
A Study of Java Object Demographics

Richard Jones Chris Ryder
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

{R.E.Jones,C.Ryder}@kent.ac.uk

Abstract
Researchers have long strived to exploit program behaviour in order
to improve garbage collection efficiency. For example, by using
a simple heuristic, generational GC manages short-lived objects
well, although longer-lived objects will still be promoted to an
older generation and may be processed repeatedly thereafter. In this
paper, we provide a detailed study of Java object lifetimes which
reveals a richer landscape than the generational view offers.
Allocation site has been claimed to be a good predictor for

object lifetime, but we show that object lifetime can be categorised
more precisely than ‘short-lived/long-lived/immortal’. We show
that (i) sites allocate objects with lifetimes in only a small number
of narrow ranges, and (ii) sites cluster strongly with respect to the
lifetime distributions of the objects they allocate. Furthermore, (iii)
these clusterings are robust against the size of the input given to
the program and (iv) are likely to allocate objects that are live only
in particular phases of the program’s execution. Finally, we show
that, in contrast to previous studies, (v) allocation site alone is not
always sufficient as a predictor of object lifetime distribution but
one further level of stack context suffices.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
C.4 [Performance of Systems]: Measurement techniques

General Terms Measurement, Performance, Languages.

Keywords Memory management, Garbage collection, Java.

1. Introduction
Object-oriented languages such as Java and C! supported by man-
aged run-times are being deployed more and more widely in com-
mercially important applications. All these run-time systems pro-
vide garbage collection (GC) [27]. GC overhead can be measured
by overall execution time, pause-time, memory footprint and so on;
the importance of each factor varies according to the environment
and application concerned. Many solutions have been offered to
address an ever-changing variety of requirements, but finding sce-
narios that defeat general strategies for GC is straightforward. No
single collector/configuration can provide the best results for all
programs [14, 9, 16, 40, 39].
Nevertheless, certain commonly made observations concerning

the memory behaviour of objects (object demographics) widely
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hold. Ungar’s dictum that ‘most objects die young’ [45], and its
dual, that some objects may live for a very long time, is true for a
wide range of applications, although not for all.
The observation that different objects may exhibit different be-

haviours has led GC researchers and application programmers to at-
tempt to exploit these properties to improve performance. Region-
based memory managers segregate objects in order to apply dif-
ferent management policies to different regions. Examples include
segregation by age (generational GC [29, 45], older-first GC [43]),
by size (large-object areas [50]) or by mortality [13, 9]. Phase be-
haviour has been addressed through ‘hot swapping’ between col-
lectors [36, 32, 40], by adaptively varying tenuring thresholds in
generational collectors [47, 3] and even explicit GC requests.
We believe that such ‘one size fits all’ collectors, that treat ob-

jects uniformly without attempting to match the behaviour of the
user program (the mutator), miss an opportunity to improve mem-
ory management performance. We expect significant performance
improvements will be achieved if behaviour patterns can be bet-
ter captured and exploited. The prerequisites for success are that
(a) characteristic behaviour can be recognised, and (b) predictors
of this behaviour can be identified, and (c) such predictors of be-
haviour can be exploited efficiently.
In this paper, we provide a detailed study of the memory be-

haviour of a wide range of realistic Java benchmarks, drawn from
the SPEC jvm98 [41] and DaCapo [5] benchmark suites. In particu-
lar, we focus on the distribution of lifetimes of objects allocated by
a site (a point in the source code such as x=new...). Like earlier
studies, we find an association between allocation site and both ob-
ject lifetime distribution and phase behaviour. However, we make
the following novel contributions.

• We identify a richer demographic landscape than the ‘short-
lived’, ‘long-lived’ or ‘immortal’ classification of earlier studies
such as [13, 9, 8].

• We refine this classification by considering separately the be-
haviour of objects allocated by the JIT compiler, the run-time
system, Java library code as well as those allocated directly by
the application program.

• Most importantly for practical GC implementation, we find that
the sites of a single program run exhibit only a few distinct
object-lifetime distributions, i.e. they cluster strongly.

• These clusterings are stable across different program inputs,
making exploitation feasible.

• A very small number of lifetime distribution patterns dominate;
these cannot all be classified by simple characterisations such
as ‘short-lived’, ‘immortal’ and so on.

• Adding one further level of stack context significantly improves
over allocation site alone as a predictor of object lifetime distri-
bution for Java library classes.

Note that this paper focuses only on demographics; we do not pro-
vide here results of any implementation exploiting our observa-
tions.



Structure of this paper Section 2 reviews related work and dis-
cusses the background to this research. Section 3 presents a case
study of the object lifetime behaviour of a range of Java programs
drawn from the SPEC jvm98 and DaCapo benchmark suites. Sec-
tion 4 explains our clustering methodology in detail, and Section 5
shows that such clustering is robust against changes in the size of
program inputs. We investigate calling context depth in Section 6
and conclude in Section 7.

2. Background and related work
The requirements made of the GC by applications running in differ-
ent environments also vary in the priorities they assign to different
performance metrics but, even within a single domain of interest,
the memory behaviour of applications may differ substantially. For
example, studies of client-side, desktop applications [16, 40, 39]
demonstrate significant differences in performance depending on
which collector was used. Clearly, no ‘one size fits all’ solution is
possible even within a single environment.

2.1 Adapting GC to mutator behaviour
In order to meet the challenges imposed by different applications,
environments and user requirements, many different GC architec-
tures and strategies have been adopted.
The simplest forms of regional organisation distinguish objects

by their age or by their mortality. Where objects are predominantly
managed by moving collectors, large objects are commonly allo-
cated into a separate, stationary, large object area [50]. If it is known
that an object is certain (or at least, highly likely) to live for the
duration of the program, then it is better to avoid processing it alto-
gether (although the collector must be able to identify its children);
such objects may be kept in an immortal area [7].
The most common form of regional organisation is generational

GC [29, 45]. Observing that most objects die young [45, 52, 21,
37, 4, 15], generational GC segregates objects by age into different
regions, ‘generations’, in the heap. Different generations are col-
lected at different frequencies (with younger ones collected more
frequently than older ones), and may be managed by different col-
lectors. Thus the principle underlying generational collection is to
concentrate effort on reclaiming those objects most likely to be
garbage. An important issue is how to decide when an object should
be ‘promoted’ from a younger to an older generation. Too early
risks objects not only dying soon after promotion (thereby caus-
ing too frequent collections of the older generation) but also en-
courages nepotistic promotion of the referents of tenured (i.e. pro-
moted) garbage; too late demands either larger young generations
(and consequently longer pause times for stop-the-world collectors)
or more frequent young generation collections.
Solutions to the promotion problem have included multiple gen-

erations, variable-sized nursery generations [2] and different pro-
motion thresholds (copy counts, allocation thresholds, etc) [51].
Recent variations on generational collection include older-first col-
lection [43, 42, 19] and the Beltway framework [9].
It is also common for applications to exhibit phasic behaviour [49,

25]. Examination of the volume of the data live at any time re-
veals features such as ramps, plateaux, spikes and repetition to
be common. The ability for GCs to adapt to changing mutator
behaviour has been shown to offer performance improvements.
One approach is to allow different collectors to be ‘hot-swapped’
at runtime [36, 32, 40]. Some generational GCs allow promotion
thresholds to be varied dynamically in order to limit young gener-
ation pause-times [47, 3]. Programmers are also known to attempt
to force a GC explicitly although for Java this only “suggests that
the Java Virtual Machine expend effort toward recycling discarded
objects” [18].

2.2 Parameters for adaptation
Both region-based organisation and collector adaptation to chang-
ing mutator behaviour require the existence of a metric to guide
behaviour. In some cases, the metric and the behaviour is simple.
For example, if the size of an object exceeds some (usually pre-
defined) threshold, then it is allocated in a large object area. Note
that this heuristic often encompasses three notions: (i) it is expen-
sive to move large objects, (ii) large objects are likely to live for a
long time (they take a long time to construct) and so some collec-
tors allocate large objects directly into an old generation [48], and
(iii) it is worth paying any additional costs of free-list allocation [6].
For other cases, the identification of suitable parameters and

metrics is harder or more limited. For example, selection of im-
mortal objects is often determined by the virtual machine imple-
menter [7] and hence restricted to VM objects rather than applica-
tion objects, although heuristics derived from analysis of program
traces are also possible [10]. Selection is often broadly based, using
the object’s ‘kind’ (e.g. some prefix of its fully qualified Java class
name) rather than by individual instance.

2.3 Demographic studies
Most approaches to tailoring the GC to the behaviour of the mutator
are based on heuristics. Furthermore, these heuristics are usually
generic, by which we mean that the same heuristic is applied to
all objects, regardless of their class or the point in the program at
which they were allocated. For example, generational GCs seek
to exploit the weak generational hypothesis that most objects die
young (in order both to reduce expected pause-times and to reduce
the overall amount of collection work done) by first allocating all
objects in a nursery. Similarly, adaptive tenuring techniques and
collector hot-swapping address only ‘average’ object behaviour.
One exception to this generic approach creates a collector tailored
to the program being compiled [44]. Nevertheless, the immediate
corollaries of the generic adaptive strategies (for example, in the
case of the generational hypothesis, that some objects do not die
young) have not been explored in any depth.
One of the most thorough studies of memory behaviour for Java

programs [15] is concerned with reference densities, proportions
of array objects and so on, but does not match our intuition as pro-
grammers. Programs are designed with phases and behaviours that
model problem domains. The big claim for object-orientation is
that it helps to cross the chasm between design and implementa-
tion. For example, compilation requires syntax and semantic anal-
ysis, code generation and so on. The object-oriented compiler de-
signer thinks in terms of classes and relationships between them
that model ‘real world’ concepts; such as symbol tables, variables,
types, intermediate representations and so on; of execution as a se-
quence of phases in which some kinds of activity dominate others;
and not of the relative volume of array objects in the heap, for ex-
ample.
In contrast, the focus of the DaCapo group is to demonstrate

the broad range of the programs in their benchmark suite [5]. Pro-
grams are characterised by allocation volume and memory foot-
print, 4 MB nursery survival rate, heap composition (by object
size) over time and pointer distance, and other metrics. Such heap-
related metrics are important to designers of generational collec-
tors.
Generational and other hypotheses and implementations, such

as adaptive tenuring or hot-swapping, capture only the gross be-
haviour of programs. Program behaviour is not random. Intuitively,
we believe that programs exhibit distinctive behaviour at a much
finer grain and that the grain of this behaviour is related to the de-
sign of the program as realised (for object-oriented programs) by
the relationships of classes and methods.



Given such predictions and an implementation that can exploit
them, we expect significant performance gains to accrue. For ex-
ample, the collector could both avoid processing live objects before
their expected time of death (improving both throughput and pause
times) and reclaim objects promptly after their death (fragmenta-
tion might be reduced if objects with similar lifetimes are allocated
together). Shaham et al. [38] suggest a theoretic upper-bound on
space savings of 39% through early reclamation of garbage but of-
fers no implementation that might realise these savings.

2.4 Pretenuring
Four studies have taken a step in this direction. Cheng et al. [13]
(CHL) gathered profiles from a generational collector for ML. They
tag objects with the point in the program (site) that allocated them
and inspect the tags of dead objects at each collection. From this
profile, they identify those sites that allocate promoted objects con-
sistently (i.e. where the volume exceeds a threshold of 80%) in their
collector. This advice is then used to allocate objects from those
sites directly into the old generation, thereby reducing GC times
by 12–50%. Because their pre-tenuring threshold is a function of
their particular collector configuration, the wider applicability of
this study is reduced.
Harris [20] pretenures objects in a Java virtual machine us-

ing dynamic feedback from statistics gathered online. Dynamic
pretenuring allows adaption to phase behaviour. The disadvantage
of his sampling technique, based on overflows of local allocation
buffers, is that it tends to oversample moderately large objects.
Nevertheless, it demonstrates the feasibility of dynamic sampling.
Harris also observed that some stack context distinguished tenured
from non-tenured instances of some java.util objects.
Blackburn et al. [10] extend CHL’s approach; they remove im-

plementation dependency from pretenuring advice by normalising
object lifetime as a multiple of the maximum volume of live ob-
jects at any time, livesize. They classify sites as generating predom-
inantly short-lived, long-lived or ‘immortal’ objects, using a thresh-
old heuristic of 20% of maximum live size for short-lived objects,
and as immortal if objects die more than halfway between their
birth and the end of the program (and hence not worth reserving
copy space for). Their two-generation collector prevents any ex-
ploitation of a finer distinction of object age. Because their advice
is implementation-independent, they can also combine advice from
runs of different programs by ignoring application-specific data.
Just using such ‘build-time’ advice improved performance by up to
8% in tight heaps. Combining build-time and application-specific
advice led to reductions in GC time of up to 32%.
Marion et al. [28] leverage data mining of an object-lifetime

knowledge bank and a simple static analysis of the ‘micro-patterns’
[17] of program source code to provide program-specific advice,
achieving improvements in GC time of 6–77% for several SPEC
jvm98 programs. Although the knowledge bank is derived off-line
from data mining program traces, advice generation is quick and
provides ‘true’ prediction (i.e. not derived from a past run of the
same program). Although their technique tends to identify only
sites allocating immortal (rather than other long-lived objects), it
nevertheless supports our intuition as programmers.

3. Object lifetime behaviour
Other than the studies in Section 2.4 above, the weakness of most
generational GC schemes is the ‘one size fits all’ assumption that
underlies segregation by age. Thus, all objects are assumed to be
short-lived until they prove otherwise, and no provision is made for
different allocation sites to allocate objects with different lifetime
characteristics, and no account is taken of phase behaviour. In
this section, we examine in detail the object lifetime behaviour

of programs drawn from the SPEC jvm98 [41] and DaCapo [5]
benchmark suites and reveal a richer landscape of behaviour.

3.1 Data capture
We modified Jikes RVM to generate traces of allocation and death
events, using the MemTrace system [28] and a calling context
tree builder [11]. MemTrace modifies the Jikes RVM compilers
in two ways. As each method is compiled, its allocation sites are
recorded and the allocation routines modified to tag each object
allocated with its site and the position in the calling context tree of
the call containing the allocation and to emit an allocation record.
One advantage of this approach is that it uses the same framework
for data gathering as it does for specialisation of allocation in
performance runs (as for example used by Marion et al. [28]).
The platforms used here were Jikes RVM [1], versions 2.4.6

for the work described in Section 6 and 2.3.3 in all other sections.
Classes loaded at both build-time and run-time were compiled by
the non-optimising baseline compiler.
We profile with a baseline configuration because our focus in

this paper is on on application objects and their behaviour, rather
than compiler behaviour. None of the Jikes RVM compilers per-
form any object allocation optimisation (such as object inlining),
so the number of application objects allocated and the point in the
program at which they die is independent of the choice of compiler.
However, the optimising compiler allocates significantly more data
than the baseline compiler, causing a large increase in the time
taken to generate and analyse allocation traces. In small programs,
the allocation performed by the optimising compiler can dominate,
making it difficult to see the application behaviour. We wished
to minimise the effect of compiler-allocated data on exaggerating
the lifetime of a object (measured in bytes) — as the size of any
other objects allocated, e.g. by the compiler, between its birth and
death contributes to its lifetime. Hence using the baseline compiler
gives two benefits, faster trace generation and clearer application
behaviour. Technical note: one drawback of the compiler approach
is that, without more extensive modifications, 5 sites that exclu-
sively allocate array classes internal to Jikes RVM through create
methods1 hijacked by the compiler cannot be distinguished. Their
presence cannot be discovered by stack walking, either. We also
distinguish between scopes and categories of allocation. We record
separately objects allocated by the compiler (compiler scope) and
by the application (default scope). Similarly, we distinguish sites in
Jikes RVM, Java library and other packages.
The collector configuration was MMTk’s SemiSpace collector.

To capture object death events, we force full collections at 64 KB
intervals; after each collection, we use the GCspy framework [33]
to sweep through dead objects to log death events. Hence object
allocation times are accurate, but death times are only accurate to
this granularity. Although this exaggerates the lifetime of short-
lived objects [8], we do not consider this to be problematic as no
tracing collector could take advantage of greater precision.

3.2 Residency
In the remainder of this section, we discuss the lifetime behaviour
of objects allocated by sites. We observe that many sites demon-
strate similar behaviour (similar lifetime distributions) and we
group these into clusters. We postpone discussion of our clustering
algorithm until Section 4. First, we consider residency, the volume
of data live (i.e. reachable from the program’s roots by following
chains of pointers) at any moment.

1 In classes VM CodeArray, VM WordArray, VM AddressArray,
VM OffsetArray and VM ExtentArray.
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Figure 1. Residency against time for the major clusters for com-
press, speed 100, under Jikes RVM, BaseBase compiler.

Figure 1 shows the residency of objects allocated by different
(clusters of) allocation sites for SPEC jvm98 compress 2, using its
largest input (100), running on Jikes RVM, with the baseline com-
piler used for both building the image and at run-time. Although
compress is a comparatively simple program, its residency profile
is particularly clear. Other benchmarks also show clear and particu-
lar residency profiles. In Figure 1, the x-axis, time, is labelled both
as a percentage of total allocation and in megabytes allocated so
far. The y-axis show the residency in megabytes at any point in the
program’s execution.
Earlier studies have shown such residency graphs either without

any subdivision of the data allocated, or by stratifying the allocation
by object size, pointer count or mutation distance [5]. In contrast,
we show allocation grouped into clusters of sites whose objects
display similar lifetime distributions. Thus, the dark band at the
bottom of Figure 1, labelled ‘Imm’, represents those sites that only
allocate immortal objects (i.e. objects that survive to the end of
the program); the light band labelled ‘1’ a cluster of objects that
are neither short-lived nor very long-lived, and so on. A number of
trends are apparent, and similar observations can be made for other
benchmarks3.

• Some objects, mostly but not exclusively created near the start
of the program, live forever (cluster ‘Imm’). Many of these are
Jikes RVM data.

• There are 5 major phases (of just over 20 MB each). compress
is a modified Lempel-Ziv compression algorithm, which iter-
ates 5 times, compressing and uncompressing 5 tar files.

• Each of the major phases has sub-phases, each of which has
further sub-phases, an so on.

• Data allocated by some ‘long-lived’ allocation sites appears to
live for much longer than others.

A sophisticated collector might treat these groups of sites sepa-
rately, placing objects allocated by different (groups of) sites in dif-
ferent regions and managing these regions with different policies.
Note that this organisation would not necessarily be generational:
regional segregation is not simply by age.

2 compress is not a particularly interesting benchmark for GC research.
Much of its behaviour is due to loops in the SPEC harness. However, its
virtue here is that its comparatively simple behaviour reproduces clearly for
monochrome printing.
3 See www.cs.kent.ac.uk/projects/gc/demographics.

Figure 2. Lives of objects allocated by a single site for javac, input
100, under Jikes RVM, baseline compiler. The site accounts for
nearly 5% of total allocation.

3.3 Object lifetimes
Let us drill down to consider the lifetime characteristics of a single
site. Inspection of objects’ lifetime behaviour shows that most sites
allocate objects with a generational behaviour, i.e. most objects die
young, as is to be expected. These objects are well handled by
traditional generational collectors. However, the behaviour of other
sites is more interesting, exhibiting ‘GC-devils’ [46] that do not
conform to the generational hypothesis.
The 3d plot in Figure 2 shows the lives of objects allocated by

a single site by javac, input 100. The origin is the top, right-hand
corner. The x- and y-axes show the time at which an object died
(TOD) and its age (both given as percentages of the total allocation
of the program). Thus a bar of height z at point (x,y) indicates that
z bytes of data died at time x, having lived for y bytes. Note that
there can be no bars in the bottom right-hand triangle of the grid
(below the diagonal line) since an object’s time of death must be
greater than its age. To make the life spans of objects clearer, we
also plot a ‘shadow’ of each bar on the xy-plane: the shadow shows
the period for which the objects represented by the vertical bar were
alive.
The site in Figure 2 allocates an array of char for Strings. It

is a significant allocation site for javac, accounting for nearly 6%
of total allocation. Again, we can see four distinct phases: javac
is Sun’s JDK 1.02 compiler which, for input 100, compiles the
JavaLex.java scanner four times. 85% of the objects this site allo-
cates are very short lived (the large bars at the back, almost sitting
on the x-axis), but a significant fraction of allocation lives until the
end of each phase. A few objects (bottom, left-hand corner) are
immortal. We examine this behaviour further in Section 6.
Some patterns of behaviour turn out to be remarkably similar,

across benchmarks and across sizes of input. For example, it is
common for sites to allocate objects that may or may not be short
lived but all die together: imagine a loop that allocates objects and
adds them to a collection (such as a list) which dies at the end of
the loop. Figure 3 shows such a cluster of sites for DaCapo’s hsqldb
benchmark (default size). These 4 sites account for nearly 17% of
allocation (each of the large vertical bars accounts for nearly 1%)
but over 94% of space rental (the product of volume and lifetime,
a useful measure of the importance of an object to the memory
management system).
Another common pattern is for sites to allocate data with a

bimodal lifetime pattern — we see this in each of the phases of
javac in Figure 2 and in Figure 4. The latter figure shows a cluster



Figure 3. Lives of objects allocated by a cluster of sites for hsqldb,
default input, under Jikes RVM, BaseBase compiler. These sites
account for approximately 16% of total allocation.

Figure 4. Lives of objects allocated by a cluster of sites for fop,
under Jikes RVM, BaseBase compiler. These sites account for over
19% of total allocation. Short-lived and immortal and immortal
allocations for this cluster are 8.29% and 9.27% respectively.

of 18 sites for DaCapo fop (default size), that account for 19%
of allocation (16% of space rental). These sites are active in the
last third of the program’s execution, and allocate, in nearly equal
proportions, objects that either survive until the end of the program
or are discarded quite soon.
Graphs like these confirm — and explain precisely why —

simple generational strategies miss opportunities for better object
management.

4. Lifetime clusters
All but the most trivial programs have far too many allocation sites
to treat each one separately. For example, the javac benchmark (for
input 100) with the Jikes RVM BaseBaseSemiSpace configuration
uses 1173 allocation sites; it would clearly be impractical to treat
each site specially. In this section, we consider how to characterise
the lifetimes of objects allocated by a site, and how to identify sites
whose objects exhibit similar lifetime patterns. In the next section,
we consider the extent to which lifetime behaviour is independant
of the input to the program.

4.1 Lifetime density functions
We calculate from a program trace the lifetime of each object allo-
cated, and summarise each site as a histogram (N = 2000 buckets)

Figure 5. Kolmogorov-Smirnov Two-sample test.

of lifetimes. Thus, we obtain a lifetime density function, ldfs(t), an
estimate of the volume of data allocated by a site s that have life-
time t. Visually, the ldf is a projection onto the yz-plane of the 3d
diagrams above.

4.2 Cluster analysis
Evidence from prior work [21] suggests that, because computation
tasks are achieved through the collaboration of sets of objects, those
objects have similar memory behaviour: “objects that are allocated
together, die together”. We wish to partition (cluster) the set of
sites of a program by the memory behaviour of the objects they
allocate. We characterise each site by its ldf , and consider two sites
to behave the same if their ldf s are similar. Thus the input to our
cluster analysis is a set of (sites and) ldf s and a confidence level;
the output is a partitioning of the set. A good clustering method will
lead to a partitioning where the intra-partition similarity of ldf s is
high but the inter-partition similarity is low [24].
We compare ldf s statistically, treating them as probability den-

sity functions. We test, with a certain confidence p%, whether two
ldf s are similar, i.e. the chance that the difference between them
is significant is less than p%. We use the Kolmogorov-Smirnov
Two-sample test (KS2) [12]. The advantages of this test are that
it is non-parametric and distribution-free: it does not matter what
the underlying distribution is — this is important since we do not
expect lifetimes to be normally distributed, for example. A further
advantage of KS2 is that it is computationally cheap as the null
hypothesis can often be rejected after comparing only the first few
points of each distribution.
KS2 compares two sample distributions by calculating the

largest gap D between their cumulative distribution curves, in our
case

Es(t) =
Z t

0
ldfs(t)

Formally, KS2 rejects the null hypothesis, that the two samples
come from the same distribution, with confidence p% if the D-
statistic D = max|E1(t)− E2(t)| exceeds a critical value, which
depends on the significance level p required and the size of the
samples (see Figure 5). Our greedy, ‘gravitational’ algorithm (Fig-
ure 6) places each site in the cluster of the most important site in
its neighbourhood. We choose our definition of importance to be
space rental, since objects that are larger or that live longer, put
more pressure on the memory manager. However, we get similar
results if we consider volumes (see Figure 7).
First, we identify and remove all sites allocating only immortal

objects, since these would be allocated in a region not subject to
garbage collection. These immortal sites are assigned to a single
cluster,C0. Then, we consider each ‘mortal’ site s in order of space
rental (i.e. the sites most important to the memory manager were



add immortal sites to cluster 0;
sort mortal sites by space rental;
foreach mortal site {

foreach cluster in clusterList {
if (match(site, cluster)) {

add site to cluster;
next site;

}
}
add site to new cluster;

}

match (site, cluster) {
if mortality(site) != mortality(cluster)
return false;

return KS2test(site, cluster, SIGNIF);
}

Figure 6. The clustering algorithm.

considered first). s is added to the first cluster C for which ldf(s) is
similar to ldf(C) according to KS2 at the 1% significance level. If
no similar cluster is found, s is added to a new cluster C′, and that
cluster is appended to our list of clusters. The ldf of a cluster is set
to be that of the first site added to it.
Clustering reveals that applications exhibit only a few statisti-

cally distinct lifetime behaviours. Figure 7 shows the coverage (as
percentages of the total volume allocated or of space rental used)
by the top 32 allocation sites or clusters. The curves are geomet-
ric means for the DaCapo benchmarks; those for the much smaller
SPEC jvm98 benchmarks are very similar. Aggregating sites into
just a few clusters accounts for almost all allocation. Overall, only
a small number of clusters account for almost all space rental used.
A few more clusters are needed to account for the same fraction of
volume. Unsurprisingly, fewer partitions dominate in Jikes RVM
itself than in the applications (particularly by volume). In the com-
piler, just two sites dominate; these allocate arrays for reference
maps for the collector.
An important property of the clustering algorithm is that it

preserves the common, generational behaviour. For example, one
strongly generational cluster of antlr captures 88% of allocation
(and 10% space rental). Within this cluster, 92% lives for less than
332 KB and almost all the remainder is dead within 12 MB.

5. Input sizes
So far, object lifetime distributions have been revealed to cluster
well, and most distributions turn out to comprise a small number
of distinct behaviours (i.e. two-dimensional polygons in the 3D di-
agrams). It would clearly be unrealistic if, in order to exploit these
behaviour patterns, it was necessary to gather trace data for every
program input size. It would be better if it were possible to use data
gathered from one input to a particular program to inform the allo-
cator for a different input. Unfortunately, the lifetime behaviour of
an allocation site varies from input to input: for example, compare
the behaviour of sites from hsqldb with the default input (Figure 3)
with the behaviour of the same sites using the ‘small’ input (Fig-
ure 8).
However, the key question is not ‘does an allocation site gener-

ate the same lifetime behaviour regardless of input’ — for it clearly
does not — but ‘do allocation sites share the same clusters from one
input to another?’ Our intuition is that they will, because the objects
they allocate collaborate to perform the same task, regardless of the
size of that task.

Figure 8. Lives of objects allocated by the same cluster of sites
for hsqldb as in Figure 3 but using the ‘small’ input. These sites
account for over 15% of total allocation.

We applied our clustering algorithms to each of the SPEC jvm98
and DaCapo benchmarks4, and compared the clusterings derived
from different input sizes provided. It is not unusual for major clus-
ters to contain just 1 site, in which case the answer to our question
is simple, but in general, it is non-trivial to compare different clus-
terings: there is no ‘ideal’ clustering method [30]. Further, all the
indices of similarity of which we are aware have undesirable prop-
erties. They may assume that both clusterings use the same data set,
be sensitive to the size of the data sets or the number of partitions,
may have ranges that are difficult to interpret or make comparision
between the comparison of one pair of clusterings and another dif-
ficult.
Rand Indices [34] measure the similarity between two cluster-

ings. Given two partitions U and V of a set, count (a) the num-
ber of pairs of items placed in the same clusters in U and in V ;
(b) those in the same cluster in U but in different clusters in V ;
(c) those in different clusters in U but in the same cluster in V ;
and (d) those in different clusters in U and in V . The Rand Index,
(a+d)/(a+b+c+d), compares the number of agreements a+d
with the number of disagreements b+ c. Its value is 1 when two
partitions agree completely, but unfortunately its expected value is
not 0 for two random partitions. For this, we require the Adjusted
Rand Index (ARI, details omitted but see [23]).
For the purposes of comparing clusterings of allocation sites,

only the most dominant sites are of interest. We compared the
stability of the top N clusters for each of our benchmarks, for
N = 16, 32 or all clusters. We found that the stability of the most
significant clusters (e.g. the top 16) is better than that of less
significant clusters (e.g. top 32 or all clusters)5. Table 1 compares
stability of the top 16 clusters of 4 DaCapo benchmarks, including
the best and the worst. Each row compares small v. large, small
v. default, and default v. large inputs, for application objects, Jikes
RVM objects (excluding the compiler), library objects (excluding
those used by the compiler), and all compiler objects. If, for every
cluster i of input A, every site of cluster i appears in a single

4 antlr, jython, pmd and ps ran successfully under Jikes RVM 2.3.3 and used
different workloads for their default and large inputs.
5 Computing the ARI requires that the underlying data sets for both inputs
are identical; we therefore add to each clustering where necessary an extra
partition consisting of any sites that were present in the clustering for one
input but not the other.
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Figure 7. Geometric mean of site (thin lines) and cluster (thick lines) coverage by space rental (solid) and volume (dashed) for the DaCapo
benchmark suite, segregating allocation by category. Each figure shows the fraction of that category’s allocation covered (y-axis) by the top
x clusters.

Size antlr jython pmd ps
Comp App Java VM Comp App Java VM Comp App Java VM Comp App Java VM

S-D 0.850 0.472 0.972 0.978 0.717 0.987 0.998 0.961 0.870 0.994 1.000 0.960 0.959 0.973 0.959 0.906
S-L 0.764 0.441 0.927 0.979 0.739 0.740 0.997 0.972 0.717 0.987 0.998 0.961 0.811 0.753 0.957 0.893
D-L 0.999 1.000 0.988 1.000 0.999 1.000 0.987 0.991 0.820 0.980 1.000 0.973 0.572 0.668 0.994 0.916

Table 1. Adjusted Rand indices for cluster comparisons for 4 DaCapo benchmarks (including the best and the worst). Each row compares
small v. large (S-L), small v. default (S-D), and default v. large (D-L) inputs, for application objects, Jikes RVM objects (excluding the
compiler), library objects (excluding those used by the compiler), and all compiler objects.

cluster j of input B, then the clusterings are equivalent and ARI=1;
otherwise 0≤ ARI< 1.
Java library clusters are highly correlated across all input sizes

for all the DaCapo benchmarks, as are Jikes RVM clusters. Com-
piler clusters correlate moderately well for the top 16 clusters, but
deteriorates significantly if more clusters are considered. Applica-
tion clusters also tend to correlate well, except for antlr using the
small input. We conclude that sites that tend to allocate objects with
lifetime distributions that are similar to each other, tend to do so re-
gardless of the size of the input to the program.
The stability of clustering across inputs suggests that a feasible

implementation strategy for collection might be to acquire cluster-
ing data from a single training run. These clusters would indicate
which sites had similar ldf s, and therefore should be allocated un-
der the same policy.

6. Context
Allocation site offers several advantages as a predictor. It encom-
passes both the type of the object allocated and the static type of
the object receiving this reference, reference density, size of scalar
objects (and of arrays if they are always allocated at the same size

at this site) and one level of context in the call graph. Earlier studies
have found that the site provides sufficiently accurate predictions of
the behaviour of Java [10] and ML [13] programs, although C pro-
grams [4, 51] require deeper calling context (since programmers
commonly wrap calls to malloc() in order to catch failure). How-
ever, this style of programming also appears in object-oriented pro-
grams as allocation by factory methods, wrappers and so on. In this
section, we investigate the influence of calling context on object
lifetime distribution.
We observed in Section 3 that it is common for the lifetime

distribution of objects allocated by a single site to exhibit a small
number of distinct patterns: Figure 4 provides a typical example.
Might the use of site as a predictor conflate distinct behaviours that
deeper calling context would separate?
By recording in object headers the point of the allocation in

the calling context tree (as well as site ID), we can identify the
precise call chain to each object allocation. To obtain calling con-
text, we incorporated Bond and McKinley’s patch to Jikes RVM,
version 2.4.6, into our MemTrace system. However, we use pre-
cise rather than probabilistic [11] calling contexts. Obtaining call-
ing context tree information required the use of a modification of
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Figure 9. Lifetime distribution variance Dacapo benchmarks, default input. The x-axis is calling context depth and the y-axis is variance as
a percentage of the variance for k =! (log scale).

the Jikes RVM BaseAdaptive compiler; however, this configura-
tion performs no code optimisation. Thus, classes loaded at both
build-time and run-time continue to be compiled as if by the non-
optimising baseline compiler.
By tracking calling context, each allocation can be mapped

to a sequence 〈s,m0,m1, . . .〉 where s is the allocating bytecode
in a method m0, which was called by m1, and so on. For sim-
plicity, we shall continue to use the term ‘site’ to mean the se-
quence 〈s,m0,m1, . . .〉. Consider two allocations, with sequences
〈s,m0,m1, . . .〉 and 〈t,n0,n1, . . .〉. For a calling context of depth
k, we define both allocations to be made by the same ‘site’ if
and only if s = t and mi = ni for all i = 0 . . .k. We now explore
〈s,m0,m1, . . . ,mk〉 as the lifetime predictor, rather than simply the
method and byte-code offset (i.e. 〈s,m0〉), for different values of k.
We denote the complete call chain by 〈s,m0, . . . ,m!〉.
Our goal is to identify good predictors for object lifetime be-

haviour that can be exploited to guide GC. An ideal predictor would
indicate, for each object allocated, precisely when it would die
(thereby allowing its space to be reclaimed shortly thereafter). Un-
fortunately, ideal prediction is possible only in special cases. How-
ever, a good predictor would provide a narrow estimate of the life-
time range it expects of the object. That is, it would predict that a
fraction p of objects allocated by a site have lifetimes of between
l1 and l2 bytes: the better the predictor, the larger p and the smaller
the interval [l2, l1]. The variance of the object lifetime distribution

of a site is a measure of the range of the lifetimes of the objects it
allocates.
The conclusion of earlier studies was that calling context k = 0

suffices for Java programs but C programs require larger value
for k to avoid conflating different behaviour patterns. The depth
k necessary can be determined by considering the variances of the
site lifetime distributions generated for increasing values of k. We
define the weighted variance of a set of a partitoned distribution to
be the weighted sum of the variances of its partitions.

THEOREM 1 (Weighted Variance). Consider a distribution X, of
size |X | and variance varX . Suppose {X0|X1| . . .Xn} is a partition-
ing of the distribution. Then the weighted variance of the partition
is no larger than the variance of the whole distribution.

varX ≥
n

"
i=0

|Xi|
|X | varXi

The effect of increasing context depth k, is to split some ‘sites’
and their object lifetime distributions into two or more. Categoris-
ing objects by ‘site’ is a partitioning of the set of objects allocated,
and increasing k leads to a finer partitioning. As k increases, the
number of sites also increases monotonically but the weighted vari-
ance of the site lifetime distributions decreases monotonically. The
pertinent question is, after what depth k does this variance tend to
reach a limit?



Figure 9(a) shows the weighted standard deviation of allocation
sites for increasing depths of calling context k, shown as a percent-
age of the weighted standard deviation for k = ! (i.e. using the
complete call chain). For all of the DaCapo benchmarks analysed
here6, there is a significant improvement in variance when the call-
ing context depth k is greater than zero, and further small improve-
ments are also seen at k = 2. However, increasing calling context
depth does not appear to offer any significant further improvements.
The evidence that a calling context of k = 1 offers significant

improvements in variance appears to contradict the conclusions of
earlier studies. To explore this further we study separately sites in
application classes, JikesRVM classes and Java library classes.
Figure 9(b) shows that for sites in application classes there is lit-

tle reduction in variance as k grows, which agrees with earlier stud-
ies. Figure 9(c) shows that sites in Jikes RVM classes, much like
those in application classes, do not benefit from a calling context
of k ≤ 8. Furthermore it appears that even with k = !, Jikes RVM
sites show only a 20% reduction in variance. However, Figure 9(d)
shows that sites in Java library classes show very significant reduc-
tions in variance of between 2.3× for pmd and 5× for luindex are
achieved with only one level of context (k = 1). Increasing beyond
k = 1 appears to offer little further reduction. One explanation for
this improvement is that many Java library classes perform alloca-
tion in response to application requests. With a calling context of
k= 0 only the library behaviour can be seen, but the library may be
controlled in many different ways by the application classes, and
by using a calling context of k≥ 1 the application behaviour can be
seen in addition to the library behaviour. The allocation site in Fig-
ure 2, from the internal GNU classpath java.lang.String con-
structor String([char], int, int, boolean), is a good ex-
ample. The method is invoked both from all String constructors,
but also from String’s string concatenation methods. Treating all
paths as one conflates distinct behaviours.

7. Conclusions
No one size of collector fits all applications. We believe that a
key to improved memory management performance is to match the
collector to the mutator. Through a study of a wide range of realistic
Java benchmarks, we find an association between allocation site
and both object lifetime distribution and phase behaviour. From
the perspective of allocation sites, there is a richer demographic
landscape than the usual generational classification of ‘short-lived’,
or ‘long-lived’ or ‘immortal’. We further refine our classification by
considering separately the behaviour of objects allocated by the JIT
compiler, the run-time system, Java library code as well as those
allocated directly by the application program.
Most importantly for practical GC implementation, we demon-

strate through a statistically rigorous analysis that the sites of pro-
grams exhibit only a few distinct object-lifetime distributions, that
is, they cluster strongly. A very small number of clusters domi-
nate allocation, whether measured by volume of allocation or space
rental (the product of an object’s size and age). Essential to ex-
ploitation, these clusterings are stable across different program in-
puts, thus making the prospect of specialised allocators realistic.
We describe the design of such a collector in [26].
Finally, we investigate the extent to which calling context effects

object lifetime. In common with earlier studies for Java, we find
that simply using allocation site is sufficient for application and
Jikes RVM classes. However, in contrast with previous studies, we

6 Under Jikes RVM 2.4.6, for default input sizes, only antlr, bloat, fop,
luindex and pmd ran successfully. MemTrace stresses the GC system and
other DaCapo programs fell victim to the well-known GC-map bug. We
have not yet had time to port our results to version 2.9 which we understand
has resolved this bug.

find that allocation site and one further level of context significantly
reduces variance in the lifetime distributions of objects allocated by
Java library classes.
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