows: Sec. II introduces a brief notation
for Gaussian mixtures, defines the concept of a moment-
preserving merge of two or more components of such a mix-
ture, and outlines the pairwise-merge type of mixture reduction
algorithm being considered in this paper. Sec. III introduces
the KL discrimination measure. Sec. IV describes the criterion
proposed in [1] for selecting which pair of components to
merge at each stage, and identifies two properties of this
criterion that may be considered anomalous. Sec. V similarly
studies the ISD criterion proposed by Williams, and identifies
a property of this criterion that may be considered undesirable
in some applications, particularly where the system state vector
has high dimensionality. Sec. VI proposes a dissimilarity
measure for pair selection based on KL discrimination, and
explores its properties; Sec. VII then discusses the advantages
and disadvantages of a pairwise merge algorithm based on this
dissimilarity measure. Sec. VIII compares the operation of the
Salmond, Williams, and KL reduction algorithms in reducing
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a high-dimensional mixture arising in terrain-referenced nav-
igation. Finally Sec. IX draws conclusions.

II. GENERAL BACKGROUND

A. Notation

We shall represent a component of a Gaussian mixture using
notation of the form (w,µ, P ): this represents a component
with non-negative weight w, mean vector µ and covariance
matrix P . (We shall assume throughout that components’
covariance matrices are strictly positive definite, and not
merely non-negative definite.) We shall use notation such
as {(w1,µ1, P1), (w2,µ2, P2), . . . (wn,µn, Pn)} to denote a
mixture of n such components; such a mixture must satisfy
w1 + · · ·+ wn = 1, and has probability density function:

f(x) =
n∑

i=1

wi√
(2π)d det Pi

exp
[
−1

2
(x− µi)

T P−1
i (x− µi)

]
where d is the dimensionality of the state vector x. A plain
(unmixed) Gaussian distribution will be written using notation
such as {(1, µ, P )}.

B. Merging Two Components

Suppose we are given a mixture of two Gaussian compo-
nents:

{(w1,µ1, P1), (w2,µ2, P2)} (1)

(where w1 + w2 = 1) and that we wish to approximate
this mixture as a single Gaussian. A strong candidate is
the Gaussian whose zeroth, first and second-order moments
match those of (1), i.e. the Gaussian with mean vector µ and
covariance matrix P as follows:

µ = w1µ1 + w2µ2

P = w1(P1 + (µ1 − µ)(µ1 − µ)T )
+ w2(P2 + (µ2 − µ)(µ2 − µ)T )

= w1P1 + w2P2 + w1w2(µ1 − µ2)(µ1 − µ2)
T

(Theorem 3.2 will show that {(1,µ, P )} is the Gaussian
whose Kullback-Leibler discrimination from the mixture (1)
is minimal.)

We shall refer to (1,µ, P ) as the moment-preserving
merge of (w1,µ1, P1) and (w2,µ2, P2). More generally, we
can remove the restriction that w1 + w2 = 1: given two
weighted Gaussian components (wi,µi, Pi) and (wj ,µj , Pj),
with w1 + w2 ≤ 1, their moment-preserving merge is the
Gaussian component (wij ,µij , Pij) as follows (cf. [3, Eqs 2–
4]):

wij = wi + wj (2)
µij = wi|ijµi + wj|ijµj (3)
Pij = wi|ijPi + wj|ijPj

+ wi|ijwj|ij(µi − µj)(µi − µj)
T (4)

where we write wi|ij = wi/(wi + wj) and wj|ij = wj/(wi +
wj).

C. Mixture Reduction Algorithm
Suppose that we are given a mixture with n components,

and we wish to approximate it by a mixture of m components,
where m ≤ n. In this paper, we focus on algorithms which
operate in the following general way:

While more than m components remain, choose the
two components that in a sense to be defined are
least dissimilar, and replace them by their moment-
preserving merge.

The algorithm proposed in [1, Sec. 4] is of this type, using the
dissimilarity measure to be described in Sec. IV; the algorithm
proposed in [2], [3] uses an algorithm of this type to determine
starting points for an optimisation procedure.

III. KULLBACK-LEIBLER DISCRIMINATION

If f1(x) and f2(x) are probability density functions over
<d, the Kullback-Leibler (KL) discrimination1 of f2 from f1

is defined as:

dkl(f1, f2) =
∫
<d

f1(x) log
f1(x)
f2(x)

dx (5)

Although clearly dkl(f, f) = 0, and dkl(f, g) ≥ 0 (cf. [8,
Theorem 2.6.3], [9, Theorem 4.3.1]), in general it is not true
that dkl(f, g) = dkl(g, f), nor that dkl(f, g) + dkl(g, h) ≥
dkl(f, h).

To give an informal motivation for KL discrimination, sup-
pose that we have a stream of data x1, x2, . . . which we assume
to be independent samples either from f(x) or from g(x), and
we wish to decide which. From a Bayesian perspective, the
approach we might take is to continue drawing samples until
the likelihood ratio

∏
i(f(xi)/g(xi)) exceeds some predefined

threshold, say 100:1 in favour on one candidate or the other.
Equivalently, we will be aiming to achieve a sample large
enough that the logarithm of the likelihood ratio falls outside
the bounds ± log 100. Now suppose that (unknown to us) the
data stream is actually coming from f(x). Then the expected
value of the log-likelihood-ratio for a single sample point
will be E(log(f(x)/g(x))) = dkl(f, g). Consequently, the
expected log-likelihood-ratio for the full sample will exceed
log 100 provided the sample size exceeds (log 100)/dkl(f, g).
Roughly speaking, small values of dkl(f, g) mean that we will
need large samples to distinguish f from g, and conversely.

The remainder of this section introduces theorems about
Kullback-Leibler discrimination that we shall use in Sec. VI,
and can be skipped on a first reading.

Theorem 3.1: Let g1(x) be the d-dimensional Gaussian pdf
with mean vector µ1 and positive definite covariance matrix
P1, and let g2(x) be the d-dimensional Gaussian pdf with
mean vector µ2 and p.d. covariance matrix P2. Then:

2dkl(g1, g2)

= tr
(
P−1

2 [P1 − P2 + (µ1 − µ2)(µ1 − µ2)
T ]
)

+ log
det(P2)
det(P1)

1Also referred to as cross-entropy, Kullback-Leibler information, or
Kullback-Leibler divergence. However, Kullback and Leibler themselves
[7] and several subsequent authors use the term ‘divergence’ to refer to
dkl(f1, f2) + dkl(f2, f1). It is also sometimes called the Kullback-Leibler
distance, despite not satisfying the usual requirements for a distance measure.
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For a proof see for example [9, Theorem 7.2.8].
Theorem 3.2: Let f(x) be a probability density function

over d dimensions with well-defined mean µ∗ and covariance
matrix P∗, where P∗ is strictly positive-definite. As before,
let (1,µ, P ) denote the Gaussian density with mean µ and
p.d. covariance matrix P . Then the unique minimum value of
dkl(f, (1,µ, P )) is achieved when µ = µ∗ and P = P∗.

For a proof see the Appendix.
Theorem 3.3: If f(x), h1(x) and h2(x) are any pdfs over

d dimensions and 0 ≤ w ≤ 1 then, writing w̄ for 1− w:

dkl(wh1 + w̄h2, f) ≤ wdkl(h1, f) + w̄dkl(h2, f)
dkl(f, wh1 + w̄h2) ≤ wdkl(f, h1) + w̄dkl(f, h2)

This is a standard result: for a proof see [9, Theorem 4.3.2]
or [8, Theorem 2.7.2].

Theorem 3.4: If f1(x), f2(x) and h(x) are any pdfs over
d dimensions, 0 ≤ w ≤ 1 and w̄ = 1− w, then:

dkl(wf1 + w̄h, wf2 + w̄h) ≤ wdkl(f1, f2)
For a proof see the Appendix.

IV. SALMOND’S CRITERION

Let {(w1,µ1, P1), . . . (wn,µn, Pn)} be an n-component
Gaussian mixture, and let µ and P be respectively the overall
mean and the overall variance of this mixture. Clearly

µ =
n∑

i=1

wiµi

while P can be written as P = W + B where W is the
‘within-components’ contribution to the total variance, given
by:

W =
n∑

i=1

wiPi

while B is the ‘between-components’ contribution given by:

B =
n∑

i=1

wi(µi − µ)(µi − µ)T

When two components are replaced by their moment-
preserving merge, the effect is, roughly speaking, to increase
W and decrease B by a corresponding amount, leaving the
total variance P unchanged. Salmond’s general idea [1, Sec. 4]
is to choose for merging two components i and j such that
the increase in W is minimised. He shows that the change in
W when components i and j are replaced by their moment-
preserving merge is

∆Wij =
wiwj

wi + wj
(µi − µj)(µi − µj)

T

However, ∆Wij is a matrix, whereas we require a scalar
dissimilarity measure. Salmond proposes using the following
measure:

D2
s(i, j) = tr(P−1∆Wij) (6)

Here the trace reduces its matrix argument to a scalar, and the
premultiplication by P−1 ensures that the resulting dissimi-
larity measure is invariant under linear transformations of the
state space.
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Fig. 1. Means of the components in Example 4.2

However, the dissimilarity measure defined in (6) has two
properties that may be considered undesirable as a basis for
choosing which components to merge. First, the measure
depends on the means of the components, but not on their
individual covariance matrices, leading to the behaviour in this
example:

Example 4.1: A mixture comprises three two-dimensional
components {( 1

3 ,µ, P1), ( 1
3 ,µ + δµ, P1), ( 1

3 ,µ, P2)}, where
δµ is very small (e.g. δµ = (0.0001, 0.0001)T ) but P2 is very
different from P1:

P1 =
(

1 0.9
0.9 1

)
P2 =

(
1 −0.9

−0.9 1

)
We wish to reduce the mixture to two components. Then, using
(6), we will choose to merge the first and third components,
yielding a merged component ( 2

3 ,µ, I2), where I2 is the two-
dimensional identity matrix.
The reader may well consider that in this example it would
be better to merge the first two components, yielding ( 2

3 ,µ +
1
2δµ, P1 + 1

4δµδµT ).
The second drawback arises from the presence of the overall

covariance P within (6). This has the implication that adding
a new component to a mixture may alter the order in which
the existing components are merged, as shown in the following
example.

Example 4.2: A mixture over the two dimensions (x, y)
consists of four components

A = (0.25, (0.661, 1)T , I2) (7)

B = (0.25, (1.339,−1)T , I2) (8)

C = (0.25, (−0.692, 1.1)T , I2) (9)

D = (0.25, (−1.308,−1.1)T , I2) (10)
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(The means of the components are shown in Fig. 1.) We
wish to reduce this mixture to three components. It is readily
established that the overall mean of the mixture is (0, 0)T ,
and its covariance matrix is 2.105I2. From the latter fact, it
follows that criterion (6) will lead us simply to merge the two
components whose means are closest together, namely A and
C.

Now modify the original mixture by reducing the weights
of components A to D to 0.2, and adding a fifth component
E = (0.2, (0,−10)T , I2). We wish to reduce this new mixture
to three components. It turns out that criterion (6) now selects
components A and B for the first merge, and components C
and D for the second merge. This is because, although E is a
weak candidate for either merge, its inclusion in the mixture
has greatly increased its overall variance in the y-direction,
meaning that (6) now weights differences in x more heavily
than differences in y.

V. WILLIAMS’S CRITERION

Williams [2] and Williams and Maybeck [3] propose a
method of Gaussian mixture reduction based on the integrated
squared difference (ISD) measure of the dissimilarity between
two pdfs f1(x) and f2(x):

JS =
∫

(f1(x)− f2(x))2 dx

(cf. [3, Eq. 4]. This has the important property that the
dissimilarity between two arbitrary Gaussian mixtures can be
expressed in closed form (given in [3, Eq. 10])—a property
regrettably not shared by the measure proposed in the present
paper.

Their algorithm for reducing an n-component mixture to an
m-component mixture (m ≤ n) can be summarised as follows:

1) While more than m components remain consider all
possible operations of the following two kinds:
• Deleting a component and renormalising the re-

maining mixture;
• Replacing a pair of components with their moment-

preserving merge;
and in each case evaluate the ISD-dissimilarity of the
resulting mixture from the original mixture. Apply the
operation for which this dissimilarity is a minimum.

2) Use the resulting m-component mixture as the starting
point for gradient-based optimisation technique, to seek
an m-component mixture with lower dissimilarity to the
original mixture.

The authors note that the optimisation at Step 2 will seek a
local minimum rather than the global minimum: hence the
need to choose the starting point carefully.

The ISD cost measure circumvents both of the drawbacks
of Salmond’s criterion. First, the measure depends explicitly
on the covariance matrices as well as the means of the compo-
nents. Second, the cost incurred by merging two components
depends only on the parameters of those components, and not
on other characteristics of the mixture of which they form a
part. Consequently, the anomalies observed in Examples 4.1
and 4.2 do not arise.

However, the ISD criterion leads to puzzling behaviour of
its own. To illustrate this, we will focus on mixtures where
the components are radially symmetric, i.e. the covariance
matrices are multiples of the identity matrix. Consider first the
case where the starting mixture is {(w,µ−cσu, σ2Id), (w,µ+
cσu, σ2Id)}, where µ is arbitrary and u is a d-dimensional
unit vector. The means of the two components of this mixture
are distance 2cσ apart.

In this case it follows from [3, Eq. 12] that the ISD cost
of deleting one of the components (and raising the other
component to unit weight) is given by:

JS =
4w2

σd
√

(4π)d
hD(c) (11)

where
hD(c) =

1
2
(1− exp(−c2)) (12)

while the cost of replacing the two components by their
moment-preserving merge, namely (2w,µ, σ2(I + c2uuT )),
is:

JS =
4w2

σd
√

(4π)d
hM (c) (13)

where

hM (c) =
1
2
(1 + exp(−c2)) +

1√
1 + c2

− 2
√

2√
2 + c2

exp
(
− c2

2(2 + c2)

)
(14)

The functions hM (c) and hD(c) are both zero for c = 0 and
as c increases, both functions increase monotonically, tending
towards 1

2 as c → ∞. It can be shown that hD(c) > hM (c)
except when c is zero, so the deletion option will not be
considered further.

In the example under consideration, σ acts simply as a scale
factor, but it nevertheless appears in (13), raised moreover to
the power d. This leads to some surprising behaviour in the
way in which Williams’s algorithm selects pairwise merges, as
in the following twelve-dimensional example. (It is not unusual
in inertial navigation applications for the state vector to have
15 or more dimensions.)

Example 5.1: A mixture over the space (x1, . . . x12) com-
prises four components

A = (0.25, (−20,−0.5, 0, . . . , 0)T , I12) (15)

B = (0.25, (−20, 0.5, 0, . . . 0)T , I12) (16)

C = (0.25, (20,−10, 0, . . . 0)T , 4I12) (17)

D = (0.25, (20, 10, 0, . . . 0)T , 4I12) (18)

where in each mean vector the ellipsis . . . comprises eight
zeroes. Note that components A and B have negligible prob-
ability within the region where x1 > 0, and C and D have
negligible probability within the region x1 < 0.

Assume that we wish to reduce this four-component mixture
to three components. Now, according to (13) the cost of
replacing components A and B by their moment-preserving
merge is

JS =
1

4(4π)6
hM (0.5) ≈ 6.39× 10−12
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while the cost of replacing C and D by their moment-
preserving merge is:

JS =
1

4× 212(4π)6
hM (5) ≈ 5.48× 10−12

Consequently, the Williams algorithm will choose to merge
C and D rather than merging A and B.
This is despite the fact that mixture of A and B is already
unimodal, and is very similar in shape to their moment-
preserving merge. In contrast, the mixture of C and D is
decidedly bimodal, the means of these components being ten
standard deviations apart.

In fact, direct numerical integration reveals that the
Kullback-Leibler discrimination of the mixture {A,B, CD}
(where CD is the result of merging C and D) from the original
mixture {A,B, C, D} is 0.468, so (following the discussion at
the start of Sec. III) it would need only about 10 samples from
the original mixture to distinguish it from {A,B, CD} with a
likelihood ratio of 100:1. In contrast, the discrimination of the
mixture {AB,C,D} from the original is only 7.52 × 10−5,
so requiring an average of over 60000 samples to achieve the
same likelihood ratio.

The phenomenon illustrated by this example arises from the
scale-dependency of the ISD cost measure, as exhibited by the
presence of the scale factor σ in the cost measure of (13). It
is particularly pronounced in spaces of high dimensionality,
and means that—at least in some applications—the ISD cost
measure may not be suitable as a basis for Gaussian mixture
reduction.

In Sec. VI we present an alternative criterion for mixture
reduction which does not exhibit scale-dependency, and which
also avoids the drawbacks of Salmond’s criterion.

VI. A DISSIMILARITY MEASURE BASED ON
KL DISCRIMINATION

A. Motivation

At each iteration of the algorithm outlined in Sec. II-C,
we wish to choose two components from the mixture for
merging. Our ultimate objective is to find a weighted mixture
of m Gaussian components in such a way as to keep the KL
discrimination of the m-component mixture from the original
n-component mixture as small as possible, subject to being
able to accomplish this with an algorithm that is computation-
ally reasonably fast. A reasonable criterion, therefore, is to
choose two components in such a way as to minimise the KL
discrimination of the mixture after the merge from the mixture
before the merge.

Unfortunately, there appears to be no closed-form expres-
sion for the KL discrimination of one (non-trivial) Gaus-
sian mixture from another. (This fact deterred Williams [2,
Sec. 3.3.1.4] from pursuing a cost measure based on KL
discrimination; were it not for this, he says it would be
the “ideal cost function” for Gaussian mixture reduction.)
However, Sec. III provided two theorems that enable us to
put an upper bound on the discrimination of the mixture after
the merge from the mixture before the merge. This leads us
to the dissimilarity measure B((wi,µi, Pi), (wj ,µj , Pj)) now
to be defined.

B. Definition of B((wi,µi, Pi), (wj ,µj , Pj))
Theorem 3.4 tells us that the discrimination of the mixture

after merging components i and j from the mixture before
the merge will not exceed wi + wj times the discrimination
of the single Gaussian {(1,µij , Pij)} from the (normalised)
mixture {(wi|ij ,µi, Pi), (wj|ij ,µj , Pj)}. (Refer to Sec. II-B
for notation.)

Moreover Theorem 3.3 tells us that this discrimination,
which we shall write as

dkl({(wi|ij ,µi, Pi), (wj|ij ,µj , Pj)}, {(1,µij , Pij)})

will not exceed
1

wi + wj

(
widkl({(1,µi, Pi)}, {(1,µij , Pij)})

+ wjdkl({(1,µj , Pj)}, {(1,µij , Pij)})
)

Putting these together, it follows that the discrimination of
the mixture following the merge from the mixture before the
merge will not exceed:

B((wi,µi, Pi), (wj ,µj , Pj))
= widkl({(1,µi, Pi)}, {(1,µij , Pij)})

+ wjdkl({(1,µj , Pj)}, {(1,µij , Pij)}) (19)

We now show how this upper bound
B((wi,µi, Pi), (wj ,µj , Pj)) can be computed in practice.
From Theorem 3.1, we have:

2dkl({(1,µi, Pi)}, {(1,µij , Pij)})
= tr

(
P−1

ij [Pi − Pij + (µi − µij)(µi − µij)
T ]
)

+ log
det(Pij)
det(Pi)

= tr
(
P−1

ij

[
Pi − Pij + w2

j|ij(µi − µj)(µi − µj)
T
])

+ log det(Pij)− log det(Pi)

A corresponding expression can be obtained for
2dkl({(1,µj , Pj)}, {(1,µij , Pij)}) by replacing Pi by
Pj and wj|ij by wi|ij .

Consequently, substituting into (19) and using the fact that
trace is a linear operator, we find:

2B((wi,µi, Pi), (wj ,µj , Pj))

= tr
(
P−1

ij P̆ij

)
+ (wi + wj) log det(Pij)

− wi log det(Pi)− wj log det(Pj)

where

P̆ij = wiPi + wjPj − (wi + wj)Pij

+
wiwj

wi + wj
(µi − µj)(µi − µj)

T (20)

If we now substitute the expression for Pij in (4) into (20),
we find that P̆ij equals zero. Therefore:

B((wi,µi, Pi), (wj ,µj , Pj)) (21)

=
1
2
[
(wi + wj) log det(Pij)

− wi log det(Pi)− wj log det(Pj)
]
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C. Properties of B(i, j)

In the remainder of this paper we shall write B(i, j) as a
shorthand for B((wi,µi, Pi), (wj ,µj , Pj)).

First of all, it is clear that the function is symmetric:
B(i, j) = B(j, i).

In one dimension, with Pi = (σ2
i ), Pj = (σ2

j ), (21)
becomes:

2B(i, j)
wi + wj

= log

[
wi|ij

(
σ2

i

σ2
j

)wj|ij

+ wj|ij

(
σ2

j

σ2
i

)wi|ij

+ wi|ijwj|ij
(µi − µj)2

σ
2wi|ij

i σ
2wj|ij

j

]
(22)

showing that in this case B(i, j) depends only on the weights
wi, wj and on the dimensionless quantities σ2

i /σ2
j and (µi −

µj)/(σwi|ij

i σ
wj|ij

j ).
This conclusion can be extended to more than one dimen-

sion using a simultaneous diagonalisation procedure. Since Pi

and Pj are both positive definite, by a small variation of the
procedure described in [10, Sec. 1c.3(ii)] we can find a square
unitary2 matrix Uij and diagonal matrices Di and Dj , with
all their diagonal elements positive, such that:

Pi = U−1
ij DiU

−T
ij Pj = U−1

ij DjU
−T
ij (23)

Substituting from these equations into (4) we get:

Pij = wi|ijU
−1
ij DiU

−T
ij + wj|ijU

−1
ij DjU

−T
ij

+ wi|ijwj|ij(µi − µj)(µi − µj)
T

= U−1
ij

(
wi|ijDi + wj|ijDj

+ wi|ijwj|ijuijuT
ij

)
U−T

ij (24)

where we have written uij for Uij(µi−µj). Now, substituting
from (23) and (24) into (21) and using the fact that det(AB) =
det A× det B, we get:

2B(i, j)
wi + wj

= log det
(
wi|ijDi + wj|ijDj + wi|ijwj|ijuijuT

ij

)
− wi|ij log det(Di)− wj|ij log det(Dj)

= log det
(
wi|ijDi + wj|ijDj + wi|ijwj|ijuijuT

ij

)
− log det(Dwi|ij

i )− log det(Dwj|ij

j )

= log det
(
D
−wi|ij

i D
−wj|ij

j[
wi|ijDi + wj|ijDj + wi|ijwj|ijuijuT

ij

])
= log det

(
wi|ij(DiD

−1
j )wj|ij + wj|ij(DjD

−1
i )wi|ij

+ wi|ijwj|ijD
−wi|ij

i D
−wj|ij

j uijuT
ij

)
(25)

where the notation Dα denotes the diagonal matrix whose ele-
ments are the corresponding elements of D raised to the power
α. Thus B(i, j) depends only on the weights wi, wj and the
dimensionless quantities DiD

−1
j and D

−wi|ij/2

i D
−wj|ij/2

j uij .

2i.e. a matrix with determinant unity. Note that the notation U stands for
‘unitary’: Uij is not in general upper triangular.

By inspection of (25) it can be seen that B(i, j) = 0 if and
only if at least one of the following three conditions holds:
(a) wi = 0, (b) wj = 0, or (c) µi = µj and Pi = Pj .
A counterexample to the triangle inequality is given (in one
dimension) by putting w1 = w2 = w3 = 1

3 , µ1 = µ2 = µ3

and σ3 = 2σ2 = 4σ1; then from (22) we have B(1, 2) =
B(2, 3) ≈ 0.07 but B(1, 3) ≈ 0.25.

VII. DISCUSSION

We propose that, in each iteration of the algorithm outlined
in Sec. II-C, we select for merging two components i and j,
i 6= j, such that B(i, j) is minimised. The dissimilarity mea-
sure B(i, j) as given by (21) is reasonably easy to compute,
with computational complexity at most O(d3). Consequently,
if our task is to reduce a mixture of n components to a mixture
with cn components, where c < 1 is a constant, this will have
total computational complexity of O(n3d3).

This criterion has qualitatively the right properties. Roughly
speaking, it will tend to select for merging:

1) Components with low weights. Note how the weights
appear outside the logarithms in (21), and so can have
a dominant effect.

2) Components whose means are close together in relation
to their variances, as measured by the length of the
vector D

−wi|ij/2

i D
−wj|ij/2

j uij (cf. (25)).
3) Components whose covariance matrices are similar, in

the sense that the term DiD
−1
j in (25) is close to the

identity matrix.
The B(i, j) criterion avoids the drawbacks of Salmond’s

criterion, in that (a) it depends explicitly on the covariance
matrices of components i and j, and will avoid merging
components where these are very different, and (b) adding
a new component to a mixture cannot alter the order in which
existing components are merged. Nor does the B(i, j) criterion
exhibit the scale dependency of the ISD measure; for example,
corresponding to (13), we get simply

B(i, j) = w log(1 + c2)

which does not depend on σ, or indeed on d. Consequently, in
Example 5.1 we have B(C,D)/B(A,B) ≈ 14.6, so A would
certainly be merged with B in preference to merging C and
D.

We make no claims for optimality for the resulting algo-
rithm, but it is straightforward, and at each iteration we know
that the Kullback-Leibler discrimination of the post-iteration
mixture from the pre-iteration mixture cannot exceed B(i, j).

The fact that B(i, j) is merely an upper bound on the K-
L discrimination, rather than an exact value, is admittedly
a drawback. Moreover, since Kullback-Leibler discrimination
does not satisfy the triangle inequality, there is no simple way
of bounding the discrimination that arises over the course of
two or more iterations of the algorithm. However, obtaining
a direct estimate of the K-L bound would appear to require
a numerical method, e.g. numerical integration. Worse, this
integration would need to be carried out multiple times: O(n3)
times if, as above, our task is to reduce n components to cn
components. In many applications this will be computationally
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prohibitive. A possible compromise approach would be to
use the B(i, j) criterion to compile a shortlist of possible
component merges, selection from within this shortlist being
by direct numerical integration.

VIII. A PRACTICAL EXAMPLE

This section compares the operation of Salmond’s criterion,
the ISD measure and the merging criterion introduced in
Sec. VI as applied to reducing a Gaussian mixture over 15
dimensions from its original 16 components down to four
components. This dataset arises from an application to terrain-
referenced navigation, specifically from the simulation run
previously reported in [5, Fig. 7].

The state vector comprises three elements of position error
(north, up, and down), three components of velocity error,
three platform misalignment angles, three accelerometer biases
and three gyro drift terms. However, for ease of visualisation,
in this paper we shall illustrate the algorithms’ operation by
examining the marginal distribution over the two horizontal
components of position error.

Panel (a) of Fig. 2 shows the starting mixture. Each
Gaussian component is represented by an elliptical contour
enclosing 50% of its probability volume. In each ellipse, a
sector is shown shaded: the proportion of the area of the
ellipse thus shaded represents the component’s weight within
the mixture. The thicker curves in the figure are two contours
of the mixture as a whole: the dashed line encloses 95% of
the mixture’s volume, while the solid line encloses 50% of its
volume (within two regions).

The mixture represents the navigation system’s state esti-
mate just a few seconds after terrain-referenced navigation
started. Consequently there is still considerable uncertainty
about the aircraft’s position: the graticule in the figure com-
prises 1 km squares.

Panel (b), (c) and (d) show the result of reducing this
mixture to four components using the algorithms considered
earlier in the paper. In panel (b), the reduction uses Salmond’s
criterion. Panel (c) shows the result of applying the algorithm
described in [3, Sec. 4], except that (for comparability with
the other algorithms) only pairwise merges of components are
considered: i.e. the option of deleting components entirely
is eschewed. Finally panel (d) shows the result of applying
the B(i, j) criterion. It will be noted that the Williams-
Maybeck reduction preserves the shape of the 50% mixture
contour well (except for the loss of its secondary peak),
but creates the greatest distortion of the 95% contour. In
contrast, the reduction using B(i, j) is the best at preserving
the shape of the 95% contour, but causes greater distortion
to the 50% contour. This doubtless reflects the fact that the
Williams-Maybeck criterion is aiming to minimise absolute
differences of the reduced pdf from the original, where the
Kullback-Leibler bound aims to avoid large ratio reductions.
The behaviour of Salmond’s criterion is intermediate between
the others, though interestingly it is the only one to preserve
the secondary peak in the 50% contour (although shifting it
somewhat to the north).

Fig. 3 considers the Kullback-Leibler discrimination of the
reduced mixture with respect to the original mixture, and
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Fig. 3. Kullback-Leibler discrimination of the reduced mixture with respect
to the original mixture.

shows how it evolves as the merging process progresses.
Results for Salmond’s criterion are shown as hollow circles,
for the Williams-Maybeck measure as triangles, and for the
B(i, j) criterion as solid disks. The K-L discrimination was
calculated using Monte Carlo integration using 100,000 points
drawn from the original mixture; to improve comparability, the
same points were used for each integration. The figure includes
±2σ tolerance bounds for each plotted point.

From the figure, it is evident that there is very little
difference in the performance of the algorithms as they reduce
the mixture down to 11 components. At this stage, the K-
L discrimination is about 0.013 for each algorithm, which
means that it will require about 350 samples from the ‘true’
mixture to distinguish it from the reduced one with an expected
log-likelihood-ratio of log 100. As the number of components
is further reduced down to four, the discrimination increases
more rapidly, reaching 0.51 for the Salmond criterion, 0.55
for the Williams-Maybeck criterion, and 0.30 for the B(i, j)
criterion, corresponding to sample sizes of 9, 8 and 15
respectively.

IX. CONCLUSION

This paper has examined two algorithms proposed in the
literature for reducing a Gaussian mixture to a mixture with
fewer components, namely those due to Salmond [1] and to
Williams and Maybeck [2], [3]. An element of both of these
algorithms is successively to merge pairs of components, at
each stage replacing the merged pair by a single Gaussian
component with the same moments up to the second order.

It has been shown that each of these algorithms can give
rise to anomalous behaviour in certain circumstances:

• Salmond’s algorithm chooses for merging the pair of
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(a) Original mixture
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(b) Salmond reduction

469.0 470.0 471.0 472.0160.0
161.0
162.0
163.0
164.0

(c) Williams-Maybeck reduction
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(d) K-L bound reduction

Fig. 2. Comparison of reduction algorithms applied to a 16-component mixture over 15 dimensions.
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components whose means are closest together, even if
their covariance matrices are very different.

• In Salmond’s algorithm, adding a new component to a
mixture can alter the order in which existing components
are merged, even if—indeed, especially if—the new com-
ponent is far remote from the existing components and is
therefore not itself a candidate for merging.

• The Williams algorithm has a tendency to select for
merging a pair of components with large variances, even
if their means are much further apart (in relation to their
standard deviations) than another pair of components with
smaller variances. This effect is particularly pronounced
with state vectors of high dimension.

The paper went on to propose a new algorithm, again based
on pairwise merging of components, but in which the choice
of components for merging is based on an easily-computed
upper bound of the Kullback-Leibler discrimination of the
post-merge mixture with respect to the pre-merge mixture, as
defined in (21). It has been shown that this criterion avoids
the anomalies described above.

An indicative example has been presented, using a dataset
derived from terrain-referenced navigation, in which it is re-
quired to reduce a 16-component mixture over 15 dimensions
down to four components. The final mixture arrived at by each
of the three algorithms has been illustrated, along with data
on the Kullback-Leibler discrimination of the reduced mixture
with respect to the original mixture, showing how this grows
as the reduction process proceeds. In the example, the final K-
L discrimination was over 30% lower using the new algorithm
than with either of the others.

Further work is desirable to compare at greater length the
performance of the algorithms considered in this paper within
particular application scenarios. A possible approach to this
would be to repeat analyses along the lines of Sec. VIII
for a large sample of mixture reduction problems within the
particular application area.

APPENDIX
PROOFS OF THEOREMS

(In each proof we use the standard inequality log x ≤ x− 1.)

Theorem 3.2
Proof: Using (5) it is straightforward to show that

2dkl(f, (1, µ, P ))

= 2

Z
<d

f(x) log f(x) dx + d log 2π

+ log det P +

Z
<d

(x− µ)T P−1(x− µ)f(x) dx

= 2

Z
<d

f(x) log f(x) dx + d log 2π

+ log det P + tr
»
P−1

Z
<d

(x− µ)(x− µ)T f(x) dx
–

where we have used the standard identity vT Mv = tr(MvvT ) (cf.
[10, p. 34]). Now, writing ∆µ = µ− µ∗ we haveZ

<d

(x− µ)(x− µ)T f(x) dx = P∗ + ∆µ∆µT

Consequently, if λ1, . . . λd are the eigenvalues of P−1P∗, we have:

2
ˆ
dkl(f, (1, µ, P ))− dkl(f, (1, µ∗, P∗))

˜
= log det P − log det P∗

+ tr
h
P−1

“
P∗ + ∆µ∆µT

”i
− tr

ˆ
P−1
∗ P∗

˜
= − log det(P−1P∗)

+ tr(P−1P∗) + tr(P−1∆µ∆µT )− d

= − log

dY
i=1

λi +

dX
i=1

λi − d + tr(P−1∆µ∆µT )

=

dX
i=1

(− log λi + λi − 1) + tr(P−1∆µ∆µT )

≥ 0

with equality only if ∆µ = 0 and λi = 1 for i = 1, . . . d, i.e. if
P−1P∗ = I . This proves the theorem.

Theorem 3.4
Proof: The proof is similar to that of [9, Theorem 4.3.3]. We

have:

wdkl(f1, f2)− dkl(wf1 + w̄h, wf2 + w̄h)

= w

Z
<d

f1(x) log
f1(x)

f2(x)
dx

−
Z
<d

(wf1(x) + w̄h(x)) log
wf1(x) + w̄h(x)

wf2(x) + w̄h(x)
dx

=

Z
<d

wf1(x) log
f1(x)[wf2(x) + w̄h(x)]

f2(x)[wf1(x) + w̄h(x)]
dx

+

Z
<d

w̄h(x) log
wf2(x) + w̄h(x)

wf1(x) + w̄h(x)
dx

≥
Z
<d

wf1(x)

»
1− f2(x)[wf1(x) + w̄h(x)]

f1(x)[wf2(x) + w̄h(x)]

–
dx

+

Z
<d

w̄h(x)

»
1− wf1(x) + w̄h(x)

wf2(x) + w̄h(x)

–
dx

= 1−
Z
<d

(wf2(x) + w̄h(x))
wf1(x) + w̄h(x)

wf2(x) + w̄h(x)
dx

= 0
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