
Tool Support for Refactoring Functional Programs

Huiqing Li
Computing Laboratory, University of Kent, UK

H.Li@kent.ac.uk

Simon Thompson
Computing Laboratory, University of Kent, UK

S.J.Thompson@kent.ac.uk

Abstract
We demonstrate the Haskell Refactorer, HaRe, and the Erlang
Refactorer, Wrangler, as examples of fully-functional refactoring
tools for functional programming languages. HaRe and Wrangler
are designed to handle multi-module projects in complete lan-
guages: Haskell 98 and Erlang/OTP. They are embedded in Emacs
(and gVim) and respect programmer layout styles.

In discussing the construction of HaRe and Wrangler, we com-
ment on the different challenges presented by Haskell and Erlang
due to their differences in syntax, semantics and pragmatics. In par-
ticular, we examine the sorts of analysis that underlie our systems.

Finally, drawing on our experience, we examine features com-
mon to functional refactorings, and contrast these with refactoring
in the object-oriented domain.

Categories and Subject Descriptors D.2.3 [SOFTWARE ENGI-
NEERING]: Coding Tools and Techniques; D.2.6 []: Program-
ming Environments; D.2.7 []: Distribution, Maintenance, and En-
hancement; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Applicative (functional) languages; Concurrent,
distributed, and parallel languages; D.3.4 []: Processors

General Terms Languages, Design

Keywords Haskell, Erlang, refactoring, HaRe, Wrangler, program
analysis, program transformation, static/dynamic semantics.

1. Introduction
Refactoring (Fowler et al. 1999) is the process of improving the
design of a program without changing its external behaviour. Be-
haviour preservation guarantees that refactoring does not introduce
(or remove) any bugs. Separating general software updates into
functionality changes and refactorings has well-known benefits.
While it is possible to refactor a program by hand, tool support is
considered invaluable as it is more reliable and allows refactorings
to be done (and undone) easily. Refactoring tools can ensure the
validity of refactoring steps by automating both the checking of the
conditions for the refactoring and the application of the refactoring
itself, thus making refactoring less painful and less error-prone.

Our project ‘Refactoring Functional Programs’ (Refactor-fp),
has developed the Haskell Refactorer, HaRe (Li et al. 2003), pro-
viding support for refactoring Haskell (Peyton Jones 2003) pro-
grams. HaRe covers the full Haskell 98 standard language, and is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

integrated with the two most popular development environments
for Haskell programs: gVim and (X)Emacs. Because layout style
tends to be idiomatic and personal especially when a standard lay-
out is not enforced by the program editor, HaRe preserves the com-
ments and layout of the refactored programs as much as possible.

HaRe is itself implemented in Haskell. The current (third) re-
lease of HaRe supports 24 refactorings, and also exposes an API (Li
et al. 2005) for defining refactorings or more general program trans-
formations. The refactorings supported by HaRe fall into three cat-
egories: structural refactorings which concern the name and scope
of the entities defined in a program and the structure of definitions;
module refactorings which concern the imports/exports of modules,
and the relocation of definitions among modules; and data-oriented
refactorings which concern the data type definitions. The ongoing
work with HaRe currently focuses on data-related refactorings.

Following the ‘Refactoring Functional Programs’ project, we
are developing Wrangler (Li and Thompson 2006; Li et al. 2006),
a tool for refactoring Erlang/OTP (Armstrong et al. 1996; Arm-
strong 2007) programs. The current (second) release of Wrangler
works with the complete Erlang/OTP language, and supports a few
structural refactorings, such as rename an identifier, generalise a
function definition, function extraction, move a function definition
between modules, etc, and functionalities for duplication code de-
tection. We are currently at the middle stage of this project, and
Wrangler is still under active development.

Building a refactoring tool for Erlang allows us to continue our
investigation of the application of refactoring techniques to the
functional programming paradigm. Both Haskell and Erlang are
general-purpose functional programming languages, but they also
have many differences. Haskell is a lazy, statically typed, purely
functional programming language featuring higher-order functions,
polymorphism, type classes, monadic effects, and program layout
sensitiveness. Erlang is a strict, dynamically typed functional pro-
gramming language with built-in support for concurrency, commu-
nication, distribution, and fault-tolerance. The differences in syn-
tax, semantics and pragmatics of Haskell and Erlang impose differ-
ence challenges, and result in different implementation strategies
and techniques.

In this paper, we discuss the construction of HaRe and Wran-
gler, and comment on the challenges we had to solve. In particular,
we examine the sorts of analysis that underline our systems. Fi-
nally, drawing on our experience, we examine features common to
functional refactorings, and contrast these with refactoring in the
object-oriented domain.

2. An Overview of HaRe and Wrangler
Both HaRe and Wrangler support interactive refactoring of multi-
module programs. HaRe is integrated with the two most commonly
used program editors for Haskell: (X)Emacs and gVim, while
Wrangler is integrated with Emacs, which is the tool of choice for
most Erlang programmers. Currently HaRe supports more refac-

Figure 1. A snapshot of HaRe

Figure 2. A snapshot of Wrangler

torings than Wrangler does, however more refactorings are being
implemented for Wrangler. Snapshots of HaRe and Wrangler em-
bedded in the Emacs environment are shown in Figures 1 and 2.

While the underlying implementation techniques are different,
HaRe and Wrangler have very similar user interfaces. To perform a
refactoring with HaRe or Wrangler, the focus of refactoring inter-
est has to be selected in the editor first. For instance, an identifier
is selected by placing the cursor at any of its occurrences; an ex-
pression is selected by highlighting it with the cursor. Next the
user chooses the refactoring command from the refactor menu, and
inputs the parameters(s) in the mini-buffer if required. Then the
refactorer checks that the focused item is suitable for the refactor-
ing selected, that the parameters are valid, and that the refactoring’s
side-conditions (or pre-conditions) are satisfied.

If all these checks are successful, the refactorer will perform the
refactoring, and update the buffer with the new program source,
otherwise it will give an error message, and abort the refactoring
with the program unchanged. Undo is supported by both HaRe
and Wrangler. Applying undo once reverts the program back to the
state right before the last refactoring in the refactoring history was
performed; undo can be applied multiple times until the refactoring
history is empty. With the current implementation of HaRe and

Wrangler, the refactoring undo does not interact with the editor-
side undo/redo, therefore undoing a refactoring will lose the editing
done after this refactoring. Tighter coupling of tool and editor
would support the integration of the two undo mechanisms.

All the refactorings implemented in HaRe and Wrangler are
module-aware. For a refactoring that could possibly change a mod-
ule’s interface, it might have an effect in not only the module where
the refactoring is initiated, but also those modules that import this
module directly or indirectly. To ensure the correctness of trans-
formation, the refactorer needs to know which modules are in the
scope of the current programming project. Because of the different
underlying infrastructure, HaRe and Wrangler use different ways
to specify the project boundary. With HaRe, a project should be
created before doing any refactorings. To create a project, first start
a new project with only one module (usually the Main module) in
it, then use HaRe’s chase functionality to include into the project
those modules on which the current module depends. With Wran-
gler, the user takes the responsibility to customise the refactorer
with the lists of Erlang source directories belonging to the project
under consideration.

We return to the snapshot of Wrangler in Figure 2, which shows
a particular refactoring scenario: the user has selected the expres-
sion io:format("Hello\n") in the definition of repeat/1, has
chosen the Generalise Function Definition command from the
Refactor menu, and is just entering a new parameter name A in
the mini-buffer. Then, the user would press the Enter key to per-
form the refactoring. After side-condition checking and program
transformation, the result of this refactoring is shown in Figure 3:
the new parameter A has been added to the enclosing function defi-
nition repeat/1, which now becomes repeat/2; the highlighted
expression has been replaced with A(); and at the call-site of the
generalised function, the selected expression, wrapped in a fun-
expression, is now supplied to the function call as its first actual
parameter. We enclose the selected expression within a function
closure because of its side-effect, so as ensure that the expression
is evaluated at the proper points.

Figure 3. A snapshot of Wrangler showing the result of general-
ising a function definition

The current implementation of Wrangler pretty-prints the refac-
tored program source according to the standard layout rules; it
therefore does not preserve the program’s original layout unless
the original layout is itself the result of pretty-printing. This lim-
itation is to be addressed by adding layout information to the ab-
stract syntax tree (AST), which is the internal representation of pro-
grams used by the Wrangler system, and by using this information

to guide the pretty-printing process. The current Wrangler release
preserves the program’s comments as much as possible.

Unlike Wrangler, HaRe preserves both the comments and the
program layout of the refactored program, due to the fact that there
is no standard Haskell layout which is accepted by most Haskell
users, and Haskell users tend to have their own personal layout
style.

3. Implementation
This section discusses the construction of HaRe and Wrangler,
comments on the challenges presented by Haskell and Erlang due
to their differences in language design and programming idioms,
and address how they are handled by the two systems in section
3.3.

3.1 Semantics and Transformation
Each refactoring comes with a set of side-conditions (or pre-
conditions), which embody when a refactoring can be applied to
a program without changing its meaning. In order to preserve the
functionality of a program, refactorings require awareness of vari-
ous aspects of the semantics of the program. The following seman-
tic information is needed by either HaRe or Wrangler, or both of
them.

• The binding structure of the program. Binding structure
refers to the association of uses of identifiers with their defi-
nitions in a program. An identifier could be a variable name, a
function name, or a module name. The general principle is that
a refactoring should not disrupt the existing binding structure.
Both Haskell and Erlang allow static scoping of variables, but
Erlang has more complex binding rules for variables. In Erlang,
a pattern can contain both binding and applied occurrences
of variables; furthermore, a variable may have more than one
binding occurrence in a case/receive expression.
Deciding the binding structure of function names, or finding
the call-sites of a function, is in general more challenging for
Erlang programs for the following reasons.

Firstly, a function name in Erlang is an atom literal, but an
atom name could also be a module name, a process name or
just a literal. This makes it difficult to see whether an atom
refers to a function name or not.

Secondly, Erlang allows atoms to be created at run time,
thus makes it possible to compose function names dynami-
cally, which again makes finding the call-sites of a function
impossible at compile time.

Thirdly, Erlang allows meta-applications using the built-in
functions, such as apply/3, spawn/3 and their variants, by
passing a function name and the function’s actual parame-
ters as parameters.

Finally, function names or even function definitions can be
passed between Erlang processes as Erlang terms.

• Module structure. Both Haskell and Erlang have a module
system. A module-level call graph is needed when a refactor-
ing affects the interface of a module. Overall, Haskell’s mod-
ule system is more complicated than Erlang’s relatively simple
system, and a refactoring process can be made complicated by
some features of the Haskell module system, such as the transi-
tive exporting of entities, the lack of mechanisms for excluding
entities using hiding in an export list, etc.

• Type information. Both Haskell and Erlang are typed program-
ming languages, however Haskell features static typing whereas
Erlang features dynamic typing. Type information is needed by

some Haskell refactorings in order to succeed, especially when
the interface of a function definition which has a type signature
declared has been changed. Erlang is a weakly typed program-
ming language. For most Erlang refactorings, type information
is not needed, though sometimes type information can help.

• Side-effect information. Unlike Haskell which is a pure lazy
functional language, Erlang is a strict functional language with
side-effects, and mutable stuff (message sends/receives and
state-dependent responses) plays an important part in most large
programs. When the evaluation order or process context of an
expression is going to be changed by a refactoring, Wrangler
needs to know whether the expression itself has side-effects
or not, and whether the expression needs to get access to any
state-dependent information.
Note that variable assignment in Erlang does not cause side-
effects, as Erlang is a single-assignment language. Single-
assignment of variables frees us from the complex control flow
or data dependency analyses which are generally critical issues
for programming languages with side-effects.

• Comment and Layout information. Comment and layout in-
formation is needed by HaRe to preserve the original program’s
layout and comments as much as possible. For Wrangler, only
comment information is currently needed, however layout in-
formation is also needed if layout is to be preserved.

3.2 Tool Support for Refactorings
A refactoring tool needs to get access to both the syntactic and static
semantic information of the program under refactoring. Given a
refactoring command, most static analysis-based refactoring tools
(or engines) go through the following process, which is also il-
lustrated in Figure 4, although detailed implementation techniques
might be different.

First transform the program source to some internal represen-
tation, such as an abstract syntax tree (AST); then analyse the pro-
gram to extract the static semantic information needed by the refac-
toring under consideration, such as the binding structure of the pro-
gram, type information and so forth.

After that, program analysis is carried out based on the inter-
nal representation of the program and the static semantic informa-
tion to validate the side-conditions of the refactoring. If the side-
conditions are not satisfied, the refactoring process stops and the
original program is unchanged, otherwise the internal representa-
tion is transformed according to the transformation rules of the
refactoring. Some interaction between the refactorer and the user
might be or helpful during side-condition checking and/or program
transformation.

Finally, the transformed representation of the program needs
to be presented to the programmer in program source form, with
comments, and even the original program appearance, preserved as
much as possible.

Almost all the available refactoring tools are embedded within
one or more programming environments, therefore the integration
of a refactoring tool with the intended programming toolkit(s) is
an unavoidable part when tool support for refactorings is con-
cerned. Another unavoidable issue for a refactoring tool to be use-
ful in practice is the support for undoing refactorings. Being able to
undo/redo a refactoring quickly, people are more willing to explore
different refactoring ideas. The underlying implementation mecha-
nism for both the integration with programming environments and
the supporting for undo could vary significantly from system to
system.

Unsurprisingly, this analysis applies to the implementation of
both HaRe and Wrangler.

Figure 4. A General Framework of Refactoring Engines.

3.3 Implementation Techniques
Different techniques have been used in the implementation of HaRe
and Wrangler. HaRe is implemented in Haskell using the Progra-
matica (PacSoft) frontend (including lexer, parser and module anal-
ysis) for Haskell, and the Strafunski (Lämmel and Visser 2001) li-
brary for generic AST traversals. For efficiency reason, we used the
type checker from GHC (GHC), instead of Programatica, to derive
type information. In HaRe, we use both AST and token stream as
the internal representation of source code. Layout and comment in-
formation is kept in the token stream, and some layout information
is kept in the AST. The refactorer carries out program analysis with
the AST, but performs program transformation with both the AST
and the token stream, that is, whenever the AST is modified, the
token stream will also be modified to reflect the changes. After a
refactoring, we extract the new source code from the transformed
token stream. More details are presented in (Li 2006).

Wrangler is implemented in Erlang using the Erlang Syntax
Tools (Carlsson 2004) library from the Erlang/OTP release and
Distel (Gorrie 2002) which is an extension of Emacs Lisp with
Erlang-style processes and message passing, and the Erlang dis-
tribution protocol. Distel provides a very convenient way to in-
tegrate the refactoring tool with the Emacs editor. Erlang Syntax
Tools provides functionalities for reading comments from Erlang
source code and for inserting comments as attachments to the AST
at correct places; and also the functionality for pretty-printing of Er-
lang AST(s) decorated with comments. Traversing an Erlang AST
generated Syntax Tools is straightforward because all the non-leaf
nodes in the AST have the same type.

We have extended the Erlang Syntax Tools library with func-
tionalities for adding static semantic and location information to
the AST. For example, binding structure of identifiers is stored in
the AST by annotating each identifier occurrence with its defining
location; each syntax phrase within the AST is also annotated with
its start and end locations within the program source in terms of
line and column numbers, etc.

As mentioned earlier, the multiple roles of atoms in an Erlang
program, and the facility for dynamic composition of atom names
impose real challenges for the correct implementation of certain
refactorings. Currently, when an uncertainty arises regarding to
an atom, Wrangler issues a warning message indicating which
occurrence(s) of the atom causes the problem. Wrangler currently
relies on the user to ensure that a refactoring is not affected by the
dynamic composition of atoms, but we plan to tackle this problem
by collecting and analysing run-time information of the project
under consideration.

3.4 Availability of the Tools
HaRe and Wrangler can be downloaded respectively from

http://www.cs.kent.ac.uk/projects/refactor-fp/hare.
html
http://www.cs.kent.ac.uk/projects/forse

Together with the downloads are README files containing installa-
tion instructions and information about how to turn on/off the refac-
toring engine, as well as documentations describing the meaning
of each refactoring implemented in terms of side-conditions and
transformations. HaRe’s release contains a test suite for each refac-
toring. A wiki is available from our FORSE project webpage where
we document our thoughts on refactorings.

4. Experience report
In this section we report on our experience of building the tools,
contrast the two languages and tools, and also look at how this
compares with the experience of object-oriented refactoring.

4.1 Refactoring = Condition + Transformation
We tend to think of refactorings simply as transformations, but in
our tools the side-conditions for correct refactoring are typically
more complex than the transformations themselves. An extreme
example is renaming, where the side condition requires examina-
tion of the binding structure whereas the transformation involves
replacing a single text field, but this is also the case for most other
refactorings. The first refactoring systems tended to give less em-
phasis to elucidating the complete side-conditions, and to validate
refactorings by post-refactoring regression testing, but side condi-
tion checking is now more common.

4.2 Are you sure that is what you mean?
Programmers typically refer to refactorings in a high-level, infor-
mal way; once an attempt is made to implement a refactoring, it
becomes clear that there are a number of choices to be made about
what exactly the refactoring in question might actually mean.

Take the example of a particular refactoring, such as gener-
alisation. We generalise a function, f, say, by replacing a sub-
expression, e, by an additional formal parameter to the function,
passing in the generalised expression as the actual parameter at
call sites. It quickly becomes clear that this does not fully spec-
ify the refactoring, and in particular, it is not clear whether within
the function body we should replace a single occurrence of e, all
occurrences of e, or some occurrences, chosen by the user. This
‘one/all/some’ choice is an issue for many refactorings.

Another set of choices is offered when a side-condition fails:
continuing the previous example, suppose that e contains one of the
formal parameters of f. It is possible for the refactoring to fail, or to
compensate for this by lambda-lifting e and making corresponding
adjustments to the body of f. Finally, in the context of Erlang, it is
not possible statically to determine all calls to a particular function.
On renaming the function, should a stub be left, redirecting calls to
the new function, or should these calls simply fail?

4.3 Languages
The experience of tool building for programming languages gives
a particular perspective on those languages; this section pulls a

http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/forse

number of these points. We targeted HaRe on the de jure standard,
Haskell 98, but its use has been limited because almost all Haskell
projects (including HaRe itself!) go beyond Haskell 98, making
GHC (GHC) Haskell the de facto standard. GHC then becomes
not only the standard, but also the standard platform, with which it
becomes necessary to integrate the tools. The relative volatility of
GHC as a proxy language standard has led the Haskell community
– and particularly its tool builders and software vendors – to lobby
for a further standardisation of the principal Haskell98 extensions;
this Haskell′ process is currently underway.

The absence or presence of certain language features cause
problems for the tool builder. For instance, in Haskell it is not pos-
sible to hide items in export lists, making module-modifying refac-
torings more cumbersome. The more dynamic aspects of Erlang,
such as the conversion of (computed) strings into atoms, make it
impossible to give fully accurate flow analyses for all programs.

The idiosyncrasies of actual languages make it impossible in
our view to build language-generic tools that are usable in prac-
tice. To take the particular example of two languages, Haskell and
Erlang, which are both functional languages, there are significant
differences of various different kinds:

• Their binding structures are very different, with the possibility
in Erlang of multiple binding occurrences of a single variable,
for instance; something that is impossible in Haskell.

• Their different semantics – evaluation in Haskell is lazy and
Erlang it is strict – make a difference to the correctness of
refactorings, such as unfolding.

• At the concrete level, their layout styles are radically different.

These are just a small number of examples among many differ-
ences, but serve as evidence of the difficulty of defining tools that
are generic even between two programming languages.

4.4 Extensibility
We aim to build systems that are extensible, and we have provided
a programmers’ API in HaRe (and will in Wrangler). This API col-
lects functions which are useful for the analysis and transformation
of programs, and this is embedded in a declarative meta-language,
namely Haskell or Erlang itself. This gives a declarative, straight-
forward and complete toolset, but at a relatively low level.

We have also investigated whether or not we can provide a
higher-level library of combining forms, for assembling composite
refactorings from simpler components, much as tactics are used
in theorem provers. We have been unable to find such a simple,
elegant solution, not least because of the ‘two sorted’ nature of
refactorings, pointed out in Section 4.1 above. Our provisional
conclusion is therefore that the language-embedded API provides
the best balance between expressiveness and abstraction.

4.5 Verification and Validation
Both Haskell and Erlang are declarative languages, and it is there-
fore arguable that it is more straightforward to write formal proofs
of correctness for refactorings written in these languages. Prelimi-
nary work on this reported in (Li and Thompson 2005), and further
work in (Sultana 2007). We have also investigated using manual
and automated testing infrastructures in testing our systems.

4.6 Infrastructure
In developing both tools we have chosen to re-use as much existing
programming language infrastructure as possible. For Erlang this
has meant building on the standard release and a number of widely-
distributed libraries, but for Haskell the choice when we began the
project was more difficult. GHC at that time provided no API to
its internals, and so we used the Programatica framework. This

has the advantage of providing many tools, but suffers from the
disadvantage of not keeping up with language usage in the Haskell
community.

We had also chosen to use existing tools for the front end of the
refactorer. This we see as essential if the tools are to become part
of a practitioner’s standard toolkit, but developing for Emacs and
(particularly) gVim is not a rewarding task. Finally, our systems
need to integrate with other language tools, such as makefiles and
test frameworks; we are addressing the latter point in a future
project.

5. Conclusions
We have shown two tools, one mature and one under active devel-
opment, for refactoring functional programs, and as well as giving
details about their implementation, we have reported a number of
conclusions based on our experience.

We are very grateful to the UK Engineering and Physical Sci-
ences Research Council for its support for the projects to build
HaRe and Wrangler.

References
J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.
J. Armstrong, R.Virding, C. Wikström, and M. Williams. Concurrent

Programming in Erlang. Prentice-Hall, second edition, 1996.
R. Carlsson. Erlang Syntax Tools. http://www.erlang.org/doc/

doc-5.4.12/lib/syntax_tools-1.4.3, 2004.
M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:

Improving the Design of Existing Code. Addison-Wesley, 1999.
GHC. GHC – The Glasgow Haskell Compiler. http://www.haskell.

org/ghc/.
L. Gorrie. Distel: Distributed Emacs Lisp (for Erlang). In The Proceedings

of 8th International Erlang/OTP User Conference, Stockholm, Sweden,
November 2002.

R. Lämmel and J. Visser. Generic Programming with Strafunski. http:
//www.cs.vu.nl/Strafunski/, 2001.

H. Li. Refactoring Haskell Programs. PhD thesis, Computing Laboratory,
University of Kent, Canterbury, Kent, UK, September 2006.

H. Li, C. Reinke, and S. Thompson. Tool Support for Refactoring Func-
tional Programs. In Johan Jeuring, editor, ACM SIGPLAN Haskell Work-
shop, Uppsala, Sweden, August 2003.

H. Li and S. Thompson. A Comparative Study of Refactoring Haskell and
Erlang Programs. In M. Di Penta and L. Moonen, editors, Sixth IEEE
International Workshop on Source Code Analysis and Manipulation
(SCAM 2006), 2006.

H. Li and S. Thompson. Testing Erlang Refactorings with QuickCheck.
In The Draft Proceedings of the 19th International Symposium on Im-
plementation and Application of Functional Languages, Freiburg, Ger-
many, 2007.

H. Li and S. Thompson. Formalising Haskell Refactorings. In Marko van
Eekelen, editor, Trends in Functional Programming 2005, 2005.

H. Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe, and its
API. Electr. Notes Theor. Comput. Sci., 141(4):29–34, 2005.

Huiqing Li, Simon Thompson, László Lövei, Zoltán Horváth, Tamás
Kozsik, Anikó Vı́g, and Tamás Nagy. Refactoring Erlang Programs.
In The Proceedings of 12th International Erlang/OTP User Conference,
Stockholm, Sweden, November 2006.

PacSoft. Programatica. http://www.cse.ogi.edu/PacSoft/
projects/programatica/.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: the Revised
Report. Cambridge University Press, 2003. ISBN 0-521-82614-4.

Refactor-fp. Refactoring Functional Programs. http://www.cs.kent.
ac.uk/projects/refactor-fp/.

N. Sultana. Verification of Refactorings in Isabelle/HOL. MSc thesis,
Computing Laboratory, University of Kent, 2007.

http://www.erlang.org/doc/doc-5.4.12/lib/syntax_tools-1.4.3
http://www.erlang.org/doc/doc-5.4.12/lib/syntax_tools-1.4.3
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/Strafunski/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/

	Introduction
	An Overview of HaRe and Wrangler
	Implementation
	Semantics and Transformation
	Tool Support for Refactorings
	Implementation Techniques
	Availability of the Tools

	Experience report
	Refactoring = Condition + Transformation
	Are you sure that is what you mean?
	Languages
	Extensibility
	Verification and Validation
	Infrastructure

	Conclusions

