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ABSTRACT

Motivation: Cellular processes often hinge upon specific inter-
actions among proteins, and knowledge of these processes at a
system level constitutes a major goal of proteomics. In particular, a
greater understanding of protein–protein interactions can be gained
via a more detailed investigation of the protein domain interactions
that mediate the interactions of proteins. Existing high-throughput
experimental techniques assay protein–protein interactions, yet they
do not provide any direct information on the interactions among
domains. Inferences concerning the latter can be made by analysis of
the domain composition of a set of proteins and their interaction map.
This inference problem is non-trivial, however, due to the high level
of noise generally present in experimental data concerning protein–
protein interactions. This noise leads to contradictions, i.e. the
impossibility of having a pattern of domain interactions compatible
with the protein–protein interaction map.
Results: We formulate the problem of prediction of protein domain
interactions in a form that lends itself to the application of belief
propagation, a powerful algorithm for such inference problems,
which is based on message passing. The input to our algorithm
is an interaction map among a set of proteins, and a set of
domain assignments to the relevant proteins. The output is a list
of probabilities of interaction between each pair of domains. Our
method is able to effectively cope with errors in the protein–protein
interaction dataset and systematically resolve contradictions. We
applied the method to a dataset concerning the budding yeast
Saccharomyces cerevisiae and tested the quality of our predictions
by cross-validation on this dataset, by comparison with existing
computational predictions, and finally with experimentally available
domain interactions. Results compare favourably to those by existing
algorithms.
Availability: A C language implementation of the algorithm is
available upon request.
Contact: mi26@kent.ac.uk

1 INTRODUCTION
Protein complexes and interactions are major players in cellular
life (Alberts, 1998; Eisenberg et al., 2000). High-throughput
experimental methods, such as yeast two-hybrid (Ito et al., 2001;
Li et al., 2004; Rual et al., 2005; Uetz et al., 2000) and mass
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spectroscopy methods (Gavin et al., 2002, 2006; Ho et al., 2002;
Krogan et al., 2006), assay those interactions and the structure
of complexes. Information provided by these different techniques
currently appears to be largely complementary, as witnessed by the
scanty overlap between respective interaction maps (von Mering
et al., 2002). The weak overlap and the relatively high level of noise
generally present in the data call for extensive post-processing of the
experimental interaction data using computational methods, which
constitute an important and active area of research.

A major goal of computational approaches is to predict yet
unknown protein–protein interactions on the basis of currently
available information (Shoemaker and Panchenko, 2007a, b;
Valencia and Pazos, 2002). A first approach to the problem employs
one or more genomic features related to the protein pairs as predictor
attributes. For example, Bock and Gough (2001; 2003) developed
a machine learning system (support vector machine) trained to
recognize potential interactions based on the primary structure and
the associated physico-chemical properties of the proteins. Another
well-known method is the so-called Rosetta Stone Method (Marcotte
et al., 1999), which exploits the observation that some pairs of
interacting proteins have homologues in other organisms fused into
a single protein chain. Many methods use a single type of proxy
to predict protein interactions, e.g. methods based on the similarity
in phylogenetic profiles (Galperin and Koonin, 2000), gene fusion
methods (Enright et al., 1999; Marcotte et al., 1999), co-evolution
of interacting partners (Goh et al., 2000, 2002). Other methods
integrate different genomic features using a variety of machine
learning methods Jansen et al., 2003; Rhodes et al., 2005; Yamanishi
et al., 2004.

Information highly relevant to the prediction of protein–protein
interactions comes from their domain structures. This is quite
sensible, both evolutionarily and structurally, as domains are often
evolutionarily conserved sequence units and they constitute the
building blocks of protein structures, largely accounting for the
reciprocal interactions among the proteins to which they belong.
Namely, a pair of proteins is thought to physically interact if at least
one among their constituent domain pairs interacts. A vast majority
of proteins in well-studied organisms like Saccharomyces cerevisiae
are assigned one or more domains and these data can be combined
with experimentally determined protein interaction datasets.

A few methods have already been developed to use these
combinations of data in order to predict domain interactions (Deng
et al., 2002; Lee et al., 2006; Li et al., 2006; Riley et al., 2005;
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Sprinzak and Margalit, 2001). The strategy common to all these
methods is to find potential domain interactions from existing
protein–protein interaction datasets and then exploit that information
to predict unknown protein–protein interactions. In other words, the
idea is to infer domain–domain interactions from protein–protein
interactions and then use these inferred domain interactions to
predict new interactions between proteins, given their domain
structure. For example, Sprinzak and Margalit (2001) developed
an association method which finds correlated sequence signatures
(domains) occurring together more often than by chance. They used
a log-odds measure to quantify the frequencies of occurrence of
domains in interacting proteins. Another method developed by Deng
et al. (2002) uses the Maximum Likelihood method to estimate
domain–domain interaction probabilities consistent with protein
interaction data in which they occur, and also takes into account
potential errors in the measurement of protein–protein interactions.
Lee et al. (2006), estimate domain interaction probabilities in a very
similar way as Deng et al. (2002), but they consider more protein
interaction data from different organisms and also integrate other
genomic features related to domains using a Bayesian approach.
The domain pair exclusion analysis (DPEA) method (Riley et al.,
2005) extends the Maximum Likelihood formulation used by Deng
et al. (2002) and also includes protein interaction data from multiple
organisms.

Our aim here is to show that the problem of predicting
domain–domain interactions from protein–protein interaction data
can be recast in a form that lends to the application of belief
propagation (BP), a very powerful and widely used inference method
(MacKay, 2003; Pearl, 1998). BP belongs to the class of so-called
message-passing algorithms as they share the common feature
of sending messages among neighboring nodes in the graphical
model of the system, until convergence is reached (Mezard, 2007).
Convergence and exact inferences are rigorously guaranteed when
the underlying graphical model is loop-free. In the presence of loops,
convergence is not guaranteed; nonetheless it was first observed (in
the context of decoding) that convergence can still hold (Gallager,
1963), and similar observations have been later made in a number
of other applications. A rationalization of these observations was
recently obtained in Yedidia et al. (2005), showing that BP solutions,
even in the presence of loops, extremize the so-called Bethe free
energy. Furthermore, Chertkov and Chernyak (2006) showed that
the solutions obtained by BP in the presence of loops contain enough
information as to allow a priori the calculation of the exact result.
BP and message-passing algorithms have proved their relevance in
a wide range of inference problems (Mezard et al., 2002; Yedidia
et al., 2005). A recent biological application is the clustering method
developed by Frey and Dueck (2007).

The article is organized as to present first the Methods, which
contain the specific formulation of the problem together with the
algorithm and its derivation. We shall then discuss applications
to protein–protein interactions for the budding yeast S.cerevisiae,
followed by comparisons with existing methods and conclusions.

2 METHODS

2.1 BP algorithm for prediction of protein domain
interactions

We consider a set of P proteins containing a number of domains (generally
different for each protein) from a list of D possible types. I protein pairs

are known to interact and constitute the positive dataset but we have no
information (worst possible case) as to which domains are driving the
interactions. N protein pairs are known not to interact. Our goal is to infer the
interaction profiles among the domains, i.e. tell for a pair of domains whether
or not it interacts. The inference is based on the fact that two proteins P1

and P2 interact if at least one of their domain pairs (one domain belonging
to P1, the other to P2) interact and are non-interacting otherwise.

Let us define σij , a binary variable equal to unity if the two domains i and
j interact and zero otherwise. The indices i and j run over all possible D
domains and links are undirected, i.e. we have D(D+1)/2 independent σ ’s.
Any a priori information on domain interactions can be exploited as a prior
on the value of the σij . In its absence (worst possible case), we shall suppose
that all Boolean variables σ ’s have the same a priori probability β to be equal
to unity. The complementary probability for the σ ’s to vanish is 1−β and a
compact expression for the two probabilities reads 1−β+σ (2β−1).

The likelihood (partition function; Z) for our system is defined to be
the sum over all states of the unknown variables (σ ’s) compatible with the
interaction map that we are handed as input:

Z =
∑
{σij}

∏
(ij)

(
1−β+σij(2β−1)

)×
I∏

p=1

θ


∑

cp

σcp


 N∏

q=1


1−θ


∑

cq

σcq





 . (1)

Here, the indices p and q run over all pairs of proteins in the positive and
negative dataset, respectively, while the indices cp and cq run over all the
pairs of domains for each one of those protein pairs. In other words, if we
have two proteins P1 and P2 among the set I which interact, the index cp will
run over all possible domain pairs composed of one domain belonging to P1

and the other to P2. The Heaviside θ -functions (defined as vanishing if the
argument of the function is zero and unity if the argument is positive) ensure
the constraints stemming from the protein–protein interaction map. Indeed,
if two proteins interact, at least one of their domain pairs should interact and
the argument of the corresponding θ function should be positive. Conversely,
if two proteins belong to the non-interacting dataset, all domain pairs should
be non-interacting and the argument of their θ functions should vanish.

Since experiments generally contain some noise, we should take into
account the possibility that information about protein–protein interactions
that we are handed is not correct. As an extreme case, some errors might
even lead to contradictions and to the impossibility of having any solution
for the observed interaction data, as shown in Figure 1. A convenient way to
deal with this problem is to ‘soften’ the θ functions in the function nodes as

θS(σ )=
{
ε if σ =0,

1−ε if σ >0.
(2)

The parameter ε (which runs from zero to unity) represents the degree of
reliability of the interaction datasets available for the inference. Full trust
corresponds to ε=0, while the most noisy case corresponds to ε=1/2, when
the interaction datum is irrelevant (θS ≡1/2 irrespective of its argument).
Values larger than 1/2 correspond to the (rather unlikely) situation when
input data tend to contradict reality. In particular, ε=1 corresponds to the
case when the data are systematically reversed.

To simplify notation and conform to those commonly employed in
graphical models, we recast (1) in the general and compact form:

Z =
∑
{σ }

[∏
k

ψk(σk)
∏
α

fα
({σ }α

)]
, (3)

where the index k runs over all possible domain pairs, the index α runs
over all proteins pairs present in the interaction datasets (both positive and
negative), ψk is the local evidence (polarization) for the variable nodes σk

and fα denotes the so-called function nodes. The ensemble of variables {σ }α
denote the set of all the variables σij for the pair of proteins α. A factor
graph representation (with protein and domain pairs as function and variable

2065



M.Iqbal et al.

Fig. 1. A graphical illustration of a simple instance of protein and
domain pair interactions. (a) shows the list of proteins together with their
corresponding domains. (b) gives the list of the interactions between protein
pairs and their graphical representation. In (c) we display the factor graph
corresponding to the interactions in (b) where circles represent the domain
pairs (variable nodes) while squares and diamonds represent the interacting
and non-interacting protein pairs (function nodes), respectively. The ψ’s on
the left represent the priors on the variables, chosen here to be identical for
all of the variables and controlled by the parameter β. Finally, (d) presents
a simple example of pattern of interactions leading to a contradiction.

nodes, respectively) of the model is illustrated in Figure 1. In our case, the
local evidence is uniform, i.e. does not depend on the variable node:

ψk(σ )=ψ(σ )=1−β+σ (
2β−1

)
. (4)

Function nodes take two different forms depending on whether the protein
pair belongs to the dataset of interacting or non-interacting pairs:

fα({σ }α)=


θ
(∑

σ∈{σ }α σ
)

interacting

1−θ
(∑

σ∈{σ }α σ
)

non interacting.
(5)

Having recast the problem in the general form of graphical models,
BP equations associated to (3) follow from textbook derivations [see, e.g.
MacKay (2003), p. 336]:

Mα→k(σk) ∝
∑

{σ }α �=σk

fα
({σ }α

) ∏
k′∈{k}α �=k

Mk′→α

(
σk′

)
(6)

Mk→α(σk) ∝ ψk(σk)
∏

α′∈{α}k �=α
Mα′→k(σk). (7)

Messages Mα→k are sent from function to variable nodes, while messages
Mk→α are sent in the opposite directions. The proportionality sign is meant
to stress that, in the presence of loops, it is more appropriate to work
with normalized equations to increase stability and facilitate convergence.
Messages are exchanged among nodes until convergence is reached. The
partition function Z is estimated as described in the next section.

2.2 Bethe Free Energy and BP
As stated earlier, beliefs calculated by (6) and (7) are exact when the
underlying graph has no loops. Since message-update rules do not directly
depend on the topology of the underlying graph, the iterative scheme (6)
and (7) might be run on graphs with loops and the quality of the results
might be assayed empirically (Frey and Mackay, 1997). In this spirit, BP
has been successfully applied to many practical problems with loops (Frey
and Mackay, 1997; Gallager, 1963; Yedidia et al., 2002). A reason for
these successful applications on graphs with loops has been put forward
in Yedidia et al. (2002, 2005) showing that BP solutions are extrema of
an approximation to the original partition function Z of the model. The

approximation to F ≡−logZ is known as Bethe free energy and the one
associated to (3) takes the form :

F({bα},{bk})=−
∑
α

∑
{σ }α

bα lnfα−
∑

k

∑
σk

bk lnψk

+
∑
α

∑
{σ }α

bα lnbα−
∑

k

∑
σk

(
qk −1

)
bk lnbk (8)

Here, qk denotes the number of function nodes which have the k-th variable
as input. The b’s are beliefs for the probability distributions of individual
and node variables, computed from the messages as follows :

bα({σ }α)∝ fα({σ }α)
∏

k∈{σ }α
Mk→α(σk); (9)

bk(σk)∝ψk(σk)
∏
α∈{α}k

Mα→k(σk). (10)

The proportionality signs indicate that beliefs should be normalized (in
agreement with the fact that they represent estimates of marginal probability
distributions). BP estimates are consistent under marginalization, i.e.∑

{σ }α �=σk
bα({σ }α)=bk(σk). This follows from (6) and (7).

To demonstrate that solutions of our BP equations indeed extremize the
free energy (8) one can proceed as in Yedidia et al. (2005), introducing
Lagrange multipliers to enforce normalization of beliefs and consistency
under marginalization. The condition that derivatives with respect to bα and
bk vanish is, thus, shown to coincide with Equations (6) and (7). Details of
the derivation can be found in Yedidia et al. (2005).

The Bethe free energy is extremely useful for our purposes as we have
two unknown parameters in our model (the prior parameter β and the noise
parameter ε). We shall then run BP equations to convergence and choose
the values of the parameters β and ε that correspond to the minimum of the
Bethe free energy (maximum of the partition function).

2.3 Numerical implementation
Starting with initial values of unity for all of the messages, we iterate the BP
Equations (6) and (7) for given values of β and ε in Equation (2). BP iterations
are stopped after the changes in all the messages are below a threshold, set
equal to 10−2. Results do not change if the threshold is set smaller. In order to
reach convergence, a standard trick employed to reduce oscillations is to use
a damping factor λ so that each message is updated as λ times its value from
previous iteration plus 1−λ times its current value. For example, the message
M(n+1)
α→k (σk) is updated as (1−λ)

∑
{σ }α �=σk

fα
({σ }α

)∏
k′∈{k}α �=k M(n)

k′→α

(
σk′

)+
λM(n)

α→k(σk) [compare to (6)]. After some numerical experiments, we chose
a damping factor λ=0.5 in all the runs of the algorithm.

When iterations are run at very small ε, errors in experimental data makes
that for some domain pairs no solution is found, i.e. beliefs are all zero
(or extremely small). On the other hand, these configurations are not very
interesting as they have a huge Bethe free energy. We therefore decided to
circumvent this numerical problem by working with a small, yet non-zero,
predefined precision of 10−10.

2.4 Prediction of protein–protein interactions
Predictions of domain–domain interactions can be exploited to predict
protein–protein interactions. As an example of this approach, we performed
a cross-validation analysis on avalaible protein–protein interactions.
Knowing the composition in domains of a protein pair α, the probability Prα
of their interaction is estimated from beliefs b(σij) of interaction between
domains i and j as

Prα=1−
∏

σij∈{σ }α

(
1−b(σij)

)
, (11)

where the ensemble of variables {σ }α denotes the set of all domain pair
variables σij for the pair of proteins α.
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3 MATERIALS

3.1 Domain assignments
We obtained domain assignments for S.cerevisiae genome from the
SUPERFAMILY database (Gough et al., 2001; Madera et al., 2004)
(website www.supfam.org). This database is a library of HMMs
modelling all proteins of known structure. These models are used to
annotate the sequence of over 50 genomes. For S.cerevisiae, there
exist 3346 sequences with at least one domain assignment, which is
about 50% of total sequences. In total, 4681 domains are assigned
and there are 685 superfamily domains with at least one assignment.

3.2 Positive interaction dataset
We obtained the S.cerevisiae interaction dataset from database
of interacting Proteins (DIP) (Salwinski et al., 2004; Xenarios
et al., 2002). We obtained nearly 5000 high-confidence positive
interactions from CORE, which is a subset of the total number of
reported protein interactions in DIP. Furthermore, since there are
some proteins which do not have any significant domain assignment,
we only kept those proteins which have at least one domain
assignment in the superfamily database. This process reduces our
interactions to 3070 pairs, which constitute our dataset of positive
interactions.

3.3 Negative interaction datasets
Information on negative protein–protein interactions, i.e. pairs of
proteins which are not interacting in the experimental conditions
of assay, was hard to find. Reasons for this, and remarks upon
the importance of negative datasets, are presented in the Section
5. In this section, we describe the motivation for and construction of
two negative datasets. Both of them are built upon data concerning
the localization of proteins in cellular compartments.

• A first dataset is built by sampling from all pairs of proteins
that are localized in different compartments of the cell. We will
refer to this dataset as NonCoLoc_Neg, i.e. Non-CoLocalized
Negative dataset. This type of dataset has been used by
many researchers in this field Jansen et al., 2003; Rhodes
et al., 2005). There are many hundreds of thousand of protein
pairs which are not co-localized, a huge amount compared
with the number of positives. The standard procedure, which
we followed as well, is to randomly sample from this pool
of possible negatives. We also imposed the constraint that
proteins ought to have at least one domain assignment in the
superfamily database. We thus ended up sampling a total of
3070 negative interactions between pairs of proteins, as many
as the positive ones.

• The biological motivation for the previous choice of the
negative dataset, even though employed in the literature, is not
quite clear. Indeed, potentially harmful interactions between
two proteins located in different compartments of the cell
are already largely prevented by their different localization.
The two proteins can, therefore, afford to have domains
that would be interacting if they were brought in contact.
This motivated us to compare results obtained using the
previous NonCoLoc_Neg with those using CoLoc_Neg, i.e.
Co-Localized Negative dataset. To generate the latter, we
collected localization data from MIPS (Mewes et al., 2002),
built a sample of pairs of proteins having the same cellular

localization and classified them as negatives if they are
not reported in DIP-CORE set of positive interactions. We
further kept only those pairs which have at least one domain
assignment in SUPERFAMILY database and ended up with
a subset of 3740 pairs, constituting the ensemble of negative
interactions for the dataset CoLoc_Neg.

4 RESULTS AND DISCUSSION
Figures 2 and 3 show the Bethe free energy for the experimental
datasets of non-co-localized (NonCoLoc_Neg) and co-localized
(CoLoc_Neg) proteins, constructed as described in the Section 2.
Bethe free energies, as defined in the section 2, are shown as a
function of the noise parameter ε for different values of the prior
parameter β. In both cases the minimum of the Bethe free energy is
reached at β=0.2 and at comparable small values of ε. However, the
value of the minimum of the Bethe free energy for non-co-localized
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Fig. 2. Bethe free energy as a function of the parameter ε (quantifying
the amount of noise and incorrect data in the experimental dataset), for
different values of the parameter β, controlling the prior on the expected
number of positive interactions among protein domains. Curves refer to
the dataset (NonCoLoc_Neg) where negative protein-protein interactions are
constructed from pairs of proteins having different cellular localizations.
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Fig. 3. The same curves as in Figure 2, for the dataset (CoLoc_Neg) where
negative protein–protein interactions are constructed from protein pairs not
appearing in the list of interacting proteins and having the same cellular
localizations.
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proteins NonCoLoc_Neg, i.e. the dataset where negative interactions
are obtained from proteins appearing in different localization classes,
is sizeably higher than for the other dataset CoLoc_Neg. The
difference is quantitatively substantial since one should remember
that the partition function Z and the free energy F are related as
Z =e−F . Furthermore, CoLoc_Neg contains more negative data, i.e.
corresponding value of Z should a priori be smaller and the Bethe
free energy should be higher (for a fixed quality of the dataset).
The fact that CoLoc_Neg has a lower minimal free energy than
NonCoLoc_Neg is, therefore, highly significant and signals that the
former is a better sample of negative interactions as compared to
the latter. Biological consequences of this result are postponed to
the Section 5. Note that these results stress the importance of having
a good gold standard of negative interactions in order to have a
robust inference of domain interactions.

Note that contradictions in the experimental data, which were
mentioned in the Section 2, are indeed present and relevant. At ε=
0, i.e. when interaction data are taken at face value without any
possible modification, the number of contradictory interactions in
the positive and negative (Co-localized) datasets are 1025 and 1020,
respectively (over a total of 3070 and 3740). At the minimum of the
Bethe free energy (β=0.2 and ε=0.04), contradictions are sizeably
reduced as the number of positive and negative interactions that
remain unchanged is 2667/3070 and 3420/3740, respectively.

4.1 Cross-validation: predicting protein interactions
We performed a 10-fold cross-validation analysis, predicting domain
interactions from training data and using them to predict protein–
protein interactions on test data. We performed these cross-
validation analyses for CoLoc_Neg since this data was shown to
be more effective in minimizing the Bethe free energy. For each
computational experiment, we divided the data (for both positive
and negative classes separately) randomly into 10 equal folds. Each
time we used 9- out of 10 folds as training and the remaining 1 fold
as a test. This process was repeated 10 times, each time using a
different fold as the test set. Protein pairs in test data which do
not contain any domain pair from the training data were removed.
For each of the 10 iterations of the cross-validation procedure, we
inferred the normalized beliefs of domain pairs from the training
set using the belief propagation procedure, as described earlier. We
then did the experiments corresponding to a range of values of ε
and β and predicted protein–protein interactions for the test fold as
described in the Section 2.

We calculated the prediction accuracies for each value of ε and
β comparing the prediction to the experimental assignment. Note
that the presence of noise in the experimental data makes that we
should not expect the accuracy to be optimal at the same values as
the minimum of the Bethe free energy. Some of the data are indeed
likely to be incorrect and, since our method is built so as to reverse
them, we expect that the values of ε will be comparable yet not
quite identical. Indeed, Figure 4 shows the ratio of true positive rate
(TPR) over the false positive rate (FPR) for the test set predictions,
for different values of ε and β. TPR or sensitivity is defined as the
number of true positives over total number of positives and FPR
is defined as the number of false positives over total number of
negatives in the data. We can see that this ratio is overall maximum
for predictions corresponding to β=0.2, i.e. the same value which
gives the minimum free energy in all folds as well as the full data
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Fig. 4. Average values of TPR over FPR for different values of ε and β.

as shown in Figure 3. On the other hand, the previous ratio peaks at
a value of ε which is comparable, yet larger than the one giving the
minimum of the Bethe free energy.

The average prediction accuracy values over 10-folds
corresponding to the parameter (ε and β) values which minimized
the Bethe free energy is 82% and the corresponding values of
sensitivity and specificity are 79% and 85%.

4.2 Comparison with other domain interaction
prediction methods

To compare the results obtained here with those by methods that
previously appeared in the literature, we found it very useful that
the database DOMINE constructed by Raghavachari et al. (2008),
compiling a set of 20513 predicted domain–domain interactions
from experimental sources as well as from existing computational
methods. Among the experimental sources, they used the iPfam
database, which contains domain interactions observed in PDB
entries (Berman et al., 2000), and the 3did database, which contains
domain interactions among the proteins with known high resolution
structure (Stein et al., 2005). Other domain interactions included in
the DOMINE database are from eight computational methods using
different approaches to uncover underlying domain interactions in
the experimental data of protein–protein interactions. Some of the
methods also use other genomic features along with the assignment
of domains to proteins. For example, Lee et al. (2006) use domain–
domain interactions predicted using Maximum Likelihood method
from protein–protein interaction data in multiple organisms and use
a Bayesian data integration scheme to combine these data with gene
ontology and domain fusion information.

Since all computational methods reported in DOMINE use Pfam-
A (Finn et al., 2006) domain definitions, in order to make a
comparison we created a dataset of positive and negative interactions
as described in the Section 3 while using domain assignments
according to Pfam-A definitions. We used 2642 positive and 3123
negative protein interactions in this experiment and run our BP
algorithm to extract the results of domain interactions corresponding
to the minimum value of the Bethe free energy, as described in the
Section 2.

We compared these results to those by other computational
methods in DOMINE and also to the experimental gold standard set
of domain interactions, which is the union of interactions from iPfam
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Table 1. Comparison of percentage overlap of BP with experimental gold
standard interactions with respect to other computational methods in the
DOMINE database

ME RDCP P-value Fusion NetOpt RDFF PP BP

52.9 12.9 9.6 11.9 10.9 4.8 1.1 14.6

Table 2. Percentage overlap of BP predictions with other computational
methods

ME RDCP P-value Fusion NetOpt RDFF PP
16.3 17.7 10.0 6.3 29.0 72.7 1.1

to 3did databases. It is important to mention here that comparisons
in DOMINE are made only for positive domain interactions, while
in our method we also predict non-interactions as well. It is also
worth noting that the various methods are not predicting the same
set of interactions. For each of the given 20513 domain pairs in the
DOMINE database, our method has three kind of predictions, i.e.
the pair is predicted either positive or negative or we do not have
any predictions because that particular pair was not in our dataset (as
it is the case with all other methods). For those domain pairs where
we have a prediction and there is a prediction in the gold standard
(ipfam+ 3did) as well, we find 133 matching predictions out of 198
total cases.

As for other computational methods, we can just compare
the overlap of positive predictions with the available reference
gold standard domain interactions. Table 1 shows the percentage
overlap of positive domain interactions predicted by different
computational methods (including BP) against the gold standard data
of experimental domain interactions. BP results have over 14.5%
overlap with the gold standard data of positive domain interactions
which is second to only one method out of eight (in fact seven
in total since in DOMINE database, two methods are combined
into one due to their similarity). In fact, the method (Lee et al.,
2006) that has maximum overlap is using protein interaction maps
from multiple species and then integrate the information gained
from them about domain interactions with other genomic features
as well as ipfam in the training of the method itself. BP inference
about predicting domain interactions from protein interaction data
is, therefore, highly competitive in this comparative setting.

We extended the comparison proceedings as in Raghavachari et al.
(2008), i.e. calculating the percentage overlap between predictions
of our method (BP) with different computational methods reported in
DOMINE, as shown in Table 2. This overlap is quite variable with
respect to individual methods, but ∼98% of positive interactions
predicted by BP are also predicted by at least one other method.

Finally, the DOMINE database features a list of 55 high-
confidence domain interactions which are predicted by at least
four different computational methods. We checked them against
our predictions, and found about 83% were correctly predicted by
our method, which again compares favourably with other methods
(Raghavachari et al., 2008).

5 CONCLUSIONS
We have addressed the problem of inferring domain interactions
from large-scale protein–protein interaction data. The problem was
recast as a factor graph model lending to the use of BP. This powerful
message-passing inference method was employed to estimate the
probability of interaction between domains. The Bethe free energy
of the corresponding BP solutions provides a systematic way to
quantify the amount of noise in the experimental dataset and pinpoint
those data which are the most problematic, e.g. because they lead
to contradictions in the pattern of domain–domain interactions. This
specific feature of our method has a double interest: first, it allows
extracting reliable predictions from noisy datasets and, second, it can
be used as a guide for further experimental verifications to correct
false data and increase the quality of interaction datasets.

A major reason of interest in domain–domain interactions is
that they can be exploited to improve the quality of predictions
for protein–protein interactions. As an example, we successfully
used the domain interactions predicted by our BP method on a test
dataset using a standard cross-validation procedure. Furthermore,
the domain interaction predictions of our method were compared
against the set of experimentally available gold standard set of
domain interactions and also with other known computational
methods. Comparative results indicate that BP is a very effective
method to attack the domain-interaction inference problem.

An interesting biological remark that emerged from our analysis
is related to the importance and the nature of negative protein–
protein interactions. What we have shown here is that protein pairs
localized in the same cellular compartments and not appearing in the
interaction datasets seem to provide for a better sample of negative
interactions than protein pairs in different compartments of the cell.
The latter type of dataset was previously used in the literature.
Preventing noxious, e.g. for their potential toxicity, interactions is
quite a sensible issue from a biological point of view and examples of
potentially toxic products are quite common in metabolic pathways.
As a matter of fact, the necessity to run chemical reactions in specific
conditions and keep some of the products physically separated to
avoid their cross-reactions constitute a major drive towards the
compartmentalization of the cell. Our results point at the importance
of similar prevention effects for protein–protein interactions as
well. Finally, data on negative interactions, i.e. pairs of proteins
not interacting in physiological conditions, are unfortunately hardly
found in the literature. One of the reasons has probably to do
with the negative character of the datum. The other reason has
to do with experiments themselves, as it is particularly difficult to
check whether an observed absence of interaction is real or due
to a problem in the experimental procedure. The effort is quite
worthwhile, though, as our results show that the quality of domain
interaction inferences can be strongly improved by a proper dataset
of negative interactions. We hope that the results shown here will
stimulate future experiments in these directions.
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