
Chapter 11

A Certified Refactoring
Engine
Nik Sultana1, Simon Thompson2
Category: Research

Abstract: The paper surveys how software tools such as refactoring systems
can be validated, and introduces a new mechanism, namely thegeneration of a
refactoring engine for a functional programming language from an Isabelle/HOL
theory in which it is verified. This research is a first step in aprogramme to con-
struct certified programming tools from verified theories. We also provide some
empirical evidence of how refactoring can be of significant benefit in reshaping
automatically-generated program code for use in larger systems.

11.1 INTRODUCTION

Refactoring is the process of improving the structure of program code and it has
been argued [9] that refactoring is crucial to enable code reuse by facilitating its
adaptation and comprehension, and therefore lessens the cost of development.

There is a spectrum of interpretations of what constitutes arefactoring, but
in this paper we limit our attention to behaviour-preserving program transforma-
tions. A refactoringengineis a computer implementation of a set of refactorings,
and various methods for checking thecorrectnessof refactoring engines – that is,
that they preserve the behaviour of arbitrary programs – have been studied. These
methods include testing the refactored code [7, Chapter 4],testing the refactoring
engines [15, 4], as well as formally proving properties about their specifications
[3, 6, 8, 11, 22]. In some of the works cited in the last category the specifica-
tions used were themselves executable, and therefore couldalso be interpreted as

1Mathematical Institute, University of Munich, Germany;
nik.sultana@yahoo.com

2Computing Lab, University of Kent, United Kingdom;
s.j.thompson@kent.ac.uk

XI–1

XI–2 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

implementations of the refactoring engines.
In this work we use HOL as a specification language; it is not entirely executable
so initial work on this project consisted in surveying the juncture between exe-
cutable programs and HOL in the literature. Of particular interest is the junc-
ture between Haskell and HOL, since we aspire to eventually extend the Haskell
Refactorer HaRe in this way. The approaches can be classifiedinto two:
• The first possibility of integrating an executable definition of a refactoring and

Isabelle/HOL involved translating the former into a definition embedded in
the latter. This is the approach taken, for example, in the verification of an L4
microkernel [5] and in the system Hets [25].
• The second option was to generate Haskell code from the Isabelle theory in

which the refactoring is verified. This could be done using the Hets system
since it supports the generation of Haskell code from HasCASL specifications
[16], but we instead used a code generation framework that relied on an exe-
cutable subset of HOL.
In previous work [22] a number of correctness theorems aboutrefactorings

were described. This built on previous work [14] to formalise refactorings over
functional programs. It explored using untyped and typedλ -calculi and developed
fully-formal proofs that were checked using Isabelle/HOL [17].

The work described in this paper uses a new code generation framework for
Isabelle and extends previous work to produce Haskell code for one of the refac-
torings studied. Software produced in this manner – that is,generated from a
machine-checked theory proving its correctness – is said tobe certified; other
examples using this approach are described in§11.5.

This paper is a study of the steps involved in the process of generating a refac-
toring engine from its verification in an Isabelle/HOL theory and will briefly sum-
marise the work it builds on. We also argue that refactoring can be profitably ap-
plied to automatically-generated code with reference to particular examples. The
contributions of this paper are:
• An extension of the verification of refactorings to produce verified code;
• A discussion of patterns of refactoring that are applicableto the verified code

itself;
• A discussion of the interaction between the refactoring engine and the type-

checker, and on the integration of this code with a refactoring tool.
Although we restrict our focus to refactorings, these stepsmay be followed to
produce various other kinds of certified software.

The rest of the paper is organised as follows. The next section describes the
approach we use to obtain Haskell programs from an Isabelle theory. Previous
work on the verification of refactorings is summarised in§11.3, and in§11.4 we
describe the extension of that work to obtain a verified refactoring. Related work
to produce certified programmer tools is described in§11.5 and the paper con-
cludes with a discussion.

11.2. ISABELLE XI–3

11.2 ISABELLE

The Isabelle proof assistant is designed to facilitate the embedding of object logics
in which to reason. It provides a metalogic consisting of constructive higher-order
logic [19]; the work we describe is formalised in HOL [17], a classical higher-
order logic embedded in Isabelle.

11.2.1 Program generation for Isabelle

Specifications are generally considered more perspicuous than programs due to
their lack of operational details; these details may be considered a distraction
at a high level of abstraction. Having written and validateda specification, one
might wish to animate it for various reasons: for example, one could “test” the
specification, or else generate the implementation directly from its specification.

Since specifications are often grounded in a logic, the relationship between
logic and programs has been exploited not only for studying the latter using the
former, but also for yielding programs from proofs of their properties.

In this work we use a framework [10] for generating program code from Is-
abelle theories. This framework relies on restricting definitions to an executable
subset and exploits equational theorems to yield defining equations for functions,
which are processed to eventually yield code. It also yieldsdefinitions for alge-
braic types and type classes, and can be instructed to targetdifferent languages; if
the target language does not support type classes natively then a dictionary trans-
lation is used.

11.3 VERIFYING A REFACTORING

In this section we summarise the results on the verification of refactorings which
first appeared in [22]. A refactoring consists of two parts: aprogram transfor-
mationT, and a collection of side-conditions (or pre-conditions) for the transfor-
mation in question to be meaning preserving; in other words,the transformation
is only performed if the side-conditions are satisfied. The preconditions are con-
joined to form the formulaQ.

Note that in general a program transformation will be parametrised by a num-
ber of other arguments, such as an old and new name for an object; where appro-
priate in what follows we will suppress these other arguments by

→
x . The metavari-

ablep ranges over programs.

Definition 11.1.For a particular Q and T , and modulo
→
x, the behaviourof a

refactoring is described by the following functionλ p. if (Q p) then (T p) else p

The symbol≃ will be used to denote a behavioural equivalence over programs.

Definition 11.2.A refactoring iscorrectiff it is behaviour-preserving, that is it
satisfies the following formula∀p. (Q p)−→ (T p)≃ p

XI–4 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

In [22] this formulation was used to describe the verification of a number of refac-
torings in Isabelle/HOL. The principal challenge in carrying out such a verifi-
cation consists of embedding the semantics of the programming language over
which the refactoring is defined.

11.3.1 Program syntax and metalinguistic definitions

The initial investigation of the problem is carried out using a small language:
namely PCF [21] extended with sum and unit types; we call thisPCF+1.

In what follows we use the following notational conventions: M,N,L range
over terms,σ ,τ range over types, andΓ ranges over typing contexts – formalised
as finite maps. The notationΓ ,x:τ abbreviates(Γ|Dom(Γ)−x)[x 7→ τ] – that is,
adding a typing to a context will involve first restricting the context then carry out
the extension. Symbolempty will denote the empty context.

Definition 11.3.The termsof PCF+1 are inductively defined by the following
grammar:

M ::= x | λxτ .M
| M ·N | fix xτ .M
| unity | zero
| succ M | pred M
| ifz L M N | inLτ M
| inRτ M | 〈M⇐ x〉L〈y⇒N〉

As per convention,programsare closed terms, i.e. terms with no free variables.

Definition 11.4.The typesof PCF+1 are inductively defined by the following
grammar:

τ ::= Nat | σ → σ ′
| Unit | σ + σ ′

The notationΓ ⊲M :: τ asserts that termM is typedτ in Γ . Thus⊲M :: τ asserts
thatM has typeτ in the empty context, implying thatM is a closed term.

A multi-sorted equational logic will be used to reason aboutprograms in
PCF+1, in the style of [23, 24]. This will be the vehicle for provingrefactorings
correct for this language. The equivalence between termsM andN – both typed
τ in Γ – will be expressed usingΓ ⊢M ≃ N :: τ. The relation≃ is a behavioural
equivalence over terms, induced by the equational rules forPCF+1. The language
is defined together with the usual metalinguistic definitions:
• FV maps terms to sets containing their free variables.
• BV is analogous but concerns bound variables.

The formulation of some metalinguistic definitions is nonstandard with respect to
the usual mathematical practice. When reasoning about programs in the abstract
it is convenient to identify them up to renaming – however, names are of central
importance in refactoring since the source-code returned to the programmer must
be recognisable, and the default is that names need to be preserved. To this end

11.3. VERIFYING A REFACTORING XI–5

concrete names are used, and substitution is not defined to automatically rename
variables – anäıve definition of substitution is used. As a result, the theory for
this language is defined using a partialβ -rule conditional upon non-capture – this
condition is formulated in the following definition.

Definition 11.5.Captures M N
def
= ∃v∈ FVN. (v∈ BVM)

In order to avoid confusion we will distinguish the languagelevels using type-
faces: terms in the language induced by Definition 11.3 will be shown initalics,
themonospace typeface will be reserved for executable (meta)definitionsand
sans serif will be used for other (meta)definitions.

The predicateCaptures M N was defined to formaliseM is free for all free
variables in N. In effect, Definition 11.5 formalises the Barendregt Variable con-
vention [1,§2.1.13]. This predicate is used here for consistency with earlier work,
but it is too imprecise for practical programming, and an improved, more pre-
cise, version was described in previous work [22,§5.1.2]. We conclude with two
definitions by way of ‘syntactic sugar’.

Definition 11.6.

let xτ := N in M
def
= (λxτ .M) ·N

letrec xτ := N in M
def
= (λxτ .M) · (fix xτ .N)

11.3.2 Metalinguistic results

We now turn to a specific refactoring – “enlarge definition type”. This refactoring
expands the type of a definition into the coproduct of its original type (on the left)
and some other type. Its behaviour is illustrated below using Haskell-like pseudo-
code fragments. Note that the refactoring replaceseveryoccurrence of(f x)
with (either f L x).'

&

$

%

x :: T
x := ...

...(f x)...

⇆

x :: Either T T’
x := Left ...

...(either f L x)...

The symbol⇆ in the above snippet is intended to suggest the bidirectionality of
refactoring: if two programs are indeed equivalent than both transforming one to
the other and the inverse are behaviour-preserving.

We have modified the formulation of correctness of this refactoring as ex-
pressed previously [22] by weakening its assumptions on thetyping context. The
correctness of this refactoring is given by Theorem 11.7; note that all the variables
are implicitly universally quantified. The theorem’s formulation instantiates the
general form from Definition 11.2.

XI–6 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

Theorem 11.7.(Enlarge definition type)

Γ ⊢ let xτ := M inN≃ let xτ+τ ′ := (inLτ+τ ′M) inN[〈x′⇐ x′〉x〈y⇒ L〉/x] :: σ

The above equation holds provided that these side-conditions are satisfied:

1. Well-typing:

(a) Γ ,x:τ ⊲N :: σ
(b) Γ ,x:τ,y:τ ′⊲L :: τ
(c) Γ ⊲M :: τ

2. Non-capture:

(a) ¬CapturesN 〈x′⇐ x′〉x〈y⇒ L〉

(b) ¬CapturesN M

(c) ¬CapturesLM

3. Non-occurrence:

(a) x′ /∈ FVM

(b) y /∈ FVM

(c) x /∈ FVL

Proving this theorem relied on the “substitution lemma” that asserts that substitu-
tion preserves typing:

Lemma 11.8.Substitution lemma

Γ ⊲N :: σ ∧ Γ ⊲x :: τ ∧ ¬Captures N L ∧ Γ ,x:τ ′⊲L :: τ −→ Γ ,x:τ ′⊲N[L/x] :: σ

This concludes the summary of relevant previous results.

11.4 GENERATING THE REFACTORING ENGINE

This section describes how the previous result was extendedin order to generate
correct code implementing the refactoring described in theprevious section. The
formulation of the refactoring’s correctness showed how the refactoring behaved,
but it was not an effective definition – and it relied on other non-effective defi-
nitions. It was necessary to derive a program implementing this behaviour; our
approach consisted of complementing logical definitions – for instance, the predi-
cateCaptures (Definition 11.5) – with their algorithmic refinements and proving
them to be equivalent. The refactoring was then defined effectively using these
algorithmic definitions and proved correct – the proof appealed to Theorem 11.7.
An improved version of the algorithm was subsequently written and proved cor-
rect. The following sections elaborate on each step of the process.

11.4. GENERATING THE REFACTORING ENGINE XI–7

11.4.1 Effective refinements to logical definitions

The formulation of Theorem 11.7 indicates the shape of programs over which the
refactoring’s transformation is defined – for the rest of theprograms it behaves
like the identity function, as can be seen from Definition 11.1. Despite the com-
putational hints provided in Theorem 11.7 it cannot be executed directly or yield a
program. A program implementing the behaviour specified by this theorem would
behave as follows:
• It must first recognise the program’s shape for which the transformation is

defined. This is achieved by pattern matching on the input program.
• The propositions appearing before the implication in Theorem 11.7 need to be

checked in some order, and therefore
• An algorithm for each proposition needs to be invoked.
• The program transformation itself needs to be implemented.This is straight-

forward since the transformation merely rearranges the arguments given to
the transformation around a new form of expression. The transformation
constructs the expression on the right hand side of the consequent in Theo-
rem 11.7. A refactoring is ameta-program and therefore can use the substitu-
tion operation – this operation isimplicit and not part of the actual program.

11.4.2 Changing logical definitions into effective ones

Inspecting the side-conditions of the “enlarge definition type” refactoring – that
is, the antecedents in Theorem 11.7 – reveals that they can beclassified into the
following three categories:
•Well-typing checks, for instanceΓ ,x:τ ⊲N :: σ
• (non)Capture checks, for instance¬Captures N M
• Free occurrence checks, for instancex′ /∈ FVM

Each of these predicates must be refined into an effective characteristic function.
For the first category of checks this involves implementing atype-reconstruction
algorithm for PCF+1 and proving it to be correct relative to the static semantics.
Handling the second category of checks is easier since the predicateCaptures is
simpler and therefore its algorithm is easier to verify. Nothing needs to be done for
the third category since the code generation framework can yield code for ofFV

and the set-(non)membership test it depends on thanks to internal preprocessing
instructions the framework uses for HOL theories.

The algorithmic equivalent toCaptures (Definition 11.5) is examined next.
Logical notation is used for the effective Boolean operations here.

Definition 11.9.The algorithmCapturesEff is defined thus:

CapturesEff :: Terms→ Terms→ bool

CapturesEff x M′ = False

CapturesEff (λxτ .M) M′ = ((x∈ FVM′)∨ (CapturesEffM M′))
CapturesEff (M1 ·M2) M′ = ((CapturesEffM1 M′)∨

(CapturesEffM2 M′))

XI–8 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

The other clauses are defined by structural induction in the obvious way.

Lemma 11.10.The executable definitionCapturesEff is equivalent to the log-
ical predicateCaptures: ∀M N. Captures M N←→ CapturesEffM N

Proof sketch Induction onM. ⊓⊔

We can now replace every occurrence ofCapturesM N with CapturesEffM N
– such as in Theorem 11.7. This would not lead to any notable benefit however,
since even if all the side-condition checks were defined effectively we still would
not be able to produce the code of the full refactoring. We will proceed with
the original plan: using Theorem 11.7 as a blueprint and building an effective
definition for the refactoring according to it.

The next step involves providing an algorithmic equivalentto the relation as-
serting that a term is well-typed. Given a term in the language induced by Def-
initions 11.3 and 11.4 and a typing context, the algorithm isto decide whether
the term is typable – i.e., we require an algorithm solving the type reconstruction
problem. The signature for this definition is given next; theactual implementation
is omitted here.

Definition 11.11.Type reconstruction

typeInfer :: Terms→ Contexts ⇀ Types

In terms of Haskell types,typeInfer returns values of typeMaybe Type .
Having defined the type reconstruction algorithm it is proved to be correct next.

Lemma 11.12.Correct Type Reconstruction

∀Γ M τ. (Γ ⊲M :: τ)←→ (typeInferM Γ = Just τ)

Proof sketch (⇒) Straightforward induction on the derivation.(⇐) Induction on
M; the typing rule is used in the proof of each case. In non-trivial cases the proof
involves case analysis ontypeInfer and using “inversion lemmata” concerning
typeInfer.

An example inversion lemma, concerning application, is given below:

∀τ Γ .∃σ .(typeInfer(M1 ·M2)Γ = Justτ)−→

(typeInferM1Γ = Just(σ → τ)∧typeInferM2Γ = (Justσ))

These lemmata are analogues to the inversion lemmata for thetyping relation,
but instead concern the type reconstruction algorithm. These lemmata are proved
by case analysis on each occurrence oftypeInfer in the consequent. ⊓⊔

Since the algorithms have been proved to be equivalent to thespecifications we
can use them interchangeably in the specification of theorems. More profitably,
we could employ the algorithmic definitions in building the refactoring; this will
be described next.

11.4. GENERATING THE REFACTORING ENGINE XI–9

Definition 11.13.An algorithm implementing theenlarge definition typerefac-
toring:

R :: Term→ Var→ Var→ Type→ Term→ Term

R p@(let xτ := M inN)
def
= λx′ yT′L.

case (typeInfer L empty,x : τ,y : τ ′) of

Nothing⇒ p
Just τ ′′ ⇒
if not(Qand(τ = τ ′′))
then p
else p′

where

Q
def
= CapturesEffN(〈x′⇐ x′〉x〈y⇒ L〉))

and (¬CapturesEffN M)
and (¬CapturesEffLM)
and (notIn x′ (FVM))
and (notIn y (FVM))
and (notIn x (FVL))

p′
def
= let xτ+τ ′ := (inLτ+τ ′M) inN[〈x′⇐ x′〉x〈y⇒ L〉/x]

R p
def
= p

11.4.3 Obtaining an algorithm for the refactoring

The algorithm was defined by reading-off the intended behaviour from Theo-
rem 11.7 and filling in the practical details. The algorithm is shown in Defini-
tion 11.13 – note that this does not show the Haskell code produced, but a stylised
simplification: for instance, in the interest of clarity we perform pattern matching
on the abbreviation rather than on the core terms of PCF+1. Note that the side-
conditions are elided under the local definitionQ, and that the last clause of the
definition specifies thatR behaves like the identity function when control “falls
through” because of an unsuccessful match in the previous line.

Apart from a program the algorithm is parametrised by two variables, a type
and a term: as can be seen from the right hand side of the equation in the an-
tecedent of Theorem 11.7 these parameters are used to build the transformed pro-
gram.

In line with previous usage, the symbol
def
= is used to convey a definition and

the symbol= will represent the equality test carried out in the metalanguage. In
a Haskell implementation these would be represented by= and== respectively.

11.4.4 Verifying the algorithm

The refactoring given in Definition 11.13 iscorrect iff it preserves the behaviour
of arbitrary programs. This statement must indeed be weakened to the follow-
ing: a refactoring is correct iff it preserves the behaviourof arbitrarywell-typed

XI–10 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

programs. This formulation is sensible since maltyped programs are considered
to be meaningless, and is necessary since assuming the program to be well-typed
discharges the related preconditions in the refactoring – see Theorem 11.7. This
will be discussed further below.

In the algorithm given in Definition 11.13 we invoke the type checker on ar-
gumentL and later confirm thatL is indeed well-typed and has the expected type.
Note however that this formulation assumesL to be a closed term – this assump-
tion will be weakened in the improvement of the algorithm presented below. Since
L, M andN shared the same typing context, this leads us to consider theargument
to the refactoring – i.e., part of a program – as a closed term:a program. This
is a strong assumption, and renders the refactoring inapplicable to open subterms
of programs having the right shape. Weakening this formulation requires redefin-
ing the refactoring algorithm, so we postpone the generalisation and first seek to
verify Definition 11.13 using the appropriate formulation.

During the main proof we will need to use the following lemma;it simply
asserts that any well-typed program is behaviourally-equivalent to itself.

Lemma 11.14.

∀pτ. (typeInfer p empty = Just τ)−→ empty ⊢ p≃ p :: τ

Proof sketch Case analysis on “typeInfer p empty” followed by appealing to
the reflexivity of≃ and Theorem 11.12. ⊓⊔

We now proceed to formulating the correctness of the algorithm. For clarity
we elide the argumentsx, y, τ ′, L into

→
x in the formulation of the algorithm’s

correctness given below.

Theorem 11.15.Correctness of the refactoringfor closed terms.

∀pτ. (typeInfer p empty = Just τ)−→ ∀
→
x . empty ⊢ (R p

→
x)≃ p :: τ

Proof sketch We seek to show that for any well-typed input,R returns a program
equivalent to the original program – and thus in any case the theorem should rest
on Lemma 11.14 ifR behaves in this manner.

We expandR to obtain its conditional checks (in the local definitionQ in R) as
preconditions and transform the consequent into that of Theorem 11.7.

We then show that the assumptions obtained by expandingR imply the an-
tecedents in Theorem 11.7: this is straightforward by appealing to the logical
equivalence ofCaptures andCapturesEff, and the membership tests are equiv-
alent.

Finally we must show that the type-related preconditions ofTheorem 11.7 are
also implied. This involves showing that ifp is well-typed thenM, N andL are
also typed as expected. The inversion lemmata of the type system of PCF+1 are
used to transform the goals and then Lemma 11.12 is used to show that the type-
related preconditions of Theorem 11.7 are implied by the result returned by the
type reconstruction algorithm. ⊓⊔

11.4. GENERATING THE REFACTORING ENGINE XI–11

The result we have just proved makes a strong assumption about L – that it is
a closed term – but it has served to highlight the general approach we should take
when verifying such an algorithm. Equally importantly, it explained more clearly
the interconnection between a type-checker and the refactoring tool in the setting
of a typed language.

11.4.5 Generalising the algorithm and correctness proof

The previous section revealed that Definition 11.13 is not sufficiently general: it
can only work on closed sub-programs. In order to generalisethis result, and
thus render the algorithm applicable over arbitrary subprograms of well-typed
programs, we need to pass typing information to the algorithm as a parameter.
The new definition differs from Definition 11.13 only in the addition of a typing
context as a formal parameter and the replacement ofempty in thecase..of using
this context.

11.4.6 Code generation

Once the algorithm was proved to be correct, the code generation framework by
Haftmann and Nipkow [10] – described in§11.2.1 – was used to generate Haskell
code from the algorithm’s definition in Isabelle/HOL.

Four Haskell modules were generated by the framework – corresponding to
the Isabelle theories from which the code was generated. Apart from the code
most closely associated with the synthesised refactoring engine, other code was
generated on which the implementation depended – for instance code related to
natural numbers, sets and HOL itself. In total 313 lines of Haskell code were
generated, and could be immediately compiled under GHC 6.4.1.

11.4.7 Improving generated code

When the generated Haskell code was studied it was unsurprising that the gen-
erated code was very similar to the definitions in the theories it was generated
from; but the redundancy and illegibility of some parts of the code immediately
suggested the opportunity to refactor the generated code.

In refactoring jargon, patterns of code such as these are suggestively called
“bad smells” – or opportunities for refactoring. This suggested the value of ap-
plying refactoring to code generated in this manner. Some examples are outlined
next:

Removing dead codeThis code might be redundant local definitions within def-
initions or else replacing dummy variables in code producedwith anonymous
placeholders (in Haskell) if they are supported by the target language.

Type synonymsSome types reoccur in the program and it is well worth giving
them meaningful names to distinguish them. The readabilityof type signa-
tures could be improved by adding type synonyms to name frequently-used
signatures.

XI–12 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

Moving codeThis would facilitate reordering the definitions in the generated
code, moving code between existing modules or else into new modules to
better reflect the relationships between definitions.

Layout style The generated code uses the coarser style of Haskell programming,
but the user could be offered the choice of which style to use through the use
of a refactoring tool.

11.4.8 Summary

This section described this paper’s contribution and the steps needed to bridge the
refactoring’s correctness theorem with generating its program code.

Since the generation of code from specifications is not fullyautomatic, exe-
cutable versions of logical definitions needed to be writtenand proved equivalent.
In particular, this had to be done for predicates appearing in the refactoring’s side-
conditions. Another algorithmic definition was then given for the whole refactor-
ing, which in turn called the previously-defined algorithms.

This algorithm was verified using the theorem proved in earlier work, and
Haskell code for the refactoring – and the other definitions it relies on – was
generated using Isabelle’s new code generation framework.

It was then observed that refactoring could be useful for managing automatically-
synthesised code, and a number of suggestions were made for refactoring the code
we generated.

11.5 RELATED WORK

The intention to build refactoring tools from the verification of refactorings was
also expressed in earlier work by Garrido & Meseguer [8] and Junior et al. [11],
using the systems Maude and CafeOBJ respectively.

Using interactive theorem provers to build certified programming tools has
been attempted for different tools and using different systems. For example Okuma
& Minamide [18] use Isabelle/HOL to specify and verify a compiler, of which
code is then generated and embedded into a larger system thatcompiles a small
functional language into Java bytecode. A larger development is described by
Blazy et al. [2] and Leroy [12], in which a compiler is certified – its frontend
compiles a fragment of C into an intermediate language called Cminor, and the
backend completes the compilation into PowerPC’s assemblylanguage.

11.6 DISCUSSION

Using PCF+1 to study the synthesis of refactoring engines in this mannerwas
perhaps a good starting point not only because the complexity of the language
does not eclipse refactoring as the scope of the research, but also because when
it came to synthesising the refactoring engine the code produced was small and
more amenable to analysis than had we used a larger language.

11.6. DISCUSSION XI–13

The simplicity of the language may be adequate for initial study but is indeed
far removed from realistic programming languages. Addressing a “toy” language
in this experiment has helped prepare us better for tacklinga larger language – this
work has provided insight on the entire span from formalising the programming
language to producing a certified refactoring engine for that language.

In the long term this line of research seeks to study the feasibility of producing
tools using an approach similar to this – by relying on a dialogue with a theorem
prover to ensure correctness of the synthesised tool. At thevery least this would
be as difficult as formalising a “non-toy” programming language, but the steady
activity in this area of research lends hope to a rapid realisation of such devel-
opments – in part animated by increasing interest devoted tomechanical theorem
proving.

The type-based refactoring engine studied here invokes thetype reconstruction
program as part of its operation and, as observed earlier, a positive result from the
type reconstruction program is necessary before invoking the refactoring engine.
It might be fruitful to explore if the correspondence between these tools could be
rearranged more optimally, and studying the interaction between programming
and refactoring tools in order to explore how they can cooperate better.

This paper extends previous work [22], partly summarised in§11.3, with the
results described in§11.4. The extension involved constructing effective equiv-
alents to logical predicates used in earlier specification of refactorings, building
an executable specification of a refactoring engine that refined the specification
expressed in Theorem 11.7, and proving it to be correct by Theorem 11.15. This
was carried out in part to explore the phases of the process, but a second look at
this process might instead seek to study to what extent partsof the process could
be automated following the validation of a specification. The amount of work
needed to extend the Isabelle theory to generate code was only a few days, but
this increased the size of the theory file by more than 50%; it would be desirable
to study the optimisation of this process to reduce manual proving and keep the
size of the formalisation small. This would seek to produce asystem that given a
formula such as Theorem 11.7 it would greatly hasten arriving at Definition 11.13.
This system could perhaps be modified to yieldtwo programs – a refactoring in
either direction – due to the bidirectionality of refactoring, described in§11.3.2.

Refactoring is usually done on program code written by people, but while
studying the synthesis of refactoring engines we were presented with an opportu-
nity to reflect on refactoring code that has been generated bymachine. Such code
bears the artefacts of the definitions from which it has been generated, and of the
generation process itself, but is bare of comments; perhapsfuture work on code
generation could adapt heuristics such as those used by Li [13, p.65] to extract
comments deemed associated with definitions.

11.6.1 Future work and Conclusions

Apart from the ideas discussed in the previous section, there are various other
proposals for extensions of this work. Central among these proposals is the pro-

XI–14 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

duction of usable programming tools using these methods, orextending existing
tools with new functionality. This might be realised by integrating a refactoring
engine obtained in this way with HaRe [13] – the Haskell Refactorer.

Another direction for future work involves addressing a more expressive lan-
guage – for instance one with ML-style polymorphism [20,§22.7]. This would
inch us closer towards a realistic programming language andenable the synthesis
of more useful refactoring engines.

We could expand horizontally by broadening the scope of the mechanisation
beyondrefactoring, to include other programming tools and studying their inter-
action. Alternatively, we could turn our attention to studying other refactorings
over this language to test this method further.

Programming tools need to be usable and correct, and this paper describes
research into the latter. This work is concerned with the synthesis of a correct
refactoring engine through the use of the proof assistant Isabelle. It extends ear-
lier work [22] and elaborates on the process of producing a certified refactoring
engine, making use of Isabelle’s new code generation framework. In the course
of this research we observed that refactoring can be profitably applied to code
generated from mechanised theories.

We thank Huiqing Li for valuable discussions on the topic of this paper and
the anonymous referees for helpful feedback. The first author acknowledges the
support of a Marie Curie EST fellowship, the second author acknowledges the
support of the EPSRC for building the HaRe and Wrangler tools. Work on ear-
lier related research was possible thanks to financial support provided to the first
author by the Computing Lab at the University of Kent and by the Malta Govern-
ment Scholarship Scheme through award MGSS/2006/007.

REFERENCES

[1] H. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-Holland,
1984.

[2] S. Blazy, Z. Dargaye, and X. Leroy. Formal Verification ofa C Compiler Front-end.
Symp. on Formal Methods, pages 460–475, 2006.

[3] M. Cornélio. Refactorings as Formal Refinements. PhD thesis, Universidade Federal
de Pernambuco, 2004.

[4] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring en-
gines. InProceedings of Foundations of Software Engineering (FSE’07), Dubrovnik,
Croatia, Sep 2007.

[5] K. Elphinstone, G. Klein, and R. Kolanski. Formalising ahigh-performance micro-
kernel. In R. Leino, editor,Workshop on Verified Software: Theories, Tools, and
Experiments (VSTTE 06), Microsoft Research Technical Report MSR-TR-2006-117,
pages 1–7, Seattle, USA, Aug. 2006.

[6] R. Ettinger. Refactoring via Program Slicing and Sliding. PhD thesis, Oxford Uni-
versity Computing Laboratory, June 2007.

[7] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

11.6. DISCUSSION XI–15

[8] A. Garrido and J. Meseguer. Formal Specification and Verification of Java Refactor-
ings.Proceedings of the Sixth IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM’06)-Volume 00, pages 165–174, 2006.

[9] W. Griswold.Program Restructuring as an Aid to Software Maintenance. PhD thesis,
University of Washington, 1991.

[10] F. Haftmann and T. Nipkow. A code generator framework for Isabelle/HOL. Tech-
nical Report 364/07, Department of Computer Science, University of Kaiserslautern,
08 2007.

[11] A. Junior, L. Silva, and M. Cornélio. Using CafeOBJ to Mechanise Refactoring
Proofs and Application.Electronic Notes in Theoretical Computer Science, 184:39–
61, 2007.

[12] X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant.ACM SIGPLAN Notices, 41(1):42–54, 2006.

[13] H. Li. Refactoring Haskell Programs. PhD thesis, Computing Laboratory, University
of Kent, September 2006.

[14] H. Li and S. Thompson. Formalisation of Haskell Refactorings. In M. van Eekelen
and K. Hammond, editors,Trends in Functional Programming, September 2005.

[15] H. Li and S. Thompson. Testing Erlang Refactorings withQuickCheck. InDraft
Proceedings of the 19th International Symposium on Implementation and Application
of Functional Languages, IFL 2007, Freiburg, Germany, Sep 2007.

[16] T. Mossakowski, C. Maeder, and K. Luttich. The Heterogeneous Tool Set, HETS.
LECTURE NOTES IN COMPUTER SCIENCE, 4424:519, 2007.

[17] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 ofLNCS. Springer, 2002.

[18] K. Okuma and Y. Minamide. Executing Verified Compiler Specification. Program-
ming Languages and Systems: First Asian Symposium, APLAS 2003, Beijing, China,
November 27-29, 2003: Proceedings, 2003.

[19] L. C. Paulson.Isabelle: A Generic Theorem Prover, volume 828 ofLecture Notes in
Computer Science. Springer, 1994.

[20] B. Pierce.Types and Programming Languages. MIT Press, 2002.

[21] G. Plotkin. LCF considered as a programming language.Theoretical Computer
Science, 5(3):223–255, 1977.

[22] N. Sultana and S. Thompson. Mechanical Verification of Refactorings. InWorkshop
on Partial Evaluation and Program Manipulation. ACM SIGPLAN, January 2008.

[23] S. Thompson. Formulating Haskell. Technical Report 29-92*, University of Kent,
Computing Laboratory, University of Kent, Canterbury, UK,November 1992.

[24] S. Thompson. A Logic for Miranda, Revisited.Formal Aspects of Computing, 7(7),
March 1995.

[25] P. Torrini, C. Lueth, C. Maeder, and T. Mossakowski. Translating haskell to isabelle.
Number 364/07, 08 2007.

