
Group Work Support for the BlueJ IDE
Kasper Fisker

fisker@fiskers.org

Michael Kölling

Computing Laboratory,
University of Kent

mik@kent.ac.uk

Davin McCall
School of Engineering and IT,

Deakin University
davmac@deakin.edu.au

Bruce Quig

School of Engineering and IT,
Deakin University

bquig@deakin.edu.au

ABSTRACT
Learning to work in teams is essential for every software
professional. Developing software as a team project is the
standard practice in industry, and should be practiced in university
courses. Starting effective group work practices early can lead to
better acceptance of group work as a standard development mode.

Nonetheless, group work is often not included in introductory
programming courses. The reason is often the necessary overhead
associated with developing software in groups. We present a
design and implementation of group work support tools integrated
into the educational BlueJ IDE, which remove much of the tool
overhead and make it easier to include group work in introductory
courses.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management - Programming
teams.
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education

General Terms
Design, Human factors.

Keywords
Computing education, group work, support tools, BlueJ.

1. INTRODUCTION
For a well-educated computer science graduate, the ability to
work in groups is an essential skill. Most educators and
professionals agree that group work is a topic that should be
explicitly taught and practiced in any computer science or
software engineering undergraduate degree [7, 8, 9]. The benefits
of getting students to work in groups early in the course –

preferably in their first year – have been pointed out repeatedly in
the literature [9, 3].

One of the most important aspects of starting group work early is
to get students to embrace this way of working as the standard
case and give them a chance to practice it repeatedly. Adding
group work late is likely to be met with resentment in some
students.

Despite this general agreement, group work is very commonly not
handled well in contemporary introductory courses. The actual
situations in classrooms show that many courses do not include
any group work, and that a considerable number of those that do
offer little organised support for this activity.

We speculate that this discrepancy – widespread agreement of the
value of including group work contrasted with relatively limited
inclusion of organised group work in first year courses – is a
result of the considerable overhead that more explicit teaching of
group work requires.

The problems that lead to this overhead are varied. Firstly,
working in groups is a complex task that takes time to master.
This is a characteristic that we cannot remove completely – some
of the complexity is intrinsic to the problem. There are, however,
a number of complexities stemming from secondary factors that
we may well be able to reduce.

One of the most prominent problems is the lack of dedicated tool
support for group work of beginning student programming teams.
Students are often reduced to using email and chat sessions as
their main support tools – technologies which do not offer
adequate support for many of the problems at hand.

In the computer science literature, few discussions of group work
support tools are found, and those that are available typically
concentrate on code sharing tools for professionals as opposed to
beginning programmers. One exception is the work of Čubranić
and Storey [4] who discuss group work features implemented as
part of the Gild environment.

Literature research does show, however, that a much larger body
of research is available concerning collaborative writing tools (for
example [2, 6, 11]). The joint writing of a text bears many
similarities to the joint development of software, and many of the
problem sets are the same.

We present a dedicated code sharing support implementation,
with an interface design focused on simplicity and ease-of-use for
beginners rather than extensive functionality. We found in our
own class tests that group work can be more easily incorporated
into a current introductory course with this tool.

The BlueJ IDE [1] forms the basis of the implementation. This
offers students using BlueJ a simple way of working on projects
in a co-operative fashion. In this paper, we present the background
leading to various functionality requirements, the reasoning for
choices made, followed by the description of a carefully
considered design and implementation of such a system.

2. ELEMENTS OF GROUP WORK
Aspects of tasks of group work that lend themselves to support via
software tools can be divided into three broad areas:

• sharing of artefacts
• communication
• awareness

In the interest of keeping the system simple and easy to use, we
attempt to exclude all non-essential functionality, and concentrate
on the tools needed for the core tasks. This allows us to design a
simpler system than would otherwise be possible.

We concentrate mainly on the sharing of artefacts in the
development process, and exclude much of the two other areas.

We consider sharing of the artefacts under construction – in the
case of software development: source code, design documents,
diagrams, and other project files – the most fundamental source of
problems of the three areas named above, and thus the one that
can profit most directly from additional tool support.

For a team of developers to effectively collaborate on the
development of software applications, there is an obvious and
central need to be able to communicate about aspects of the
system under development. While communication is an important
aspect of group work, there are many existing communication
tools and mechanisms that students may employ. These include
face-to-face meetings, instant messaging, email, SMS, social
networking websites and video conferencing. Once suitable
sharing mechanisms exist, it may be useful to further analyse the
ways in which the sharing of artefacts and communication
mechanisms may interact and be integrated.

Awareness refers to the need for the dissemination of project and
process state to other team members. The availability of this
information in a timely manner and relevant form allows team
members to co-ordinate their activities. We consider awareness in
this paper in the context of the design and development of a tool
that addresses the primary aspect of supporting the sharing of
software application artefacts.

3. DESIGN CONSIDERATIONS
In this section, we describe a design for a new software tool to
support group work for beginners.

For all design considerations, it is important to keep in mind that
simplicity of the interface is one of the most important goals. It is,
in fact, a hurdle requirement: An informal survey of instructors
suggests that added complexity of the tool is the most common
reason why existing group work tools are not used in introductory

courses. If the interface is not simple enough, it will not matter
how useful the provided functionality is – the tool will not be
widely used in the classroom. Therefore, we will aim at a simple,
minimal design that nonetheless provides the necessary
functionality to solve the main problems at hand. Whether we
achieve the right balance between simplicity and functionality will
determine the success of our system.

The first fundamental decision to make is the characteristic of the
assumed work situation we are aiming to support: Are group
members on site together regularly and are able to meet face-to-
face? Then independent concurrent work is only used some of the
time, while group meetings may be used for certain tasks. Or are
group members physically separated (most of the time), as they
are in typical distance education courses? In this case, all
communication should be electronically supported.

We initially aim for the first target group: facilitating group work
for on-site groups. Firstly, this is the more common scenario, and
the tools might therefore fit better for a larger user base. Secondly,
the tools needed in this scenario are likely to be a subset of tools
needed by entirely remote groups. Tools developed for the first
scenario can then be evaluated in the context of the second, and
additional tool requirements can be analysed.

Assuming co-located groups leads to assumptions about tool
requirements. We started the design of a group support tool with a
small set of functions that can then be evaluated and extended if
required. Not all activities profit equally from tool support.

For our design, we assume that groups meet for initial analysis
and design tasks in person, using traditional tools (pen and paper,
whiteboards) to support design discussions. Thus, we do not
include, for example, shared electronic whiteboard functionality
into an initial student group support tool.

As mentioned above, our tool provides IDE-integrated support for
code sharing. We first describe the functionality of this support in
more detail, before discussing interface issues and other
considerations.

3.1 Support for code sharing
One of the fundamental tasks that should be supported by any
group programming tool is the support of concurrent work on
shared source code. This is commonly seen in widely used
environments aimed at professional programmers. These,
however, offer much more functionality than needed for a
beginning learner, and with it an increase in complexity of use.

Two competing models are used in existing tools to support this: a
locking model and a merging model.

The locking model assumes that the system is aware (either
implicitly or through explicit user action) that a team member is
currently editing a given unit of source code, and this unit is then
‘locked’ for other group members, thus preventing concurrent
modification.

The merging model allows concurrent modification of units, and
later attempts to merge changes in cases where the same unit was
simultaneously edited by two team members. Fully automatic
merging is not always possible, and manual resolution of conflicts
is needed at times.

For our design, we select the merging model as the basis of source
management.

The locking model has an implicit requirement of continuous
connectivity of all group members. Editing off-line copies cannot
be allowed without breaking the model.

For student use, it is impractical to assume always-on connectivity
for home use. To make the tool useful, it is important to support
students who transfer files to their home system using removable
media or dial-up connections that are not continuously available.

The most widely known source sharing systems using the merging
model are CVS [5] and Subversion [10]. Our design uses the same
model (and our implementation is based on these systems). As in
these systems, our tool has a central repository and local copies of
a project for each user. It then allows the update of local copies,
and the posting back of local changes into the repository.

CVS and Subversion are, however, more complex than necessary
or desirable for introductory students. Our tool design supports a
subset of their functionality, concentrating on check-in/check-out
of new and modified files.

CVS and similar systems allow for fine-grained resource-level
control. This flexibility potentially adds complexity for beginning
students. Handling operations at a project-level provides a clean
and simple conceptual model. That is, a commit, for instance,
commits all modified files rather than requiring a subset of files to
be selected.

The code management system should be integrated into the
students’ work environment. Setup details for the client/server
connectivity should be provided to students in a single file, so that
students are not required to be able to deal with many of the
technical details.

Many programming tools provide graphical representations of
source code and system designs. These represent a valuable
artefact that also needs to be shared amongst group members.

3.2 Generating awareness
Awareness of other group member’s activities can be important in
group projects. A tool offering support for code sharing must
provide the user with a certain minimum of awareness
information. This minimum set, we believe, should include:

• Changes made to classes in the repository.
• Additions and deletions of classes in the repository.
• The time and date of each change.
• The name of the group member who made the change.
• The presence of source code in the repository which can not

be automatically merged with the local version (a conflict).
• A revision number for each file in the repository.

Awareness information can be divided into two categories:
Implicitly generated information (information that can be
generated as a side effect of a developer's common actions), and
explicit awareness information (information added solely for the
purpose of informing team members through additional actions).

Implicit awareness information includes data about which files
have been changed, when they were changed, and by which team
member. The advantage of implicit information is that no
additional user overhead is necessary to create this information –
it is always available.

Explicit awareness information might include explicit comments
left by a developer detailing the purpose and status of changes
made. The advantage of explicit information is that it can provide
a much greater level of detail and context, but this comes at the
cost of required additional developer effort.

There are many ways to make this awareness information
available to the user but they all fit in one of two categories. The
information can either be pushed to the IDE and thus be
immediately available, or the user/IDE can initiate a request and
thus pull the information.

The obvious advantage to pushing awareness information to the
IDE is that it would allow us to extend the class diagram in BlueJ
to include information about the degree to which each local class
is identical with its counterpart in the repository. Each class could
be shown with an additional indicator signifying its state: whether
it was added or removed locally or in the repository, whether it
was changed locally or in the repository, whether there are any
conflicts, and so on. Group members would have immediate
access to up-to-date awareness information without explicit
intervention.

The problem with pushing awareness information is that it
requires the student to be online while working. This would
present a problem for students who use a dial-up connection or
moveable media to move data between home and school. It would
also require teaching institutions to install, setup and maintain a
purpose-build server to handle this functionality.

Pulling the awareness information from the server can be done in
two ways. Either the IDE periodically polls the information or the
user actively initiates a request for it.

Automatic polling would result in the presence of awareness data
which would only be up-to-date after each poll. The displayed
data may be out of date at any time (and even for long times, if a
connection to the server cannot be made). Displaying out-of-date
awareness information could very well be worse than no
information at all, since it may establish a false sense of security
in users and can cause the tool to behave in an unpredictable
manner.

By having the user initiate a request for the awareness information
and displaying a result, the fact that the information will become
obsolete is made more obvious to the user. It is also easier to
make the user aware if a connection to the repository cannot be
established.

In the BlueJ team tools, awareness information is available
through a ‘status’ command which displays a teamwork status
dialog with a list of the resources in the project. A resource can be
any type of file associated with the project.

The presence of conflicts, and thus the need to perform manual
merges, is important awareness information. BlueJ notifies the
user of conflicts, if any, upon performing an update operation.
The user is shown a list of conflicting classes and offered a
shortcut to opening them in the BlueJ editor to merge manually.

One element of explicit awareness information is supported in our
tools: When committing changes to the repository the student is
prompted for a comment describing the changes. Group members
will later be able to view these comments by opening the project
history.

The project history shows the time and date for each file change,
the name of the student making the change, a version number for
the file and the commit comment supplied by the student. This
allows group members to keep track of each others progress.

3.3 Simplicity
As mentioned before, the underlying model and the
implementation of our tool is based on CVS and Subversion, the
most widely used source sharing tools. As one of the main goals is
practicality – removing avoidable potential problems to adoption
– this is an important factor. Many teaching institutions already
have a CVS or Subversion server running, reducing the amount of
system administration needed to start using the group work
features of BlueJ.

Both CVS and Subversion offer more functionality than necessary
for introductory projects, and we need a system that exposes only
a selected subset of their functionality.

The process of adding and removing classes from the repository
has been simplified. Adding or removing a class in the BlueJ
project is reflected in the repository at the next commit operation.
The same is true for support files, such as data files or images.
Any file present in the project folder is automatically placed under
control of the repository.

In addition, several large sections of existing CVS/Subversion
functionality are not present in the BlueJ team support tool. This
functionality includes creating code branches, tagging, version
roll back (restoration of previous versions) and single file
functions.

The BlueJ team support tools therefore present a limited subset of
the professional version control systems, allowing us to
significantly simplify the interface. This trade-off is in keeping
with the spirit of the original BlueJ design, which aims to offer the
most commonly needed tools, while keeping the complexity
hurdle to entry as low as possible.

3.4 Interface design
A crucial element contributing to acceptance or rejection of this
tool by teachers and students is the design of the user interface.

It is essential that the user interface is easy enough to understand
and use that students can learn to competently employ it in their
work after little introduction. Introductory programming courses
often have little time to explicitly deal with group support tools,
so a high level of technical sophistication in the user group cannot
be assumed.

It is equally important that students have a positive perception of
the benefit/overhead ratio of the tools: If the perceived immediate
benefit of using the tools is not greater than the interaction
overhead of its use, then students are reluctant to use it, and no
benefit may be gained.

An additional constraint is catering for users who do not wish to
make use of the team work tools: When group work is not
intended, BlueJ’s ability to support group work should ideally not
add to the complexity of the interface.

In the current design, the group work tools are initially hidden,
and can be enabled by selecting a checkbox in the preferences.
They can also be pre-enabled globally by a teacher/administrator,

should the teacher decide to use them from the beginning. When
the tools are disabled, no additional interface controls are visible.

When team work tools are enabled, BlueJ shows one additional
sub-menu, titled Team, in its Tools menu. This menu contains
only six functions:

• Checkout Project – to check a project out from a repository

• Share this project – to place the current project into the
repository

• Update From Repository – to update the local copy

• Commit To Repository – to commit changes

• Status – to show an up-to-date status summary of all files

• Project History – to show a record of all changes

The function names (e.g. Update From Repository) are carefully
chosen to be clearer than in standard CVS, but to include standard
terminology (“update”, “commit”), so that students become
familiar with these widely used terms.

Three additional buttons are placed into the tool bar. These
buttons (Update, Commit, Status) provide shortcuts to the three
most used functions from the team menu.

An interesting BlueJ-specific issue is the handling of the class
diagram. Both update and commit functions include a checkbox
that lets individual users include or exclude their diagram layout
from the synchronisation operation. Thus, individual users can
decide whether the layout should be shared between team
members, or whether they like to retain an individual layout.
BlueJ handles this by correctly synchronising the necessary BlueJ-
specific data files.

4. MANAGING THE REPOSITORY
One of the technically most challenging aspects of using a
repository based system is the setup of the server. We support and
have described a simple setup scenario that serves most use cases,
using standard CVS server software. This is detailed in the
accompanying documentation of our system (available from the
Documentation section of the BlueJ web site [1]). Administrators
should find it straight forward to set up this server.
The user interface for students includes a group name, which is
used as a subdirectory in the repository location on the server.
Access control is handled by the operating system’s access control
mechanisms (such as Unix or Windows file access permissions).
Server information (server name, path and access protocol) can be
handed to students implicitly as part of a BlueJ project that is
handed out, as a file that they include into their own project, or as
three pieces of information that they type in themselves.
Then, all they need to know in addition to their own account name
and password is their group name. They will be prompted for this
information on first use of the team support tools – that is all
configuration required from students.
For the future, we are planning to provide a central public server
for BlueJ users around the world. This would remove the need to
have a server to make use of the team work tools for those who do
not want to setup their own repository. This, however, is work in
progress, and not yet available.

5. EVALUATION / EXPERIENCE
The group work functionality was first released with BlueJ
version 2.2.0 in June 2007. Since then, several teachers have used
the system, and we have received exclusively positive feedback.
We have used the tools ourselves for one semester in Autumn
2007 in our own class with 160 students to support teams of four
to five students. The teamwork project was the last of three
assignments in the first semester, starting in week 8 of the term,
and lasting four weeks.
At the beginning of the team project, students received
approximately 30 minutes of introduction to the team work tools.
The repository model was explained, as well as the necessary
BlueJ setup.
During this assignment, only two minor technical problems were
reported by students, pointing to minor bugs in the
implementation, which have since been fixed. No conceptual or
major technical problems were reported by students.
In the student feedback survey at the end of the module, two
statements were included regarding the BlueJ team work tools:
1. The team work functionality in BlueJ was useful.
2. The team work functionality in BlueJ was easy to understand.
Students were asked to score these statements on a five-point
scale, from “strongly disagree” to “strongly agree”. 44 students
participated in the survey. Figure 1 summarises the responses to
those two statements.

Figure 1: Summary of student feedback

The data shows that 86.3% of the students surveyed agreed or
strongly agreed to the statement that the tools were useful, and
77.3% found them easy to use (agree or strongly agree).
This shows that we have largely achieved the goal of making
group work functionality easily accessible to most students.

6. CONCLUSION AND FUTURE WORK
The group work support in BlueJ is available now and has been
since June 2007. It provides easily learnable and accessible tools
that effectively help student groups manage their team work
projects. After initial analysis, we decided to concentrate on
source code sharing functionality and low level awareness
information, excluding high level awareness and explicit

communication facilities. This has served well in keeping the user
interface small and made it useable by almost all students after
minimal introduction.
The current implementation is based on CVS, and exclusively
supports CVS repositories. An implementation supporting
Subversion repositories is currently in development, and will be
included with the next release of BlueJ. The user interface will not
be affected.
The largest hurdle we currently see is the installation and setup of
the server software. While universities generally have technical
support staff who are familiar with repository servers and can
routinely support these systems, this is not always the case for
smaller institutions, such as secondary schools. To alleviate this
problem, we are currently investigating provision of a central
repository server, publicly available to all BlueJ users, and
integrated into BlueJ. This should remove the need to set up a
custom server, and should make the creation of new shared
projects almost as easy as creating an individual, local project.
We believe that group work is an essential skill that needs to be
practiced by all future software professionals, and we believe that
these tools make this goal easier than it previously was.

7. REFERENCES

[1] BlueJ. BlueJ - The Interactive Java Environment.

http://www.bluej.org, accessed Jan 2008.
[2] Carratto, T. Studies of Computer Supported Collaborative

Writing. Implications for System design. in Blay-Fornarino,
M. ed. Cooperative systems design : a challenge of the
mobility age, IOS Press, Amsterdam ; Washington, DC,
2002, 139 - 154.

[3] Chase, J.D. and Okie, E.G. Combining cooperative learning
and peer instruction in introductory computer science
Proceedings of the thirty-first SIGCSE technical symposium
on Computer science education, ACM Press, Austin, Texas,
United States, 2000.

[4] Čubranić, D. and Storey, M.A.D. Collaboration support for
novice team programming Proceedings of the 2005
international ACM SIGGROUP conference on Supporting
group work, ACM Press, Sanibel Island, Florida, USA, 2005.

[5] CVS. CVS: Concurrent Versions System.
http://www.nongnu.org/cvs/, accessed January 2008.

[6] Dourish, P. and Bellotti, V., Awareness and Coordination in
Shared Workspaces. in CSCW'92, (Toronto, 1992), 107 -
114.

[7] Ellis, W., Ratcliffe, M.B. and Thomasson, B., Promoting
fairer grading of group based assessment using collaborative
IT Tools. in &th International Computer Assisted Assessment
(CAA) Conference, (Loughborough University, UK, 2003).

[8] Last, M.Z., Daniels, M., Hause, M.L. and Woodroffe, M.R.
Learning from students: continuous improvement in
international collaboration Proceedings of the 7th annual
conference on Innovation and technology in computer
science education, ACM Press, Aarhus, Denmark, 2002.

[9] LeJeune, N. Critical components for successful collaborative
learning in CS1. J. Comput. Small Coll., 19 (1). 275-285.

[10] Subversion. Subversion. http://subversion.tigris.org/,
accessed January 2008.

[11] Urnes, T. and Nejabi, R. Tools for Implementing Groupware:
Survey and Evaluation York University, 1994.

