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Abstract— This paper explores the idea of neutrality in heuris-
tic optimization algorithms. In particular, the effect of having
multiple levels of neutrality in representations is explored. Two
experiments using a fitness-adaptive walk algorithm are carried
out: the first is concerned with function optimization with
Random Boolean Networks, the second with a tunable neutral
mapping applied to the hierarchical if-and-only-if function.
In both of these cases it is shown that a two-level neutral
mapping can be found that performs better than both non-
neutral mappings and mappings with a single level of neutrality.

I. INTRODUCTION

IN this paper we introduce a new representation scheme

for representing the potential solutions in an optimization

algorithm. This extends existing work by Shipman et al. [1]

that shows how neutrality helps evolution to escape local

optima. Our new representation is based on the idea of

neutral representations acting at multiple levels. We show

in two sets of experiments that this leads to improved search

compared to non-neutral and single-level neutral evolution.

The remainder of this paper is structured as follows. Sec-

tion II gives a number of definitions that are used throughout

the paper. Section III gives an overview of related work, and

section IV reviews the methods used in the experiments,

which are fully described in sections V and VI. Finally,

the experiments are discussed is section VII and some

conclusions and suggestions for future work are given.

II. DEFINITIONS

Neutrality in a biological system [2] is a form of re-

dundancy between the DNA encoding and the fitness of

organisms. We can find sets of different DNA sequences

that give rise to organisms which, placed in an identical

environment, will have more-or-less the same fitness. A

neutral network [3], [4] is defined as a set of connections

on the space of DNA sequences, where these connections

represent mutations and each labelled either as having a

neutral of non-neutral effect on fitness (again, within a given

environment).

In this paper we will expand this notion of neutrality

to encompass redundancies between any two levels of a

biological system. By levels we mean the various stages

between the DNA sequence and the organism’s large-scale

behaviour. This is illustrated in figure 1. In each of these

levels we can define an equivalence relation, grouping objects

from that level together into an equivalence class if any pair

of items from that class encode for the same object in the

level above. That is, items within that equivalence class are

substitutable for each other.
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Fig. 1. Levels in a biological system between which neutral mappings can
be found.

Given such an equivalence relation on the set of objects

at each level, we can now define neutrality between any two

levels: two objects in the lower level are regarded as related

by a neutral mutation if that mutation is to an object in the

same equivalence class; i.e. they encode for the same object

in the higher level. In reality, these relations may be regarded

as somewhat fuzzy; this is similar to the way in which, in the

original definition of neutrality, we defined neutral changes

as those which “more or less” leave the fitness unchanged.

We can clearly see that the traditional definition of neu-

trality fits into this defintion. Another example is the neutral

encoding of proteins by DNA sequences, where many DNA

sequences can encode for the same amino acid sequence. A

further example is the relationship between protein sequence

and protein interaction: a number of different amino acid

sequences might fold into proteins which react in (more or

less) the same way with another protein.

III. RELATED WORK

In this section we review related work in two areas, viz.

neutrality in biological systems and in bio-inspired compu-

tation.
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A. Neutrality in Biology

Neutrality was first significantly studied in biological

systems by Kimura [5]. An overview of the work by Kimura

and related work can be found in Kimura’s 1983 book [2],

and an overview of more recent work in this tradition can

be found in a paper by Nei [6]. This work was focused

on questions relating to population genetics, for example

studying the proportion of diversity amongst the population

that can be attributed to neutral drift rather than adaptation.

Work by Schuster [7] and Huynen and colleagues [8],

[9] explored the adaptive role of neutrality within evolution.

They argue that neutrality has an influence on the ability

of the evolutionary process to escape from locally optimal

niches. The argument is concerned with movement along a

“neutral ridge” [10] over a number of generations. Such a

ridge consists of a chain of successive neutral mutations. This

enables escape from local optima in the following fashion.

An organism with fitness f might be in an evolutionary niche

such that any mutated offspring will have fitness less than

or equal to f . However, a neutral mutation could represent

a different genotypic representation for an organism that is

phenotypically identical, and therefore also has fitness f .

However, after one or more generations of these neutral

moves, the new organism may have a genotype where a

mutation exists that codes for a phenotype which has a fitness

greater than f . Therefore, it would be able to move from that

point to a fitness that is greater than f .

B. Neutrality in Bio-Inspired Computation

An important part of the process of solving a problem by

a bio-inspired search algorithm (such as a genetic algorithm)

is devising a representation for the problem. For some prob-

lems, there is an obvious representation (though alternative

representations can be used). For other problems, devising a

representation is a complicated part of the process.

In light of the discussion of neutrality in biology in the

previous section, we can ask whether it makes sense to use

a representation that has neutrality. We can also view this

from the point of view of problem difficulty, and ask: are

problems that necessarily have some neutrality in them (by

the nature of its fitness distribution) easier for such heuristic

search algorithms to solve than other problems?

This idea has been explored experimentally in a pair of

papers by Ebner, Shackleton, Shipman and Harvey [1], [11]

(this work is referred to as ESSH below). They generate neu-

trality by creating complex genotype-phenotype mappings,

based on cellular automata and random boolean networks,

and contrast these with a direct genotype=phenotype rep-

resentation. These are then applied to function optimization

problems using a mutation-based algorithm. They map out

the extent of the neutral networks for these representations,

and show that the direct mapping tends to converge early

on low-fitness individuals, whilst the neutral representations

facilitate the ongoing exploration of the search space, and,

ultimately, higher fitness values being discovered.

In the remainder of this paper we will explore the impact

of having multiple levels of neutrality in algorithms of the
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Fig. 2. The Fitness-Adaptive Walk optimization algorithm

type studied by ESSH. Our prima facie case for exploring

these is that the neutrality in real biological systems is

distributed between the levels; we can hypothesise that this

is a high-level adaptation rather than just an “implementation

detail”.

IV. METHODS

The optimization method that we use in the two ex-

periments below is the Fitness-Adaptive Walk method of

ESSH [1], [12]. This consists of a directed walk by a single

point through the genotype space of a problem. Starting from

a random genotype, the point moves around the space by the

following hill-climbing rule:

1) Generate a set of mutations from the current point.

a) If one or more of those mutation has fitness that

represents an improvement to the current fitness,

move to the one that increases the fitness the

most.

b) If one or more of those mutations has fitness that

is equal to the current fitness, move to one of

those at random.

c) If all of the mutations represent a decrease in

fitness, stop.

2) Return to 1

Basically, this is steepest-ascent hill-climbing combined

with a neutral move if no fitness-improving move can be

found. This algorithm is summarized in figure 2.

V. EXPERIMENT 1: RANDOM BOOLEAN NETWORKS

In the first experiment our search space consists of random

boolean networks (RBNs). These were introduced by Kauff-

man (see [13] for an overview) as a case study of a complex

system with a tunable amount of complexity. One view of

these is that they represent a caricature of the interactions that

occur during gene expression, with promoter and repressor

genes that control the expression of genes (including, in
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Fig. 3. A binary encoding for the RBN.

turn, other promoter and repressor genes) elsewhere in the

genome. They consist of a binary string, the values of which

are changed over time according to values elsewhere in the

string. This process of updating the values is iterated until

a stable point is found or a parameter-fixed iteration limit is

reached.

Formally, an RBN is defined by the following 5-tuple of

information:

1) The length of the binary string (n)

2) A parameter k which will specify the number of bits

from the string that will act as inputs to a rule table

(informally, we refer to these as the bits that influence

the value).

3) A starting state for each position in the string

4) A list of n lists of length k, one for each position

1 . . . n on the string, which specifies which k other

positions in the string act as inputs to the rule table

for that position.

5) A rule-table for each position in the string: the input

for this is a k-bit binary number, the output a single

bit.

This RBN specification itself can be represented by a

binary string, which consists of a list of the initial states,

followed by a list (in a binary encoding) of the k positions

that influence each position, followed by a binary encoding

of the rule-table for each position, i.e. a list of length 2k

of the output column of the rule table. It is assumed in this

experiment that the actual values n and k are defined as

constants elsewhere in the program, and are the same for all

individuals. This description is summarised in figure 3.

Therefore, for the n = 16, k = 3 RBN, the search space

consists of all 336-bit binary strings.

To calculate the fitness, the first part is to carry out the

Fig. 4. Update step for the RBN.

iteration of the functions.

Initialize a length n string s1 using the starting

state

LOOP (until stability or 20 iterations):

Create an empty string of length n called s2

FOREACH position p in the string s1:

Read the values of the k positions that

influence that position

Calculate the result of applying the

rule-table at position p to those values

Set the value s2[p] to that result

END FOREACH

Set s1 equal to s2

END LOOP

This process is illustrated in figure 4.

Secondly, the results of this process are converted into a

fitness value, by taking the final value of the string, treating

this as a binary number and using that as input into a fitness

function. Mirroring the experiments by ESSH, a fitness table

is generated into which each of the values from 0 . . . 216

are assigned a fitness value from the distribution e100(r−1)

is used, where r is a random number from [0, 1]. This is so

that there is a sparse distribution of high-fitness values. This

is the fitness function that we use in this experiment. In the

experiments below n = 16 and k = 3.

The application of the fitness-adaptive walk to the RBN

model is illustrated in figure 5. ESSH experiment with this

model [1] and show that it reaches a much higher fitness

than a direct encoding (i.e. direct application of the fitness-

adaptive walk to binary strings).

Our extension of this to multi-level neutrality exploits the

fact that both the output from an RBN, and the representation

of an RBN, are both binary strings. We apply the fitness-

adaptive walk to a search space of RBNs, where the fitness

is calculated as follows. The RBN is iterated, producing a

binary string. This binary number is then interpreted as a

(shorter-length) RBN (using the mapping from binary strings

to RBNs illustrated in figure 3), and this RBN is iterated, and

the fitness function applied to the final state of this second

RBN. This process is summarised in figure 6.
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Fig. 5. Applying the fitness-adaptive walk to the RBNs.

Fig. 6. Two-level neutrality for the RBN model.

This can be seen as loosely analogous to the process of

gene expression in the cell: the first level of encoded RBNs,

on which the search algorithm acts directly, is analogous

to the gene; the second level, analogous to the translated

protein; the fitness, the action of that protein.

We performed 40 runs of this experiment for the following

three conditions:

• Direct encoding (no RBN)

• Single-level neutrality (as ESSH; figure 5)

• Two-level neutrality (figure 6)

For fairness of comparison, for the one-level neutrality ex-

periment all 336 mutations were tried compared with 336

random mutations for the two-level neutrality. For the direct

encoding, all 20 mutations were tried. The results are shown

Fig. 7. Results for Experiment 1. The outer bars represent the range of
values, the box represents one standard deviation from the mean, the bold
line represents the mean, and small circles represent outliers.

in figure 7.

VI. EXPERIMENT 2: TUNABLE REPRESENTATIONS AND

H-IFF

The second experiment is designed to allow the amount of

neutrality in each of the two levels of an encoding. We apply

this to solving Watson’s Hierarchical If-and-only-If (H-IFF)

problem using the fitness-adaptive walk algorithm described

earlier.

Members of the population are binary strings of length

n1 × n2 ∗×n (n is a parameter, n1, n2 are described below.

These are transformed into (shorter) binary strings (of length

n) by two successive mappings, each of which breaks the

string down into a list of substrings of a given length (call

this n1 for the first mapping, and n2 for the second), then

maps these substrings to bits using a (randomly generated)

mapping (as illustrated in figure 8). The composite mapping

therefore maps strings of length n1 × n2 × n into strings of

length n, and therefore there is a many-to-one mapping from

the search space to the space of strings that are used as input

to the fitness function.

The fitness function used in this experiment is the Hierar-

chical If-and-only-If (H-IFF) function by Watson and Pollack

[14]. This is designed to be a function that is easy for a

recombination-based search algorithm to explore, whilst also

being difficult for mutation-based algorithms to explore (this

is a refinement of the earlier notion of a royal-road function

[15]). The main reason that this is used as an example in these

experiments is because it provides a challenging problem for

a mutation-based algorithm such as the fitness-adaptive walk.

For a binary string B of length 2k for some k, the fitness
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Fig. 8. An example of the kind of mapping used in Experiment 2. In this
example, n1 = 2, n2 = 3 and n = 4.

of that string is defined as [14]:

f(B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if |B| = 1;
|B| + f(B1) + f(B2) if (|B| > 1 and

(∀i, bi = 0
or ∀i, bi = 1));

f(B1) + f(B2) otherwise

Where bi represent the bits in B, and B1 and B2 represent

the right and left hand halves of the string B.

This function has a maximum when all entries in the string

are 0 or all are 1. Essentially, it is trying to reward “blocks”

of zeroes or ones.

This experiment is summarized in figure 9. The output

string from the first mapping is used as the input string to

the second (i.e. the functions are composed). In biological

terms we are using the phenotype of the first mapping as the

genotype for the second; alternatively, we can regard this as

being similar to the two levels of DNA→protein translation,

and the protein→function activity.

More formally, here is the experiment in pseudocode. The

search space S is all binary strings of length n1 × n2 × n,

and h represents the H-IFF function.

Input: parameters m, n, n1 and n2

Randomly generate mappings f1 and f2

Generate initial random point p in S

LOOP (for fixed number of rounds):

Make m mutations of p,

call these p1,1, . . . , pm,1.

Translate all the p1,is with mapping 1:

f1(p1,i) → p2,i, for i = 0, . . . ,m

Translate all the p2,is with mapping 2:

f2(p2,i) → p3,i for i = 0, . . . ,m

calculate h(p3,1) for i = 0, . . . ,m

t = fitness of fittest p3,i for i = 0, . . . ,m

if t represents a fitness decrease, exit loop

if t represents a fitness increase,

p becomes equal to the corresponding p3,i

Fig. 9. Experiment 2.

Fig. 10. Results for Experiment 2.

if t represents no fitness change, then

p becomes a randomly chosen neutral p3,i

END LOOP

Output: fitness of p

The results are shown in figure 10. Each entry in the matrix

represents the mean fitness over 100 runs of the experiment.

Settings of the parameters n1 and n2 are varied from 1–6.

The closeness of the fitness to the maximum (64) is shown

by the shading (lighter representing higher fitness).

VII. DISCUSSION

In both of these experiments, multiple levels of neutrality

are shown to perform better than having a single level of
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neutrality. In the first experiment, the amount of neutrality

(i.e. the ratio of the many-to-one mapping) in the function is

fixed, therefore it could be argued that the multiple levels of

neutrality are not important, and that the results obtained are

simply a result of increasing the overall level of neutrality.

This argument is shown not to hold in the second experiment,

for example the best results are obtained by two levels of

(1:2, 1:2) neutrality ratios, whilst the (1:4, 1:1) and (1:1,

1:4) neutral mappings perform considerably worse.

A tentative explanation for the superior performance of

the two-level is that it expands the number of “directions”

in which neutral ridges can be explored. Even if the search

gets stuck in a local optimum with respect to one of the

neutral levels, there is a second level of neutrality which can

be exploited to escape from that region.

In experiment 2 it is interesting that for high levels of

redundancy, the performance degrades. This suggests that at

these levels, there is too much randomness in the mapping,

and, instead of exploring useful neutral ridges, the algorithm

is often moving to an effectively random part of the search

space.

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated in two experiments that two levels

of neutrality in a representation can lead to an enhanced

ability to explore a search space. One area for future work

will be to explore how widely this idea can be applied,

investigating the conditions under which this holds. A related

piece of work would be to examine how mutations explore

the search space when differing amounts of neutrality are

used.

Another direction will be to explore multiple levels of

neutrality using other search techniques, for example the

effect of multi-level neutrality on crossover and its use for

representations in particle swarm optimization [16].
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