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Abstract
Traversal strategies provide an established means of describing automated queries, analy-
ses, transformations, and other non-trivial computations on deeply structured data (includ-
ing, most notably, data representations of software artifacts such as programs). The re-
sulting traversal programs are prone to programming errors. We are specifically concerned
with errors that go beyond classic type errors, in particular: (i) divergence of traversal, (ii)
unintentional extent of traversal into data, (iii) trivial traversal results, (iv) inapplicability of
the constituents of a traversal program along traversal. We deliver a taxonomy of program-
ming errors, and start attacking some of them by refinements of traversal programming.
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1 Introduction

Consider the general problem domain of extracting data from program or data rep-
resentations (such as ASTs) as well as transforming such representations in a sys-
tematic fashion. Over the last 10 years, this problem domain has triggered ad-
vances in term rewriting and general-purpose programming with rewriting-like ca-
pabilities [22,23,13,24,21] so that traversals (perhaps even highly reusable traversal
strategies) are programmable.

Despite these advances, the use and the definition of programmable traversal
strategies has remained the domain of the expert, rather than gaining wider usage.
This could in part be due to necessary language, library, and tool support, but we
contend that the principal obstacle to wider adoption is the severity of some pos-
sible pitfalls, which make it difficult to use strategies in practice. Some of the
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programming errors that arise are familiar, e.g., type errors, but other errors are of
a novel nature. Their appearance can be off-putting to the newcomer to the field,
and it can limit the productivity even of experienced strategists.

This paper is a first step in a programme which aims to make strategic pro-
gramming more accessible and approachable through providing an introduction
to — and indeed a taxonomy of — some of the common pitfalls of strategic pro-
gramming. We also begin refining strategic programming so that the next genera-
tion of strategic programming may be considerably easier to use.

A running example. To use a purposely simple example, consider the transfor-
mation problem of “incrementing all numbers in a term”. (Clearly, programming
errors become more severe with increasing the problem size.) Suppose ` is the
rewrite rule that maps any given number n to n + 1. It remains to compose a strat-
egy that can essentially iterate ` over any term. Here is an indication of some of the
things that may go wrong with the application of the composed strategy:
• It fails to terminate.
• It fails to find numbers in the input term.
• It fails, i.e., it returns a trivial failure term.
• It increments some numbers in the input term more than once.

Structure of the paper. § 2 quickly introduces a suitable model of (Haskell-
based) traversal strategies. 1 § 3 takes an inventory of programming errors in traver-
sal programming. § 4 attacks the errors by proposing some refinements of traversal
programming. § 5 briefly applies the notion of static analysis to the problem of de-
termining properties of traversal programs as well as detecting errors therein. § 6
discusses related work. § 7 concludes the paper.

2 Strategic programming

We assume basic strategy combinators as they were pioneered by the Stratego lan-
guage [22]: “id ” — the always succeeding strategy returning the input term as is;
“fail ” — the always failing strategy; “sequ s s′” — sequential composition of s and
s′; “choice s s′” — try s first, and try s′ second, if s failed; “all s” — apply s to
all immediate subterms of a given term, and fail if there is any subterm for which
s fails; “one s” — apply s to the leftmost immediate subterm of a given term such
that the application does not fail, and fail if there is no such immediate subterm.
The combinators all and one, when used recursively, enable the key capability of
strategic programming: traversal arbitrarily deeply into terms.

1 Haskell in all its glory has infinite and partial data structures, such as trees with undefined leaves,
or indeed undefined subtrees. In the presence of infinite and partial structures, the discussion of
strategy semantics and properties (most notably, termination) becomes more subtle. We are cur-
rently limiting our discussion to finite, fully defined data. (The subject of coinductive strategies
over coinductive types may be an interesting topic for future work.)
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Let us define some recursive strategy combinators that model traversal schemes
as they appear in the literature [22,8,19]. The following folklore schemes are ac-
tually written in Haskell syntax, subject to an embedding of the aforementioned
strategy combinators into Haskell. 2

−− Rewrite root first, then recurse into all immediate subterms of intermediate result
full td s = sequ s (all (full td s))
−− Rewrite all subterms in bottom−up manner
full bu s = sequ (all (full bu s)) s
−− Try to rewrite root; upon success: cease; upon failure: recurse into all immediate subterms
stop td s = choice s (all (stop td s))
−− Find a subterm to be rewritten in bottom−up manner; rewriting ceases upon success
once bu s = choice (one (once bu s)) s
−− Repeat once−bottom−up traversal until it fails
innermost s = repeat (once bu s)
where
repeat s = try (sequ s (repeat s))
try s = choice s id

Without loss of generality, we use a Haskell model based on the SYB approach to
generic programming [11]. Hence, first-order strategies are revealed as polymor-
phic functions on “term types”:

type Strategy = forall x. Data x => x −> Maybe x

The use of Maybe enables failing strategies:

data Maybe x = Nothing | Just x

That is, a strategy returns Nothing to signal failure, while a successful computation
returns a value of the form Just x. The Data constraint in the definition of Strategy
enables the non-parametrically polymorphic traversal capability of all and one. For
our discussion, the further details of the SYB approach are not important. The
above traversal schemes are all of the following type:

full td, ..., innermost :: Strategy −> Strategy

There is yet another combinator, adhoc, which models update of a polymorphic
strategy in a point (i.e., a type). In “adhoc g s”, the argument g is the polymorphic
default strategy to be applied whenever the monomorphic function s cannot be
applied, as far as its specific type is concerned. (In the non-strongly typed setting
of Stratego, a rewrite rule is immediately a “polymorphic” strategy, as if it were
combined with fail as default.)

For instance, assume that increment is a function on numbers that simply incre-
ments them. Using adhoc, we can make the increment function generic so that it can
be passed to a traversal scheme, which can be finally applied to a term. Thus:

full td (adhoc id increment) myTerm

2 The paper’s website (http://www.uni-koblenz.de/˜laemmel/syb42) provides ac-
cess to a source distribution from which the source portions in the paper have been extracted.
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3 Inventory of programming errors

Let us consider again the simple scenario proposed in the introduction: increment
all numbers in a term. For concreteness’ sake, we choose the terms to be “trees”
and the numbers to be “naturals”. Further, we assume a Peano-like definition of the
data type for naturals; the Peano-induced recursion will be useful in showcasing a
number of programming errors. Here are the data types for naturals and trees:

data Nat = Zero | Succ Nat
data Tree a = Node {rootLabel :: a, subForest :: [Tree a]}

Here are simple tree samples (that we will use throughout the paper):

tree1 = Node { rootLabel = Zero, subForest = [] } −− A tree of numbers
tree2 = Node { rootLabel = True, subForest = [] } −− A tree of Booleans
tree3 = Node { rootLabel = Succ Zero, subForest = [tree1,tree1] } −− Two subtrees

The rewrite rule for incrementing naturals is represented as follows: 3

increment n = Just (Succ n)

It remains to complete the rewrite rule into a traversal strategy that increments all
naturals in an arbitrary term (such as in tree1 and tree3 — trees labeled with natu-
rals). Given the options full td, full bu, stop td, once bu, and innermost, which traver-
sal scheme is the correct one for the problem at hand? An experienced strategist
may quickly exclude one or two options. For instance, it may be obvious that the
scheme once bu is not appropriate because we want to increment all naturals, while
once bu would only affect one natural. The following paragraphs attempt different
schemes and vary other details, thereby showcasing various programming errors.

3.1 Unbounded recursion

Let us attempt a full top-down traversal. Alas, the following strategy diverges:

Haskell-prompt> full td (adhoc id increment) tree1

... an infinite tree is printed ...

The intuitive reason for non-termination is that full td applies the argument strategy
prior to descent, which may be problematic in case the argument strategy increases
the depth of the given term, which is exactly what increment does. If full td is not
appropriate for the problem at hand, let us try another scheme, be it innermost.
Again, we witness non-termination:

Haskell-prompt> innermost (adhoc fail increment) tree1

... no output ever is printed ...

The combinator innermost repeats the traversal trategy once bu (adhoc fail increment)
until it fails, but it never does because the subtree position with the natural always
fits. Hence, tree1 is rewritten indefinitely.

3 The use of the constructor Just implies that increment denotes a successful computation.
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3.2 Incorrect quantification

Let us try yet another scheme, full bu:

Haskell-prompt> full bu (adhoc id increment) tree1

Just (Node {rootLabel = Succ Zero, subForest = []})

(That is, the root label was indeed incremented.) This particular test case looks fine,
but if we were testing the same strategy with trees that contain non-zero naturals,
then we would learn that the composed strategy replaces each natural n by 2n+1 as
opposed to n + 1. To see this, one should notice that a natural n is represented as a
term of depth n, and the choice of the scheme full bu implies that increment applies
to each “sub-natural”. The scheme full bu performs a full sweep over the input,
which is not appropriate here because we do not want to descend into naturals.

More generally, strategies need to “quantify” terms of interest:
• The type of the terms of interest.
• The number of redexes to be affected (e.g., one or any number found).
• The traversal order in which terms of interest are to be found.
• The degree of recursive descent into subterms.

The programmer is supposed to express quantification (say, “to control traversal”)
by choosing the appropriate traversal scheme. The choice may go wrong, when
the variation points of the schemes are not understood, or accidentally considered
irrelevant for the problem at hand.

3.3 Incorrect polymorphic default

Finally, let us try stop td. Alas, no incrementing seems to happen:

Haskell-prompt> stop td (adhoc id increment) tree1

Just (Node {rootLabel = Zero, subForest = []})

(That is, the result equals Just tree1.) The problem is that the strategy should con-
tinue to descend as long as no natural was hit, but the polymorphic default id makes
the strategy stop for any subterm that is not a natural. If we replace id by fail, then
we finally arrive at a proper solution for the original problem statement:

Haskell-prompt> stop td (adhoc fail increment) tree1

Just (Node {rootLabel = Succ Zero, subForest = []})

fail is the archetypal polymorphic default for certain schemes, while it is patently
inappropriate for others. To see this, suppose, we indeed want to replace each
natural n by 2n + 1, as we accidentally ended up doing in § 3.2. Back then, the use
of full bu with id as polymorphic default worked fine, and indeed fail would not:

Haskell-prompt> full bu (adhoc fail increment) tree1

Nothing
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3.4 Incorrect monomorphic default

To illustrate another programming error, let us consider a refined problem state-
ment. That is, let us increment even numbers only. In the terminology of rewriting,
this statement seems to call for a conditional rewrite rule: 4

−− Pseudo code for a conditional rewrite rule
increment even : n −> Succ(n) where even(n)

In Haskell notation:

increment even n = do guard (even n); increment n

Other than that, we keep using the traversal scheme that we found earlier:

Haskell-prompt> stop td (adhoc fail increment even) tree1

Just (Node {rootLabel = Succ Zero, subForest = []})

This particular test case looks fine, but if we were testing the same strategy with
trees that contain odd naturals, then we would learn that the composed strategy in
fact also increments those. The problem is that the failure of the precondition for
increment propagates to the traversal scheme which takes failure to mean “continue
descent”. However, once we descend into odd naturals, we will hit an even sub-
natural in the next step, which is hence incremented. So we need to make sure that
recursion ceases for all naturals. Thus:

increment even n
| even n = Just (Succ n)
| otherwise = Just n

3.5 Unreachable constituents

Consider the following patterns of strategy expressions:
• adhoc (adhoc g s1) s2

• choice f1 f2

• sequ f1 f2

In the first pattern, if the constituents s1 and s2 are of the same type (or more
generally, the type of s2 can be specialized to the type of s1), then s1 has no chance
of being applied. Likewise, in the second pattern, if f1 never possibly fails, then
f2 has no chance of being applied. Finally, in the third pattern, if f1 never possibly
succeeds, which is likely to be the symptom of a programming error by itself, then,
additionally, f2 has no chance of being applied.

4 Both the original increment function and the new “conditional” increment even function go
arguably beyond the basic notion of a rewrite rule that requires a non-variable pattern on the left-
hand side. We could easily recover classic style by using two rewrite rules — one for each form of
a natural.
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Let us illustrate the first kind of programming error: multiple branches of the
same type in a given adhoc-composed type case. Let us consider a refined problem
statement such that incrementing of naturals is to be replaced by (i) increment by
one for all odd numbers, (ii) increment by two for all even numbers. Here are the
constituents that we need:

increase odd n
| odd n = Just (Succ n)
| otherwise = Nothing

increase even n
| even n = Just (Succ (Succ n))
| otherwise = Nothing

(We leave it as an exercise to the reader to argue whether or not the monomorphic
default Nothing is appropriate for the given problem; cf. § 3.4.) Intuitively, we wish
to chain together these type-specific cases so that they both are tried. It is not
uncommon that strategic programmers (say, in Strafunski) attempt a composition
like the following; alas no incrementing seems to happen:

Haskell-prompt> stop td (adhoc (adhoc fail increase even) increase odd) tree1

Just (Node {rootLabel = Zero, subForest = []})

In the sample tree, the natural number, Zero, is even but the dominating type-
specific case applies to odd numbers; hence no incrementing happens. The two
rewrite rules must be composed differently:

Haskell-prompt> stop td (adhoc fail (mchoice increase even increase odd)) tree1

Just (Node {rootLabel = Succ (Succ Zero), subForest = []})

Here, we rely on a rank-1 choice combinator: 5

mchoice :: MonadPlus m => (x −> m x) −> (x −> m x) −> x −> m x
mchoice f g x = mplus (f x) (g x)

3.6 Unreachable types

We face a more conditional, more subtle form of an unreachable (monomorphic)
constituent when the constituent’s applicability depends on the fact whether its type
can be encountered at all — along the execution of the encompassing traversal
strategy. Consider the following strategy application that traverses the sample tree
tree2 — a tree labeled with Boolean literals (as opposed to naturals):

Haskell-prompt> stop td (adhoc fail increment) tree2

Just (Node {rootLabel = True, subForest = []})

5 mplus is addition on values of type m x for any MonadPlus m. In the case of the Maybe
monad, mplus is the operation that returns its left operands, if it is not Nothing, and it returns its
right operand, otherwise.
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(That is, the result equals Just tree2.) In fact, one can see that the strategy will
preserve any term of type Tree Boolean. Terms of interest, i.e., naturals, cannot
possibly be found below any root of type Tree Boolean. It seems plausible that
the function shown manifests a programming error: we either meant to traverse a
different term (i.e., one that contains naturals), or we meant to invoke a different
strategy (i.e., one that affects Boolean literals or polymorphic trees).

3.7 Incorrect success/failure handling

The earlier problems with (polymorphic and monomorphic) defaults feed into a
more general kind of problem: misunderstood success/failure behavior of traversal
schemes and their strategy parameters. (We should generally note that the various
kinds of programming errors discussed are not fully orthogonal.) Here is a simple
example of misunderstanding.

main = do
(tree::Tree Nat) <− readLn
tree’ <− stop td (adhoc fail increment) tree
putStrLn ”1 or more naturals incremented successfully”

The program invokes a traversal strategy for incrementing naturals in a tree that is
constructed from input. The output statement, which follows the traversal, docu-
ments the programmer’s (incorrect) thinking that the successful completion of the
stop td scheme implies at least one application of the argument strategy, and hence,
tree 6= tree’.

In the above (contrived) example, misunderstood success/failure only leads to
incorrect text output. In general, programmers may compose traversal programs in
ways that their control pattern depends on assumptions as wrong as the one above.
Even when misunderstood success/failure behavior does not affect correctness, it
may instead lead to defensive and convoluted code. For instance, in the following
strategy expression, the application of try (defined in § 2) is superfluous because the
traversal to which it is applied cannot possibly fail.

try (full td (adhoc id increment))

We should mention that part of the confusion regarding success/failure behavior
stems from the overloaded interpretation of success/failure — to relate to either
strategy control or pre-/post-condition checking. A new language design may fa-
vor to separate these aspects — possibly inspired by forms of exception handling
known from the general programming field [20].

3.8 Incorrect plan

A strategic programming (sub-) problem is normally centered around some problem-
specific constituents (“rewrite rules”) that have to be organized in a more or less
complex strategy. Organizing this strategy involves the following decisions:

(i) Which traversal scheme is to be used?
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Lämmel and Thompson and Kaiser

(ii) What polymorphic and monomorphic defaults are to be used?

(iii) What is the level of composition?
• The polymorphic level of strategy arguments.
• The top-level at which possibly multiple traversals can be combined.
• The monomorphic level, i.e., before becoming polymorphic by means of adhoc.

(iv) What is the composition operator? Is it adhoc, choice, or sequ?

We return to the example from § 3.5, which incremented odd and even numbers
differently. Let us assume that we have resolved decisions (i) and (ii) by choosing
the scheme stop td and the default fail; we still have to consider a number of options
due to (iii) and (iv). The following list is not even complete because it omits order
variations for composition operators.

Note: mchoice and msequ are rank-1 variations on choice and sequ. 6

1. stop td (adhoc (adhoc fail increase even) increase odd)

2. stop td (adhoc fail (mchoice increase even increase odd))

3. stop td (adhoc fail (msequ increase even increase odd))

4. stop td (choice (adhoc fail increase even) (adhoc fail increase odd))

5. stop td (sequ (adhoc fail increase even) (adhoc fail increase odd))

6. choice (stop td (adhoc fail increase even)) (stop td (adhoc fail increase odd))

7. sequ (stop td (adhoc fail increase even)) (stop td (adhoc fail increase odd))

Option (1.) had been dismissed already because the two branches involved are
of the same type. Option (2.) had been approved as a correct solution. Option
(4.) turns out to be equivalent to option (2.). (This equivalence is implied by
basic properties of defaults and composition operators.) The strategies of the other
options do not implement the intended operation, even though it may be difficult to
understand exactly how they differ.

4 Refinements of traversal programming

It seems plausible to ask whether we can attack some or all of the identified kinds of
programming errors by devising refinements of traversal programming. For brevity,
we do not discuss some of the more pragmatic approaches such as debugging. In-
stead we want to focus on techniques that give (more) “correctness by design or by
static checks”. The following discussion comes without any claim of completeness.
Also, the reported experiments are rendered (mostly) in a Haskell-biased manner.
However, we do tend to summarize each experiment by clarifying the language-
independent refinement idea behind the experiment.

6 We had defined mchoice earlier; msequ is function composition lifted to Maybe values.
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4.1 Less generic strategies

The prevention of some of the aforementioned programming errors may benefit
from variations on the strategy library that are “less problematic”. One method is
to reduce the genericity of the traversal schemes to rank 1, i.e., the problem-specific
arguments become monomorphic. The following definitions take a monomorphic
argument s, which is then generalized within the scheme by means of the appropri-
ate polymorphic default, id or fail:

full td s = sequ (adhoc id s) (all (full td s))
full bu s = sequ (all (full bu s)) (adhoc id s)
stop td s = choice (adhoc fail s) (all (stop td s))
once bu s = choice (one (once bu s)) (adhoc fail s)
innermost s = repeat (once bu s)

The rank-1 schemes reduce programming errors as follows. Most obviously, poly-
morphic defaults are correct by design because they are hard-wired into the schemes.
Also, the adhoc idiom has no purpose anymore, and hence, no problem with over-
lapping type-specific cases occurs. No other programming errors are directly ad-
dressed, but one can say that “incorrect plans” are less likely simply because there
are fewer feasible options for plans.

However, there are scenarios that call for polymorphic, problem-specific con-
stituents of traversals; cf. [22,13,14] for some concrete samples. Hence, the orig-
inal (generic) schemes must be retained. Some cases of strategies with multiple
type cases can be decomposed into multiple traversals, but even when it is possible,
it may still be burdensome and negatively affect performance.

An improved, strategic programming language could assume an implicit coer-
cion scheme such that the appropriate polymorphic default is applied whenever a
single monomorphic case is passed to the scheme. In this manner, the API sur-
face is not increased, and the omission of (potentially ill-specified) polymorphic
defaults is encouraged.

4.2 Fallible and infallible strategies

Let us investigate another variation on (part of) the strategy library that is “less
problematic”. The proposed method is to provide more guidance regarding the
success/failure behavior of traversal schemes and their arguments. Let us recall the
types of the sample schemes:

full td, ..., innermost :: Strategy −> Strategy

where type Strategy = forall x. Data x => x −> Maybe x

In fact, this is a specialized type that we had chosen for simplicity of the initial
presentation. In general, the type is parametrized by a monad:

full td, ..., innermost :: GenericM m −> GenericM

where type GenericM = forall x. Data x => x −> m x, and m is a monad.
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The monad parameter may be used for different purposes, in particular for model-
ing success and failure based on the Maybe monad or any other monad with a “zero”
(i.e., failure). The general types of the schemes hide some intentions regarding the
common success/failure behavior of arguments and composed strategies. In partic-
ular, it would be valuable for the programmer to know when success is guaranteed.

We say that a strategy is infallible if it does not possibly fail, i.e., if it will suc-
ceed (or diverge). It is relatively easy to confirm the following claims about infalli-
bility. Given is a strategy s. If s is infallible, then full td s and full bu s are infallible.
No matter the argument s, the strategies stop td s and innermost s are infallible. No
infallibility claim about once bu can be stated; this scheme is intrinsically fallible.

We can easily provide a (non-classic) proof of the above claims, where we use
these claims as new types of the traversal schemes. That is, a type is made infallible
by stripping off the monad wrapper from the type. The definitions of the infallible
schemes remain unchanged, except that some of the basic strategy combinators also
need to be trivially complemented by variations with infallible types.

−− Generic transformations
type GenericT = forall a . Data a => a −> a
−− Generic monadic transformations
type GenericM m = forall a . Data a => a −> m a

full td :: GenericT −> GenericT
full bu :: GenericT −> GenericT
stop td :: GenericM Maybe −> GenericT
innermost :: GenericM Maybe −> GenericT

The idea is now that a programmer favors the infallible schemes, whenever possi-
ble, and falls back to the original (fallible) ones, whenever necessary. Also, if the
type of an infallible strategy combinator points out a potentially failing argument,
then this status signals to the programmer that failure of the argument strategy is
indeed usefully anticipated by the combinator.

An improved, strategic programming language may leverage (in)fallibility rules
systematically: (i) it may infer precise types for strategies (as far as (in)fallibility
is concerned); (ii) it may allow for programmer annotations that capture expecta-
tions with regard to (in)fallibility and verify those; (iii) it may emit warnings when
supposedly fallible arguments are infallible.

4.3 Checked adhoc chains

The problem of unreachable cases in an adhoc chain can be avoided by a type check
that specifically establishes that all cases are distinct in terms of the covered types.
In addition, such a regime allows us to factor out the polymorphic default to reside
in the traversal scheme, thereby eliminating another source of error.

In the following, we use an advanced Haskell library, HList [7], to describe the
constituents of a traversal scheme as a family of monomorphic cases, in fact, as
an appropriately constrained heterogeneous list of functions. Consider the pattern
that we used so far: adhoc (adhoc g s1) s2. Two type-specific cases, s1 and s2, are
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involved, which are used to point-wisely override the generic default g. The type-
specific cases can be represented as the heterogeneous list HCons s1 (HCons s2 HNil). 7

Such a list may be converted to a plain adhoc chain by a function, familyM, which
takes a polymorphic default as an additional argument. This function also checks
that type-specific cases do not overlap. Here are the schemes that are parametrized
in families of cases; the new schemes leverage the original schemes. 8

full td s = StrategyLib.Schemes.full td (familyM id s)
full bu s = StrategyLib.Schemes.full bu (familyM id s)
stop td s = StrategyLib.Schemes.stop td (familyM fail s)
once bu s = StrategyLib.Schemes.once bu (familyM fail s)
innermost s = StrategyLib.Schemes.innermost (familyM fail s)

The function familyM is defined by induction on the heterogeneous list structure:

class (Monad m, HTypeIndexed f) => FamilyM f m
where

familyM :: GenericM m −> f −> GenericM m

instance Monad m => FamilyM HNil m
where

familyM g = g

instance (Monad m, FamilyM t m, Typeable x, HOccursNot (x −> m x) t)
=> FamilyM (HCons (x −> m x) t) m

where
familyM g (HCons h t) = adhoc (familyM g t) h

Most notably, the constraint HTypeIndexed (provided by the HList library) estab-
lishes that the cases are distinct in terms of the covered type. As a proof obligation,
the instance for non-empty lists (cf. HCons ...) must establish that the head’s type
does not occur again in the tail of the family; cf. the constraint HOccursNot ... (pro-
vided by the HList library).

An improved, strategic programming language may indeed assume a suitable
notion of “type case”, subject to the kind of checking and mapping to regular strate-
gies, as described above. Essentially, the presented idea generalizes the simple idea
of rank-1 schemes; cf. § 4.1.

4.4 Reachable type constraints

Let us consider again the particularly subtle form of unreachable (monomorphic)
cases, where they turn out to be unreachable just because their types cannot be
expected “below” the possible root types. A basic remedy is to constrain (at a
type level) the applicability of a given traversal strategy such that the type of the
argument cases must be in a “reachability” relationship with the type of the root.
Inspired by [10], we can illustrate this idea (without loss of generality) for rank-1

7 The empty heterogeneous list is represented as HNil, whereas the non-empty heterogeneous list
with head h and tail t is represented as HCons h t.
8 We refer to the original schemes of § 2 by using the prefix StrategyLib.Schemes.....

12
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schemes. Consider the following constrained variation on the full td scheme:

full td :: (Monad m, Typeable x, Data y, HBelowEq y x) => (x −> m x) −> y −> m y
full td s = StrategyLib.Schemes.full td (adhoc id s)

All the constraints in the type are readily implied by the original version (modulo
skolemization and simplification), except HBelowEq, which models the relationship
between types such that HBelowEq x y holds whenever x is the type y, or the type of
an immediate or non-immediate subterm.

class HBelowEq x y
instance HBelowEq x x −− reflexivity
−− Other instances are derived from data types of interest.

For instance, the data type for polymorphic trees and the leveraged data type for
polymorphic lists imply the following contributions to the relation HBelowEq:

instance HBelowEq a [a]
instance HBelowEq a (Tree a)
instance HBelowEq [Tree a] (Tree a)

Again, the Haskell experiment shown merely serves for illustration. In an im-
proved, strategic programming language, all traversal schemes may be annotated
by constraints for reachability, or these constraints may even be inferred automati-
cally. All reachability constraints would be statically checked.

5 Static strategy analysis

All refinements of the previous section required variations of familiar strategy com-
binators and traversal schemes. In particular, we used less parametric and more
type-constrained variations. In contrast, we will now demonstrate the potential
utility of strategy analysis in performing static checks on otherwise classic traver-
sal programs. (There could be additional programmer annotations, say “contracts”,
to be observed by a static analysis. We do not further discuss this elaboration here.)

It should be clear that an analysis is likely to be useful in determining the status
of a strategy (i) to involve constituents that have no chance of being applied; (ii)
to always fail (or diverge); (iii) to always succeed without any rewriting done (or
diverge); (iv) to definitely terminate.

In the following, we develop a simple analysis for the basic property of an infal-
lible strategy. We denote this analysis as “cf — can fail”. We model the analysis in
Haskell. The following data type models strategy expressions for transformations,
i.e., type-preserving strategies; cf. “TP”:

data TP x = Id | Fail | Seq (TP x) (TP x) | Choice (TP x) (TP x)
| All (TP x) | One (TP x)
| Rec (x −> TP x) | Const x

Clearly, the data type covers the known strategy combinators; cf. Id, Fail, etc. The
type parameter of the data type caters for analysis defined by fixpoint computation.
The constructors Rec and Const model fixpoint combinator and recursive reference,
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respectively. We can model familiar traversal schemes as “TP” terms:

full td s = Rec (\x −> Seq s (All (Const x)))
once bu s = Rec (\x −> Choice (One (Const x)) s)
stop td s = Rec (\x −> Choice s (All (Const x)))

The analysis “can fail” is described as follows:

cf Id = False
cf Fail = True
cf (Seq s s’) = cf s || cf s’
cf (Choice s s’) = cf s && cf s’

cf (All s) = cf s
cf (One s) = True
cf (Const x) = x
cf (Rec f) = cf (f False)

The equation for Rec models a degenerated fixpoint calculation. That is, calculation
starts from False (denoting “will succeed or diverge”), and just one iteration suffices
because the complete partial order only contains two elements.

The following table presents some analysis results such that the “can fail” prop-
erty of the traversal scheme is computed from the “can fail” property of the argu-
ment strategy. (We reconfirm the infallibility claims from § 4.2.) For instance,
consider the last row of the table: no matter whether the argument of stop td can
fail or not, the traversal will succeed (or diverge).

Scheme s cf (s (Const False)) cf (s (Const True))

full td False True

once bu False True

stop td False False

Clearly, more advanced analyses (such as a termination analysis) require more in-
teresting abstract domains than Bool. Also, some analyses (such as a reachability
analysis) need to relate to meta-data (signatures) of the traversed data.

6 Related work

Mentions of simple “laws” for strategies as well as strategy properties can be found
scattered over the strategic programming literature [22,6,24,21,9,3]. The present
paper provides the first substantial attempt of a systematic discussion of program-
ming errors and their relationship to strategy properties.

The technique of § 4.1 to use less generic traversal schemes has also been ex-
plored in [16] in the context of devising simpler types for traversal programs and
more efficient implementations. The technique of § 4.4 to statically check for reach-
able types is inspired by adaptive programming [18,15,12] that subjects its traversal
specifications to a similar check.

Constrained forms of traversal programming may be less prone to the errors that
we discussed. For instance, one can limit the programmability of traversal (e.g., in
ASF+SDF with traversal functions [21]), or impose more structure on traversal
programs (e.g., in adaptive programming, where traversal specifications and com-
putations or actions are separated). It is our goal to admit full programmability, but
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ban programming errors by static analysis or type checking.
Automated program calculations based on algebraic laws were devised for spe-

cializing (optimizing) strategic programs [3]. For instance, there are laws whose
systematic application reveals the “uselessness” of certain subterm traversals in
a complete traversal. (Here, it is assumed that the types of type-specific cases
are known as well as meta-data (data-type declarations) for the traversed data.) It
should be possible to use similar calculations to set up strategy analyses.

Some of the discussed strategy properties and the corresponding analyses natu-
rally call for a more general treatment. For instance, dead-code elimination, strict-
ness analysis [17] or termination checking [1,2] are known procedures for func-
tional programs, perhaps even generic functional programs. We hope to exploit this
body of knowledge in the future. We assume that there is enduring value in study-
ing properties right at the level of strategies because domain-specific languages are
generally meant to provide domain-specific checks and optimizations, while feed-
back should relate to domain concepts, too.

7 Concluding remarks

The ultimate motivation for the presented work is to provide input for the next gen-
eration of strategic programming. Here we assume that domain-specific support
(as in the case of ASF+SDF and Stratego) is mandatory. However, we also feel
constrained by the relatively small market for strategic programming languages.
Hence, we hope to operate on the grounds of a general purpose programming-
language framework — one that must be sufficiently extensible to provide desig-
nated support for the traversal domain.

We seek a form of traversal programming such that programs are subject to
well-defined properties that support a discipline of traversal programming. Some
properties may be implicitly assumed (e.g., termination); others may need to be
explicitly stated by the programmer (e.g., expectations regarding the success/fail-
ure behavior). The validity of desirable properties and the absence of undesirable
properties have to be checked statically. A facility for explicitly stating properties
may be viewed as a means to adopt “design by contract” to traversal programming.
Here, we are inspired, for example, by functional programming contracts [4,5]. The
provision of strategy-biased and statically checked contracts would require a form
of dependent types, an extensible type system, or, in fact, an extensible language
framework that admits pluggable static analysis.

A related challenge for the next generation of strategic programming is perfor-
mance. (In fact, disappointing performance may count as another kind of program-
ming error.) We hope to eventually gather enough analytical power and strategy
properties so that the declarative style of strategic programming can be mapped
to highly optimized code. Here, we are inspired by previous work on fusion-like
techniques for traversal strategies [6], and calculational techniques for the transfor-
mation of traversal strategies [3].
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Lämmel and Thompson and Kaiser

Acknowledgments. Simon Thompson has received support by the Vrije Universiteit, Am-
sterdam for a related research visit in 2004. The authors received helpful feedback from
the LDTA reviewers.

References

[1] Andreas Abel. Termination checking with types. RAIRO – Theoretical Informatics
and Applications, 38(4):277–319, 2004. Special Issue: Fixed Points in Computer
Science (FICS’03).

[2] Andreas Abel. Type-based termination of generic programs. Science of Computer
Programming, 2007. MPC’06 special issue. Submitted.

[3] Alcino Cunha and Joost Visser. Transformation of structure-shy programs: applied
to XPath queries and strategic functions. In PEPM’07: Proceedings of the 2007
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, pages 11–20. ACM Press, 2007.

[4] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In ICFP’02: Proceedings of the 7th ACM SIGPLAN international conference on
Functional programming, pages 48–59. ACM Press, 2002.

[5] Ralf Hinze, Johan Jeuring, and Andres Löh. Typed Contracts for Functional
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[7] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Haskell’04: Proceedings of the ACM SIGPLAN workshop on Haskell,
pages 96–107. ACM Press, 2004.
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