
Proving the Correctness of Algorithmic Debugging for
Functional Programs

Yong Luo and Olaf Chitil

Computing Laboratory, University of Kent, Canterbury, Kent, UK
Email: {Y.Luo, O.Chitil}@kent.ac.uk

Abstract

This paper presents a formal model of tracing for functionalprograms based on a
small-step operational semantics. The model records the computation of a functional
program in a graph which can be utilised for various purposessuch as algorithmic
debugging. The main contribution of this paper is to prove the correctness of algorith-
mic debugging for functional programs based on the model. Although algorithmic
debugging for functional programs is implemented in several tracers such as Hat, the
correctness has not been formally proved before. The difficulty of the proof is to find
a suitable induction principle and a sufficiently general induction hypothesis.

1 INTRODUCTION

Usually, a computation is treated as a black box that performs input and output
actions. However, we have to look into the black box when we want to see how the
different parts of the program cause the computation to perform the input/output
actions. The most common need for doing this is debugging: When there is a
disparity between the actual and the intended semantics of aprogram, we need
to locate the part of the program that causes the disparity. Traditional debug-
ging techniques are not well suited for declarative programming languages such
as Haskell, because it is difficult to understand how programs execute (or their
procedural meaning). Algorithmic debugging (also called declarative debugging)
was invented by Shapiro [8] for logic programming languages. Later the method
was transferred to other programming languages, includingfunctional program-
ming languages. A question of an algorithmic debugger must fully describe a
subcomputation; hence algorithmic debugging works best for purely declarative
languages, which do not use side-effects but make all data and control flow ex-
plicit. As Haskell is a purely functional programming language that even separates
input/output operations from the rest of the language, it isparticularly suitable for
algorithmic debugging. There exists three algorithmic debuggers for Haskell: Freja
[4], Hat [11] and Buddha/Plargleflarp [7].

In contrast to this advance of algorithmic debugging in practise and the rel-
ative simplicity of the underlying idea, there are few theoretical foundations and
no proofs that these debuggers do actually work correctly. We need a full under-
standing of algorithmic debugging for functional languages to determine its limits
and to develop more powerful extensions and variations. That is the problem we

address in this paper. We shall give a direct and simple definition of tracethat will
enable us to formally relate a view to the semantics of a program. Theevaluation
dependency tree (EDT)will be generated from a computation graph. We can cor-
rectly locate program faults, and the correctness will be formally proved. This is
a non-trivial proof since the simple induction principle, the size of graph, does not
work.

In the next section we give a brief overview of algorithmic debugging. Related
work is also discussed. In Section 3, some basic definitions and theaugmented
redex trail(ART) are formally presented. In Section 4, we show how to generate an
EDT from an ART. In Section 5, we prove the properties of an EDT, in particular,
the correctness of algorithmic debugging. Future work willbe discussed in the last
section.

2 ALGORITHMIC DEBUGGING

Algorithmic debugging can be thought of searching a fault ina program. When
a program execution has produced a wrong result an algorithmic debugger will
ask the programmer a number of questions about the computation. Each question
asks whether a given subcomputation is correct, that is, whether it agrees with
the intentions of the programmer. After a number of questions and answers the
algorithmic debugger gives the location of a fault in the program.

For example, for an execution of the Haskell program

main = implies True False
implies x y = not y || x

a session with an algorithmic debugger might be as follows, with answers given by
the programmer in italics:

1) main = True ? no
2) implies True False = True ? no
3) not False = True ? yes
4) True || True = True ? yes
Fault located. The definition of ’implies’ is faulty.

The principle of algorithmic debugging is relatively simple. From the compu-
tation that produces the wrong result acomputation treeis built; each node of the
computation tree is labelled with a question about a subcomputation:

main = True no

implies True False = True no

not False = True yes True || True = True yes

2

An algorithmic debugger traverses the computation tree asking the questions of
the nodes until it locates a so-calledfaulty node, that is, a node whose computation
is erroneous according to the programmer’s intentions, butthe computations of
all its children are correct. The algorithmic debugger reports the definition of the
function reduced in the faulty node as the fault location.

Naish [3] gives an abstract description of algorithmic debugging, independent
of any particular programming language. He proves that algorithmic debugging
is completein the sense that if the program computation produces a wrongresult,
then algorithmic debugging will locate a fault. No such general proof exists for the
soundnessof algorithmic debugging, that is, the property that the indicated fault
location is indeed faulty. Soundness depends on the exact definition of the com-
putation tree. Programming languages with different semantics, for example logic
languages vs. functional languages, require different definitions of the computa-
tion tree. Even for a single programming language several definitions are possible.
For lazy functional programming languages Nilsson and Sparud [6, 5, 9] intro-
duced the evaluation dependency tree (EDT) as computation tree. The EDT has
the property that the tree structure reflects the static function call structure of the
program and all arguments and results are in their most evaluated form. The ex-
ample computation tree given above is an EDT. The algorithmic debuggers Freja,
Hat and Buddha/Plargleflarp are based on the EDT. The construction of an EDT
during the computation of a program is non-trivial, becausethe structure of the
EDT is very different from the structure of the computation as determined by the
evaluation order.

For a lazy functional logic language Caballero et al. [1] give a formal definition
of an EDT and sketch a soundness proof of algorithmic debugging. However, this
approach relies on the EDT being defined through a high-levelnon-deterministic
big-step semantics1. Thus this definition of the EDT is far removed from any real
implementation of an algorithmic debugger.

3 FORMALISING THE AUGMENTED REDEX TRAIL (ART)

An augmented redex trail (ART) is a graph that represents a computation of a
functional program. A graph enables sharing of subexpressions which is the key
both to a space efficient trace structure and closeness to theimplementations of
functional languages. The one essential difference to standard graph rewriting of
functional language implementations is that ART rewritingdoes not overwrite a
redex with its reduct, but adds the reduct to the graph, keeping the reduct and thus
the computation history.

In this section we give some basic definitions which will be used throughout
the paper, and we describe how to build an ART.

Definition 1. (Atoms, Terms. Patterns, Rewriting rule and Program)
1Non-determinism is essential for this approach, irrespective of whether the

programming language has logical features or not.

3

• Atoms consist of function symbols and constructors.

• Terms: (1) an atom is a term; (2) a variable is a term; (3) MN is a term ifM
and N are terms.

• Patterns: (1) a variable is a pattern; (2) cp1...pn is a pattern if c is a con-
structor and p1,..., pn are patterns, and the arity of c is n.

• A rewriting rule is of the form f p1...pn = R where f is a function symbol
and p1,..., pn (n≥ 0) are patterns and R is a term.

• A program is a finite set of rewriting rules.

Example 2. id x= x, not True= False, map f (x : xs) = f x : map f xs
andones= 1 : onesare rewriting rules.

Note that we only allow disjoint patterns if there is more than one rewriting rule for
a function. We also require that the number of arguments of a function in the left-
hand side must be the same. For example, if there is a rewriting rule f c1 = g, then
f c2 c3 = c4 is not allowed. The purpose of disjointness is to prevent us from giving
different values to the same argument when we define a function. Disjointness is
one of the ways to guarantee the property of Church-Rosser. In many programming
languages such as Haskell the requirement of disjointness is not needed, because
the patterns for a function have orders. If a closed term matches the first pattern,
the algorithm will not try to match the rest patterns. We alsorequire that all the
patterns are linear because conversion test is difficult sometimes. Many functional
programming languages such as Haskell only allow linear patterns.

Now, we define computation graphs and choose a particular naming scheme
to name the nodes in a computation graph. The lettersf anda mean the function
component and the argument component of an application respectively. The letter
r means a small step of reduction.

Definition 3. (Node, Node expression and Computation graph)

• A node is a sequence of lettersr, f anda, i.e. {r, f,a}∗.

• A node expression is either an atom, or a node, or an application of two
nodes, which is of the form m◦n.

• A computation graph is a set of pairs which are of the form(n,e), where n
is a node and e is a node expression.

Example 4.We have a Haskell program:

g (Just x) = h x

h x y= y && x

The following is a computation graph for the starting termg (Just True) (id (not False)).

4

{(r, rf◦ ra),(rf, rff◦ rfa),(rff,g),(rfa, rfaf◦ rfaa),(rfaf,Just),(rfaa,True),
(ra, raf◦ raa),(raf, id),(raa, raaf◦ raaa),(raaf,not),(raaa,False),
(rar, raa),(raar,True),(rfr, rfrf◦ rfaa),(rfrf,h),(rr, rrf◦ rfaa),(rrf, rrff◦ ra),
(rrff,&&),(rrr,True)}

It can be depicted as follows:

True

&&Trueid

Falsenot

Just True

r rr rrr

rf

ra

raf

raaa

rar

raar

raaf

raa

rff rfa

rfaf

g
rfaa

rfr

rfrf

rrf

rrff

h

The dashed edges represent the computation steps. If a nodemr is in a graph then
there is a computation from the nodem to mr. So, the pairs of the form(m,mr) are
omitted in the formal representation of the graph. For example, (r, rr) and(rf, rfr)
are not included in the above graph.

Notation: dom(G) denotes the set of nodes in a computation graphG.

Pattern matching in a graph

The pattern matching algorithm for a graph has two differentresults, either a set of
substitutions or “doesn’t match”.

• The final node in a sequence of reductions starting at nodem, last(G,m):

last(G,m) =

last(G,mr) if mr ∈ dom(G)
last(G,n) if (m,n) ∈ G andn is a node
m otherwise

The purpose of this function is to find out the most evaluated point for m.
For example, ifG is the graph in Example 4, then we havelast(G, r) = rrr
andlast(G, ra) = raar.

• The head of the term at nodem, head(G,m), whereG is a graph andm is a
node inG:

head(G,m) =

head(G, last(G, i)) if (m, i ◦ j) ∈ G
a if (m,a) ∈ G anda is an atom
undefined otherwise

5

For example, ifG is the graph in Example 4, then we havehead(G, r) = h
andhead(G, rf) = g.

• The arguments of the function at nodem, args(G,m):

args(G,m) =

{

〈args(G, last(G, i)), j〉 if (m, i ◦ j) ∈ G
〈〉 otherwise

Note that the arguments of a function are a sequence of nodes.For example,
if G is the graph in Example 4, then we haveargs(G, r) = 〈rfaa, ra〉 and
args(G, ra) = 〈raa〉.

Now, we define two functionsmatch1 andmatch2 which are mutually recursive.
The arguments ofmatch1 are a node and a pattern. The arguments ofmatch2 are a
sequence of nodes and a sequence of patterns.

• match1(G,m,x) = [m/x] wherex is a variable.

match1(G,m,cq1...qk)

=

{

match2(G,args(G,m′),〈q1, ...,qk〉) if head(G,m′) = c
does not match otherwise

wherem′ = last(G,m).

•

match2(G,〈m1, ...,mn〉,〈p1, ..., pn〉)
= match1(G,m1, p1)∪ ...∪match1(G,mn, pn)

where∪ is the union operator. Notice that ifn = 0 then

match2(G,〈〉,〈〉) = []

If any mi does not matchpi , 〈m1, ...,mn〉 does not match〈p1, ..., pn〉. If the
length of two sequences are not the same, they do not match. For example,
〈m1, ...,ms〉 does not match〈p1, ..., ps′〉 if s 6= s′.

• We say thatG at nodem matches the left-hand side of a rewriting rule
f p1...pn = R with [m1/x1, ...,mk/xk] if head(G,m) = f and

match2(G,args(G,m),〈p1, ..., pn〉) = [m1/x1, ...,mk/xk]

In the substitution form[m/x], m is not a term but a node. In Example 4, the graph
at noder matchesh x y with [rfaa/x, ra/y]. The definition of pattern matching
and its result substitution sequence will become importantfor making computation
order irrelevant when we generate graphs. In Example 4, no matter which node is
reduced first,ra or raa, the final graph will be the same.

Graph for label terms.During the computations all the variables in a term will
be substituted by some nodes. When the variables are substituted by a sequence

6

of shared nodes, it becomes a label term. For example,(y && x)[rfaa/x, ra/y] ≡
ra && rfaa is a label term. The functiongraphdefined in the following has two
arguments: a node and a label term. The result ofgraph is a computation graph.

graph(n,e) = {(n,e)} wheree is an atom or a node

graph(n,MN) =

{(n,M ◦N)} if M andN are nodes
{(n,M ◦na)}∪graph(na,N) if only M is a node
{(n,nf◦N)}∪graph(nf,M) if only N is a node
{(n,nf◦na)}∪graph(nf,M) otherwise

∪graph(na,N)

Building an ART

• For a start termM, the start ART isgraph(r,M). Note that the start term has
no nodes inside.

• (ART rule) If an ART G at m matches the left-hand side of a rewriting rule
f p1...pn = R with [m1/x1, ...,mk/xk], then we can build a new ART

G∪graph(mr,R[m1/x1, ...,mk/xk])

• An ART is generated from a start ART and by applying theART rulerepeat-
edly. Note that the order in which nodes are chosen has no influence in the
final graph.

Example 5.If the start term isg (Just True) (id (not False)) as in Example 4, then
the start graph is

{(r, rf◦ ra),(rf, rff◦ rfa),(rff,g),(rfa, rfaf◦ rfaa),(rfaf,Just),(rfaa,True),
(ra, raf◦ raa),(raf, id),(raa, raaf◦ raaa),(raaf,not),(raaa,False)}

The new parts built fromr andra are

graph(rr,(y && x)[rfaa/x, ra/y])
= graph(rr,(ra && rfaa))
= {(rr, rrf◦ rfaa),(rrf, rrff◦ ra),(rrff,&&)}

graph(rar,x[raa/x]) = {(rar, raa)}

Note that the order of computation is irrelevant because theresult of pattern match-
ing at the nodera is always[raa/x], no matter which node is computed first. The
definition of pattern matching simplifies the representation of ART. Otherwise we
would have several structurally different graphs representing the same reduction
step. Multiple representations just cause confusion and would later lead us to give
a complex definition of an equivalence class of graphs.

The following simple properties of an ART will be used later.

Lemma 6. Let G be an ART.

7

• If m∈ dom(G) then there is at least one letterr in m.

• If mr ∈ dom(G) then m∈ dom(G) or m= ε whereε is the empty sequence.

• If mr ∈ dom(G) then(m,n) 6∈ G for any node n.

Proof. The first and second are trivial. The third is proved by contradiction. If
(m,n) ∈ G thenhead(G,m) is undefined. There cannot be a computation atm, i.e.
mr 6∈ G.

4 GENERATING AN EVALUATION DEPENDENCY TREE

In this section we generate theEvaluation Dependency Tree(EDT) from a given
ART.

The real Hat ART also includes so-calledparent edges. Each node has a parent
edge that points to the top of the redex that caused its creation. Parent edges are
key ingredient for the redex trail view of locating program faults [10]. One may
notice that there are no parent edges in the ART here. They need not be given
explicitly because the way that the nodes are labelled givesus the parents of all
nodes implicitly.

Definition 7. (Parent edges)

parent(nf) = parent(n)

parent(na) = parent(n)

parent(nr) = n

Note thatparent(r) = ε whereε is the empty sequence.

Definition 8. (childrenand tree) Let G be an ART, and mr a node in G (i.e. mr ∈
dom(G)).

children and tree are defined as follows.

• children

children(m) = {n | parent(n) = m and nr ∈ dom(G)}

The condition nr∈ dom(G) is to make sure that only evaluated nodes become
children.

• tree
tree(m) = {(m,n1), ...,(m,nk)}∪ tree(n1)∪ ...∪ tree(nk)

where{n1, ...,nk} = children(m)

Example 9.If G is the graph in Example 4 then

tree(ε) = {(ε, r),(ε, ra),(ε, raa),(ε, rf),(r, rr)}

8

Notation: In the above definitions such aschildren, the ART G should be one
of the arguments but it is omitted. For example, we writechildren(m) for
children(G,m). We shall use this notation later when no confusion may
occur.

Usually, a single node of a computation graph represents many different terms. We
are particularly interested in two kinds of terms of nodes, the most evaluated form
and the redex.

Definition 10. (Most Evaluated Form) Let G be an ART. The most evaluated form
of a node m is a term and is defined as follows.

mef(m) =

{

mef(mr) if mr ∈ dom(G)
meft(m) otherwise

where

meft(m) =

a (m,a) ∈ G and a is an atom
mef(n) (m,n) ∈ G and n is a node
mef(i) mef(j) (m, i ◦ j) ∈ G

One may also use the definition oflast(G,m) to define the most evaluated form.

Example 11.If G is the graph in Example 4, then

mef(r) = mef(rr) = meft(rrr) = True

mef(ra) = mef(rar) = meft(rar) = mef(raa) = True

Definition 12. (redex) Let G be an ART, and mr a node in G (i.e. mr ∈ dom(G)).
redex is defined as follows.

• redex(ε) = main

• redex(m) =

{

mef(i) mef(j) if (m, i ◦ j) ∈ G
a if (m,a) ∈ G and a is an atom

Note that the case(m,n) ∈ G is not defined in this definition because(m,n) 6∈ G
for any noden by Lemma 6.

Example 13.If G is the graph in Example 4, then

redex(r) = mef(rf) mef(ra) = h True True

Now, we define the evaluation dependency tree of a graph.

Definition 14. (Evaluation Dependency Tree) Let G be an ART. The evaluation
dependency tree (EDT) of G consists of the following two parts.

9

1. The set tree(ε);

2. The set of equations; for any node in tree(ε) there is a corresponding equa-
tion redex(m) = mef(m).

Note that we writemef(ε) for mef(r).

Notation: For an EDTT, dom(T) denotes the set of all the nodes intree(ε). We
also say(m,n) ∈ T if (m,n) ∈ tree(ε).

redex(m) = mef(m) represents an evaluation at nodem from the left-hand side
to the right-hand side. A pair(m,n) in an EDT represents that the evaluation
redex(m) = mef(m) depends on the evaluationredex(n) = mef(n).

Example 15.The EDT for the graph in Example 4 is the following.

g True True = True

main = True

id True = True not False = True

True && True = True

f (Just True) = g True

r ra rf

rr

raa

5 PROPERTIES OF AN EDT

In this section, we present the properties of the EDT and prove the correctness of
algorithmic debugging.

The following theorems suggest that the EDT of an ART covers all the compu-
tation in the ART. Although two evaluations may rely on the same evaluation in an
ART, every evaluation for algorithmic debugging only needsto be examined once.

Lemma 16. Let G be an ART, and T its EDT. If there is a sequence of nodes
m1,m2, ...,mk such that

m∈ children(m1),m1 ∈ children(m2), ...,
mk−1 ∈ children(mk),mk ∈ children(ε)

then m∈ dom(T).

Proof. By the definition oftree(ε).

Lemma 17. Let G be an ART. If mr ∈ dom(G), then m≡ ε or there is a sequence
of nodes m1,m2, ...,mk such that

m∈ children(m1),m1 ∈ children(m2), ...,
mk−1 ∈ children(mk),mk ∈ children(ε)

10

Proof. By induction on the size ofm, and by Lemma 6.
Sincemr ∈ dom(G), by Lemma 6, we only need to consider the following two

cases.

• If m= ε, the statement is obviously true.

• If m∈ dom(G), by Lemma 6, there is at least one letterr in m. We consider
the following two sub-cases.

· m= rn, where there is nor in n. Sincemr ∈ dom(G) andparent(rn) =
ε, we havern∈ children(ε).

· m≡m1rn, where there is nor in n. Sincemr∈dom(G) andparent(m) =
m1, we havem∈ children(m1). Now, becausem1 is a sub-sequence
of m, by induction hypothesis, there is a sequence of index numbers
m2, ...,mk such that

m1 ∈ children(m2), ...,mk−1 ∈ children(mk),mk ∈ children(ε)

So, there is a sequence of index numbersm1,m2, ...,mk such that

m∈ children(m1),m1 ∈ children(m2), ...,mk ∈ children(ε)

Theorem 18. Let G be an ART, and T its EDT.
If mr ∈ dom(G), then m∈ dom(T). In other word, T covers all the computa-

tions in G.

Proof. By Lemma 17 and 16.

Lemma 19. Let G be an ART, and T its EDT.
If (m,n) ∈ T, then n∈ children(m) and parent(n) ≡ m.

Proof. By the definition oftree.

Theorem 20. Let G be an ART, and T its EDT.
If (m,n) ∈ T and m6≡ k, then(k,n) 6∈ T.

Proof. By Lemma 19.
The above theorem suggests that every evaluation for algorithmic debugging

only needs to be examined once although two evaluations may rely on the same
evaluation. For example,g is defined asg x= (not x,not x,not x). When we com-
puteg (not True), the equationnot True= Falseonly appears once in the EDT.

In the algorithmic debugging scheme, one needs to answer several questions
according to the EDT and intended semantics in order to locate a faulty node.

Notations: M ≃I N means thatM is equal toN with respect to the semantics of
the programmer’s intention. If the evaluationM = N of a node in an EDT is
in the programmer’s intended semantics, thenM ≃I N. Otherwise,M 6≃I N
i.e. the node is erroneous.

11

General semantical equality rules:

M ≃I M
M ≃I N
N ≃I M

M ≃I N M′ ≃I N′

MM′ ≃I NN′

M ≃I N N≃I R
M ≃I R

Figure 1. Semantical equality rules

Semantical equality rules are given in Figure 1, which will be used in Lemma 27
later.

As mentioned in Section 2, if a node in an EDT is erroneous but has no erro-
neous children, then this node is calleda faulty node.The following figure shows
what a faulty node looks like, wheren1,n2, ...,nk are the children of m.

�������)

XXXXXXXXXXXz

�
�
�

redex(n2) ≃I mef(n2)

m

redex(n1) ≃I mef(n1) redex(nk) ≃I mef(nk)

n1

redex(m)6≃I mef(m)

n2 nk

Figure 2. m is a faulty node

Definition 21. Suppose the equation f p1...pn = R is in a program P. If there
exists a substitutionσ such that(f p1...pn)σ ≡ f b1...bn and Rσ ≡ N, then we say
that f b1...bn →P N.

If f b1...bn →P N but f b1...bn 6≃I N, then we say that the definition of the func-
tion f in the program is faulty.

f b1...bn →P N means that it is a single step computation fromf b1...bn to N ac-
cording to one of the rewriting rules in the programP, and there is no computation
in b1, ...,bn.

CORRECTNESS OF ALGORITHMIC DEBUGGING

Definition 22. If the following statement is true, then we say that algorithmic de-
bugging is correct.

• If the equation of a faulty node is f b1...bn = M, then the definition of the
function f in the program is faulty.

12

For a faulty nodem, we haveredex(m) 6≃I mef(m). We shall find a termN and
proveredex(m) →P N ≃I mef(m). In order to defineN, we need other definitions.

Definition 23. Let G be an ART and m a node in G. reduct(m) is defined as
follows.

reduct(m) =

a if (m,a) ∈ G and a is an atom
mef(n) if (m,n) ∈ G and n is a node
reduct(mf) reduct(ma) if (m,mf◦ma) ∈ G
reduct(mf) mef(j) if (m,mf◦ j) ∈ G and j 6= ma
mef(i) reduct(ma) if (m, i ◦ma) ∈ G and i 6= mf
mef(i) mef(j) if (m, i ◦ j) ∈ G and i 6= mf and j 6= ma

reduct represents the result of a single-step computation. And we shall prove
redex(m) →P reduct(mr) ≃I mef(m) for a faulty nodem. Note thatmef(m) =
mef(mr) and so we want to provereduct(mr) ≃I mef(mr). In order to prove this,
we prove a more general resultreduct(m) ≃I mef(m) for all m∈ dom(G) (see
Lemma 27 for the conditions).

We definebranchand the reduction principledepthin order to prove this gen-
eral result.

Definition 24. (branchand branch′) We say that n is a branch node of m, denoted
as branch(n,m), if one of the following holds.

• branch(m,m);

• branch(nf,m) if branch(n,m);

• branch(na,m) if branch(n,m).

Let G be an ART.

branch′(m) = {n | nr ∈ dom(G) and branch(n,m)}

Note thatbranch′(m) is the set of all evaluated branch nodes ofm.

Lemma 25. Let G be an ART.

• If n ∈ branch′(mf) or n∈ branch′(ma) then n∈ branch′(m).

• If mr ∈ dom(G) then children(m) = branch′(mr).

Proof. By the definitions ofchildrenandbranch′.

Definition 26. (depth) Let m be a node in an ART G.

depth(m) =

1+max{depth(mf), if (m,mf◦ma) ∈ G
depth(ma)}

1+depth(mf) if (m,mf◦ j) ∈ G and j 6= ma
1+depth(ma) if (m, i ◦ma) ∈ G and i 6= mf
1 if (m, i ◦ j) ∈ G and i 6= mf and j 6= ma
0 otherwise

13

Lemma 27. Let G be an ART and m a node in G. If redex(n) ≃I mef(n) for all
n∈ branch′(m), then reduct(m) ≃I mef(m).

Proof. By induction ondepth(m).
Whendepth(m) = 0, we have(m,e) ∈ G wheree is a node or an atom.

• If e is a node, thenmr ∈ G by Lemma 6. Then by the definitions ofreduct
andmef, we havereduct(m) = mef(e) andmef(m) = meft(m) = mef(e).

• If e is an atom, we havereduct(m) = e. Now, we consider the following
two cases. Ifm∈ branch′(m), then we havemr ∈ dom(G) andmef(m) ≃I

redex(m) = e. If m 6∈ branch′(m), then we havemr 6∈ dom(G) andmef(m) =
meft(m) = e.

For the step cases, we proceed as follows.

• If m∈ branch′(m), then we havemr ∈ dom(G) and redex(m) ≃I mef(m).
And we need to proveredex(m) ≃I reduct(m).
Let us consider only one case here. The other cases are similar. Suppose
(m,mf◦ j) ∈ G and j 6= ma, then by the definitions we have

redex(m) = mef(mf) mef(j)

reduct(m) = reduct(mf) mef(j)

Since for anyn ∈ branch′(mf), by Lemma 25, we haven ∈ branch′(m)
and henceredex(n) ≃I mef(n). By the definition ofdepth, we also have
depth(mf) < depth(m). Now, by induction hypothesis, we havereduct(mf)≃I

mef(mf). And hence we haveredex(m) ≃I reduct(m) by the semantical
equality rules in Figure 1.

• If m 6∈ branch′(m), thenmr 6∈ dom(G).
Let us also consider only one case. The other cases are similar. Suppose
(m,mf◦ j) ∈ G and j 6= ma, then by the definitions we have

mef(m) = mef(mf) mef(j)

reduct(m) = reduct(mf) mef(j)

The same arguments as above suffice.

Corollary 28. Let G be an ART and mr a node in G (i.e. mr ∈ dom(G)). If
redex(n) ≃I mef(n) for all n ∈ children(m), then reduct(mr) ≃I mef(m).

Proof. By Lemma 25 and 27.

The condition,redex(n)≃I mef(n) for all n∈ children(m), basically means thatm
does not have any erroneous child nodes as in Figure 2.

14

Lemma 29. Let G be an ART and mr a node in G (i.e. mr ∈ dom(G)). Then
redex(m) →P reduct(mr).

Proof. Since there is a computation at the nodem, we supposeG at nodemmatches
the left-hand side of the rewriting rulef p1...pn = R with [m1/x1, ...,mk/xk]. We
need to prove that there exists a substitutionσ such thatredex(m) = (f p1...pn)σ
andreduct(mt) = Rσ. In factσ = [mef(m1)/x1, ...,mef(mk)/xk].

Now, we need to prove thatredex(m) = (f p1...pn)σ and reduct(mt) = Rσ.
For the first, we proceed by the definition ofredexand pattern matching. For the
second, we proceed by the definition ofreductandgraph.

A similar result as in the above lemma is proved in [2].
Now, we come to the most important theorem, the correctness of algorithmic

debugging.

Theorem 30. (Correctness of Algorithmic Debugging) Let G be an ART, T its
EDT and m a faulty node in T . If the equation for the faulty nodem is f b1...bn = M,
then the definition of f in the program is faulty.

Proof. By Lemma 29 and Corollary 28, we haveredex(m) →P reduct(mr) and
reduct(mr) ≃I mef(m). Since f b1...bn ≡ redex(m) 6≃I mef(m) ≡ M, we have
f b1...bn→P reduct(mr) and f b1...bn 6≃I reduct(mr). The computation fromf b1...bn

to reduct(mr) is a single step computation, butf b1...bn is not semantically equal
to reduct(mr). So the definition off in the program must be faulty.

6 CONCLUSION AND FUTURE WORK

In this paper, we have formally presented the ART and EDT. TheART is an effi-
cient and practical trace, and it is a model of a real implementation (i.e. Hat). The
EDT is directly generated from the ART. We proved the most important property
of Hat, the correctness of algorithmic debugging. What the theorem proves is the
consistency between the answers given be the user and the detection of the faulty
node made by the debugging algorithm. Many other related properties of the ART
and EDT are also proved.

However, there is still more work that needs to be done. Currently we are
studying three extensions of the ART model, and the resulting EDT.

1. Replace the unevaluated parts in an ART by underscore symbols (i.e. _).
An unevaluated part in an ART intuitively means the value of this part is
irrelevant to any reduction in the graph.

2. Add error messages to an ART when there is a pattern matching failure.

3. Add local rewriting rules (or definitions) to the program.

How these three extensions will affect the EDT and algorithmic debugging needs
further study.

15

ACKNOWLEDGEMENTS

The work reported in this paper was supported by the Engineering and Physical
Sciences Research Council of the United Kingdom under the grant EP/C516605/1.

References

[1] Rafael Caballero, Francisco J. López-Fraguas, and Mario Rodríguez-Artalejo. The-
oretical foundations for the declarative debugging of lazyfunctional logic programs.
In Herbert Kuchen and Kazunori Ueda, editors,Functional and Logic Programming,
5th International Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Pro-
ceedings, LNCS 2024, pages 170–184. Springer, 2001.

[2] Olaf Chitil and Yong Luo. Structure and properties of traces for functional programs.
To appear in ENTCS 2006.

[3] Lee Naish. A declarative debugging scheme.Journal of Functional and Logic Pro-
gramming, 1997(3), 1997.

[4] Henrik Nilsson.Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linköping, Sweden, May 1998.

[5] Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional lan-
guages.Journal of Functional Programming, 4(3):337–370, July 1994.

[6] Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy
functional debugging.Automated Software Engineering: An International Journal,
4(2):121–150, April 1997.

[7] B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-98.
In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming, pages 230–240, 2003.

[8] E. Y. Shapiro.Algorithmic Program Debugging. MIT Press, 1983.

[9] Jan Sparud and Hendrik Nilsson. The architecture of a debugger for lazy functional
languages. In Mireille Ducassé, editor,Proceedings of AADEBUG’95, Saint-Malo,
France, May, 1995.

[10] Jan Sparud and Colin Runciman. Tracing lazy functionalcomputations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editors,Proc. 9th Intl. Symposium on
Programming Languages, Implementations, Logics and Programs (PLILP’97), pages
291–308. Springer LNCS Vol. 1292, September 1997.

[11] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-view
tracing for Haskell: a new Hat. InPreliminary Proceedings of the 2001 ACM SIG-
PLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001. Final pro-
ceedings to appear in ENTCS 59(2).

16

