
Refactoring with Wrangler, updated
Data and process refactorings, and integration with Eclipse

Huiqing Li and Simon Thompson
Computing Laboratory, University of Kent

{H.Li,S.J.Thompson}@kent.ac.uk

György Orosz and Melinda Toth
Eötvös Loránd University, Budapest,

Computing Laboratory, University of Kent
{G.Orosz,M.Toth}@kent.ac.uk

Abstract
Wrangler is a refactoring tool for Erlang, implemented in
Erlang. This paper reports the latest developments in Wran-
gler, which include the introduction of a number of data-
and process-related refactorings, and also the implementa-
tion of an Eclipse plug-in which, together with Erlide, pro-
vides refactoring support for Erlang in Eclipse.

Categories and Subject Descriptors D.2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques; D.2.6 []:
Programming Environments; D.2.7 []: Distribution, Main-
tenance, and Enhancement; D.3.2 [PROGRAMMING LAN-
GUAGES]: Language Classifications—Applicative (func-
tional) l anguages; Concurrent, distributed, and parallel lan-
guages; D.3.4 []: Processors

General Terms Languages, Design

Keywords Erlang, Wrangler, Eclipse, Erlide, refactoring,
tuple, record, process, slicing

1. Introduction
Refactoring [8] is the process of improving the design of a
program without changing its external behaviour. Behaviour
preservation guarantees that refactoring does not introduce
(or remove) any bugs. While it is possible to refactor a
program by hand, tool support is considered invaluable as
it is more reliable and allows refactorings to be done (and
undone) easily. Refactoring tools [23] can ensure the validity
of refactoring steps by automating both the checking of
the conditions for the refactoring and the application of the
refactoring itself, thus making refactoring less painful and
less error-prone.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang Workshop 2008 September 2008, Victoria, Canada.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

Whilst the bulk of refactoring tools that have been de-
veloped have supported object-oriented programming, there
is an increasing interest in refactoring tools for functional
and concurrent languages. For Haskell there is HaRe [14, 15,
13], which is embedded in both the Emacs [3] and Vim [29]
editors. A prototype of a refactoring tool for Clean is also
available [28].

We have recently developed the Wrangler tool for refac-
toring Erlang programs [19, 16, 18, 20], and in [17] we and
the team from Eötvös Loránd University, Budapest jointly
reported work on our system and their RefactorErl tool [22,
24]. In this paper we describe the latest developments in
Wrangler, which include the introduction of a number of
new refactorings, and also the implementation of an Eclipse
plug-in which, together with Erlide, provides refactoring
support for Erlang in Eclipse.

The rest of the paper is organized as follows. Section 2
gives a short overview of the Wrangler tool for refactoring
Erlang programs. The next two sections describe the data-
related refactorings: Section 3 the tupling of function argu-
ments, and Section 4 the introduction of records. We move to
discussing process-related refactorings in Section 5. The in-
tegration of Wrangler with Elcipse and Erlide is the subject
of Section 6. Finally, we draw some conclusions and point
to further work in Section 7.

2. Wrangler
Wrangler is a refactoring tool which supports interactive
refactoring for Erlang programs. It is integrated with Emacs
[3] and now also with Eclipse [6]. Snapshots of Wrangler
embedded in Emacs and Eclipse are shown in Figure 1 and
Figure 11. It uses Distel [10] to manage the communication
between the refactoring tool and Emacs, and on the other
hand the Eclipse integration uses RPC (Remote Procedure
Call) to manage the communication.

Wrangler supports more than a dozen refactorings: Re-
name variable/module/function, Generalise function defini-
tion, Move function definition to another module, Function
extraction, Fold expression against function, Tuple function
parameters, From tuple to record, Rename a process, Reg-

Figure 1. A snapshot of Wrangler in Emacs

ister a process, Add a tag to messages, and From function
to process. There are two functionalities for duplicated code
detection: expression search within a single module and du-
plicated code detection across multiple modules.

2.1 Tool Structure
Every refactoring has two main parts: side-condition check-
ing and performing the transformation. In most cases the
side-condition checking is more complex than the transfor-
mation itself, because it requires a lot of syntactic and se-
mantic information to be collected and analysed, in order,
for example, to ensure that the binding structure of the pro-
gram is unaffected, or the way in which messages are passed
between processes is unchanged. Figure 2 gives an overview
of the architecture of the tool.

Using the standard Erlang parser modified to include
more layout information, Wrangler first parses the program
source code. A modified version of the SyntaxTools library,
designed to include more semantic data in the trees pro-
duced, is used to build the Abstract Syntax Tree(AST). This
is then annotated with more syntactic (textual range) and se-
mantic (binding, category) information. The range informa-

tion is stored in the form of the start and end locations of
the node; the category information is used to distinguish ex-
pressions from patterns, for example. The refactorer operates
over this Annotated Abstract Syntax Tree(AAST); in con-
dition checking the conditions typically collate information
gathered by walking the tree, and the transformations them-
selves are also typcially accomplished by a tree-walking al-
gorithm.

Most of the refactorings need some user interaction (typ-
ically, a prompt for a new function/variable name), after
which the refactorer can be called with the corresponding
parameters. The transformations are not applicable when the
side-conditions fail, so at first the refactorer engine gathers
the necessary data and checks the side-conditions and only
when all is well performs the refactoring. Source code is pro-
duced by a process of pretty printing, which is designed to
preserve the original layout as far as possible. All the refac-
torings supported by Wrangler are module-aware, support-
ing refactorings across multiple-module projects.

In order for users to be able to undertake refactoring in
a speculative way as a part of their software development
process, it is important to be able to undo any transforma-

Figure 2. The structure of the refactoring tool

tion. This can be done in Emacs, but if any edits have been
performed after the last refactoring these will be lost; in the
Eclipse embedding, the undo streams for edits and refactor-
ings are fully integrated.

3. Tuple function parameters
The refactoring Tuple Function Parameters groups a number
of consecutive arguments of a function into a tuple. This
refactoring also modifies the arguments to the call sites of
the function, and affects multiple modules if the function is
exported.

To apply this refactoring in Wrangler, the user first points
the cursor to a function parameter or an application argument
in the editor, then selects Tuple Function Arguments from the
Refactor menu, after that the refactorer will prompt for the
number of elements that are to form the new tuple.

With Wrangler, this refactoring needs the following pa-
rameters: the pathname of the current file, the line and col-
umn number of the current cursor position, the required
length of the tuple and finally the search path, which is a list
of directories to search for related Erlang files. The first three
of these are in the editor state, as is the last, and so the user
only needs to input the length of the tuple to be created. Tu-
ple Function Arguments has the following side-conditions:

• The indicated position in the editor must be a formal ar-
gument of a function definition or an application argu-
ment.
• The desired length of the tuple (m, say) must not be too

large. If the chosen parameter is the n-th element of the
function arguments, and then m+n-1 should not be larger
than the arity of the function.
• The new function produced with a reduced arity should

not conflict with existing functions.
• The function must not be an OTP callback function.
• If the user initiates the refactoring from an application

site of the function, then the function must be defined in
the current module.

The example in Figure 3 illustrates an application of this
refactoring which groups the first two parameters of function
f/3 into a tuple. Function f/3 is exported by its defining
module and used by another module, and is this case both

the definition of f/3 and its application in the other module
tup2are changed. The export attribution is also affected by
the refactoring.

Create tuple

-module(tup1).
-export([f/3]).

f(A, B, C) ->
A+B+C.

-module(tup2).
-export([g/3]).

g(X, Y, Z) ->
tup1:f(X, Y, Z).

→

Result

-module(tup1).
-export([f/2]).

f({A, B}, C) ->
A+B+C.

-module(tup2).
-export([g/3]).

g(X, Y, Z) ->
tup1:f({X,Y},Z).

Figure 3. Tupling the first two arguments of the function f.

Like other refactorings, this refactoring starts with pars-
ing the current file, and the AST produced is then augmented
with the results of semantic analysis. The refactoring en-
gine then checks whether all the side-conditions, as listed
above, hold. If the answer is yes, the refactoring is per-
formed by first transforming the current module, then the
client modules of the current module; otherwise the refac-
toring is aborted leaving the program unchanged.

In the case that function under consideration is used in
an implicit fun application or a meta-function application,
Wrangler will issue a warning message asking the user to
check and modify manually if necessary.

4. Introduce records
Erlang’s principal data structuring mechanism is the tuple,
which corresponds to the C structure, or indeed to tuples in
other functional programming languages. The Erlang record
allows tuple fields to be named, allowing programmers more
flexibility in implementation by hiding some of the data
representation. One example of this would be to allow a
programmer to add a field to an existing record.

Thus, the process of turning a tuple into a record is a
natural refactoring,which we call From Tuple to Record. This

has been explored by the RefactorErl team [21], but to date
remains unimplemented in that system. We have chosen to
take a bottom-up approach to implementing it in the work
reported here.

Specifically we have chosen to implement the refactoring
which transforms a tuple function parameter into a record
expression. This refactoring modifies both the definition of
the function and its application sites across the program. If
the given record name does not exist, a new record definition
is created by the refactorer.

In the remaining of this section we report the design and
implementation of From Tuple to Record, and then explore
ways in which this should be extended.

4.1 From Tuple to Record
To apply this refactoring in Wrangler, first mark a tuple
in the editor, which should be a function parameter or an
application argument, then select From Tuple to Record from
the Refactor menu, and after that the refactorer will prompt
for the record name and the record field names.

A number of side-conditions are necessiated by this refac-
toring, and they are:

• The starting and ending positions of the selected text
should delimit a tuple, which is a function parameter or
an application argument.
• The given record name and field names should be atoms.
• The number of the field names given must be equal to the

selected tuple size and must be distinct.
• If the user points an application argument in the editor,

then the function definition must be in the current mod-
ule.

The example in Figure 4 shows the application of From Tu-
ple to Record to the first argument of function f/2. A new
record, named rec, with two fields has been created, and
both the definition of f/3 and its application in g/1 have
been changed. Since f/2 is not exported by its defining mod-
ule, this refactoring has a local effect; whereas the exam-
ple in Figure 5 illustrates an application of this refactoring
which affects multiple modules. In the latter example, both
the definition of f/3 and its application in the other module,
record2, are affected. A record definition is created in mod-
ule record1, and the record definition in module record2
is updated.

The implementation of this refactoring follows the pattern
outlined above in Sections 2.1 and3.

4.2 Types and the refactoring
The example in 6 illustrates refactoring a function which

has more the one function clause, and can be applied to
both tuples and lists. In this case the refactoring needs to
analyze the function calls to the transformed function to
decide whether an argument is a tuple (which will become
a record) or not. In general this is not decidable, and so

Create record expression
-module(record).
-export([g/1]).

f({A, B}, C) ->
A+B+C.

g(X) ->
f({X, 2*X},3*X).

Result
-module(record).
-export([g/1]).
-record(rec,{first,second}).

f(#rec{first=A, second=B},C) ->
A+B+C.

g(X) ->
f(#rec{first=X,second=2*X},3*X).

Figure 4. An example of From Tuple to Record affecting a
single module

Type example
f({A, B}, C) ->
A+B+C;

f([],C)-> 9.

h(X) ->
Y = {X, X},
f(Y, 5),
S = []
f(S, 3*X),
Z = mod:app(X),
f(Z, X).

Figure 6. Function with multiple clauses

it will be necessary to add some run-time type checking
(using case for example) to decide whether the argument
is a record or not. This will clutter up the code, but serves as
a warning to the possible user of a refactoring like this.

4.3 Replace tuple with record
In order to inform the next steps of our work, we have
undertaken a case study of the Erlang Standard Library in
order to discover the most used patterns of record usage. The
three that we have discovered are

Replace tuple with record in a function body. Instead of
accessing a tuple literally, we can name the record in the
function argument and access it directly.

Create record expression

-module(record1).

-export([f/2]).

f({A, B}, C) ->

A+B+C.

-module(record2).

-export([g/3]).

-record(rec,{third}).

g(X, Y, Z) ->

record1:f({X, Y}, Z).

h(D)-> D#rec.third.

→

Result

-module(record1).

-export([f/2]).

-record(rec, {first, second}).

f(#rec{first=A, second=B},C) ->

A+B+C.

-module(record2).

-export([g/3]).

-record(rec,{first,second,third}).

g(X, Y, Z) ->

record1:f(#rec{first=X,

second=Y}, Z).

h(D)-> D#rec.third.

Figure 5. An example of application of From Tuple to Record affecting multiple modules

Using record update. If a tuple expression is a variant of
another tuple expression, the former can be defined from
the latter using record update syntax.

Record access. Access to components of a record can be
given by an access expression, rather than by a pattern
match of the whole record.

Used in combination, these transformations allow a user to
hide the representation of a data type, thus giving a more ab-
stract, and thus more flexible, interface to the data. It remains
a research challenge to provide the appropriate interface to
this collection of refactorings, so that a ‘batch’ application of
them to a whole set of functions which operate over a given
(conceptual) data type can be devised.

5. Process-related Refactorings
Built-in support for lightweight processes is one of the
strengths that distinguish Erlang from other programming
languages. Erlang programs are made of lots of processes.
These processes can communicate with each other by send-
ing messages. In Erlang, programming with processes is
easy, needs only three new primitives: spawn, send (!) and
receive; however, undisciplined use of processes could make
the program hard to understand and maintain. For example,
some typical process-related bad code smells include

• Code for implementing a single process spans across
multiple modules or code for more than one kind of
process exist in the same module.
• Use process and message passing when a function call

can be used, or use sequential function calls to model
parallel activity.

• Name of a registered process does not reflect its role or
functionality.
• Send/receive untagged messages.
• Non tail-recursive functions, especially non tail-recursive

servers.
• Register a process that only lives a short time, or not

register a process that lives a long time
• Not use generic OTP libraries, such as the generic server,

when doing so is more appropriate.

Most of the above bad code smells can be detected, and
refactored out step by step manually. However, after having
examined a few basic refactorings, such as register a pro-
cess, add a tag to messages, we realised that the dynamic na-
ture of the language and the implicitness of process and com-
munication structure of an Erlang program present a chal-
lenge for tool support of automated process-related refactor-
ings, or at least some of them.

For example, the refactoring register a process registers
a process with a name provided by the user, and replaces
the receving process identifier in a send expression with the
process name if the process identifier refers to, and only
refers to, the selected process. An example application of
this refactoring is shown in Figure 7. For this refactoring to
be behaviour preserving, the following side-conditions are
necessary:

• The process name provided by the user should be an
atom, and should not have been used as a process name
in the program under consideration.
• The selected process should not have been registered.

• Should multiple instances of the process exist during run
time, they should not co-exist at the same time.

(a)
f(Fun)->

Pid = spawn(Fun),

g(Pid).

g(Pid)->

Pid!message.

→

(b)

f(Fun)->

Pid = spawn(Fun),

register(pname,Pid),

g(Pid).

g(Pid)->

pname!message.

Figure 7. Register a process

If all the side-conditions are met, we are then able to
proceed with the transformation. However, when replacing
a process identifier in a send expression with the process
name, we must make sure that the process identifier only
refers to the process selected. For instance, in the exam-
ple shown in Figure 8, the Pid in expression Pid!message
should not be replaced by pname because this Pid is associ-
ated with multiple process instances.

(a)
f(Fun)->

Pid = spawn(Fun),

g(Pid),

Pid1 = spawn(Fun),

g(Pid1).

g(Pid)->

Pid!message.

→

(b)
f(Fun)->

Pid = spawn(Fun),

register(pname,Pid),

g(Pid),

Pid1 = spawn(Fun),

g(Pid1).

g(Pid)->

Pid!message.

Figure 8. Register a process

Even though this refactoring is very basic, neither its
side-condition analysis or its transformation rules is straight-
forward to carry out due to the dynamic feature of Erlang
and the design of Erlang’s process system. Next, we sum-
marise the major challenges that we have encountered when
process-oriented refactoring is concerned.

• Processes in an Erlang program are syntactically implicit.
Unlike some other concurrency-oriented programming
languages, such as Pict [26] in which processes and chan-
nels are syntactically marked out, Erlang does not have
a syntax category designed especially to identify pro-
cesses. In an Erlang program, a process is created by the
application of spawn/1 or its variants. spawn/1 itself is
just an Erlang built-in function. For example, the expres-
sion

Pid = spawn(Fun)

creates a new concurrent process that evaluates Fun, and
returns a Pid whose value identifies the process.
• Implicit connection between a process identifier and the

process identified. The spawn expression above also re-
veals the fact that what identifies a process is not the

name of the process identifier, but the actual value. Since
a variable can take part in computation, or pass its value
to other variables, it is possible that two or more pro-
cess identifiers have the same value, therefore refer to
the same process. Deciding whether two or more pro-
cess identifiers refer to the same process statically needs
data-flow analysis. Furthermore, as the Erlang type sys-
tem only provides run-time rather than static type check-
ing, even whether a variable stands for a process identi-
fier or not is not always clear from the static view of the
program.
While it is possible to name a process using the function
register/2 provided by Erlang, it is not always desir-
able to do so especially if a process only lives a short
time, and sometimes it is not possible to do so as pointed
out by the side-conditions Register a process.
• The process communication structure is implicit. Pro-

cesses in an Erlang program communicate with each
other by message passing. Pid!Message sends Message
to the process identified by Pid, and returns the mes-
sage itself; receive...end receives a message that has
been sent to a process. Because of the indirect connec-
tion between a process identifier and the send/receive
expressions of the identified process, trying to establish
a connection between a send expression in one process
and the corresponding receive expression in another
process is difficult, not even to mention the mapping be-
tween particular messages sent/received. This is particu-
larly obvious when the refactoring Add a tag to messages
is concerned. This refactoring tries to add a tag to all the
messages received (or sent) by a particular process, and
obviously it needs to find out where these messages are
sent from.
• Unlike functions or modules, a process in Erlang does

not have a clear syntactically specified body or scope.
Statically a process consists of the collection of functions
that are reachable from the entry function/expression of
this process. But, it is possible for multiple processes
to share code, even send/receive expressions. Sharing
of send/receive expressions makes it difficult to refac-
tor messages sent/received, since it potentially affect all
those processes sharing the code, as well as those pro-
cesses that communicate with them.
• Process context dependent evaluations. Erlang is a lan-

guage with side-effects. Some of the built-in functions
provided by Erlang depend on the context of the cur-
rent calling process. A particular example is the function
self/1, which returns the process identifier of the call-
ing process. Hence, care has to be taken if a refactoring
changes the execution context of an expression. Exam-
ples of this kind of refactorings include From function to
process, From process to function, Spawn a new process
to execute an expression etc.

As mentioned before, Wrangler uses annotated abstract
syntax tree (AAST) as the internal representation of Erlang
programs. The annotation information includes binding in-
formation of variables and functions, syntax category, loca-
tion and comment information. Together with some funda-
mental functionalities for function call graph construction,
module graph construction, side-effect analysis, etc, the ex-
isting infrastructure provides enough information to proceed
with most refactorings regarding to the pure functional part
of the language, but not with most process-related refactor-
ings because of the challenges presented above.

To support process-related refactorings, we have ex-
tended our work in two aspects. Firstly, we have extended
the existing AAST representation of Erlang programs with
process information; secondly, we have exploited the use of
slicing techniques to help the refactoring process. As a de-
sign strategy, Wrangler always try to extract as much neces-
sary information as possible by static analysis, and minimise
the amount of information needed from the user.

The remaining of this section is organised as follows.
We first describe the annotation of AAST with process in-
formation, then discuss program slicing and its uses within
the refactoring context. Finally, a summary of the process-
related refactorings supported by the current implementation
of Wrangler is given.

5.1 Annotate AST with Process Information
In an Erlang program, the only way to create a process is via
the application of spawn, which creates a new concurrent
process and returns a process identifier. But because process
identifiers can be passed to other functions as parameters or
returned values, or even passed to other processes by mes-
sages, sometimes it is not clear which process an identifier
refers to. With this analysis, we aim to establish a static con-
nection between a process identifier occurrence and the pro-
cess identified. Due to the syntactic implicitness of Erlang
processes, we use the spawn expression to represent the pro-
cess created. In Wrangler, a particular spawn expression is
identified by the combination of the spawn expression itself,
the enclosing function of the spawn expression and the rel-
ative location of the spawn expression within the function.
Location is needed to resolve the cases when two or more
lexically the same spawn expressions occur in the same func-
tion.

As an example, given the sample code (a) in Figure 8, this
analysis will annotate each occurrence of Pid in function
f/0 with

{pid, [{spawn(Fun), {mod, f, 1}, 1}}],

in which pid means the variable represents a process iden-
tifier, spawn(Fun) is the spawn expression that creates this
identifier, {mod,f,1} refers to the enclosing function of
the spawn expression, and the last integer 1 means that the
spawn expression is the first spawn expression in this func-
tion. Here we assume that the name of the module to which

the sample code belongs is mod. However, the occurrences
of Pid in function g/1 will be annotated with the following
information because of the multiple application sites of this
function:

{pid, [{spawn(Fun), {mod, f, 1}, 1},
{spawn(Fun), {mod, f, 1}, 2}]}.

With this kind of annotation, we are able to check whether
two process identifiers refer to the same process or not by
looking at the spawn expressions associated with them. The
basic annotation algorithm used by Wrangler works as fol-
lows:

1. Construct the call graph for functions, and sort it topo-
logically based on the dependencies between functions.

2. Within each function definition, annotate every occur-
rence of spawn application expression with process iden-
tifier information as illustrated above.

3. Analyze the call graph in a bottom-up order to propa-
gate process information within each function definition
through function application (when a function returns
a process identifier), pattern matching and the binding
structure of variables whenever it is possible. In the case
that a function returns a process identifier, the return type
of this function is also recorded.

4. Analyze the call graph in a top-down order to propagate
process information from the call-sites to local function
definitions.

5. Repeat from step 3 until a fix-point has been reached.

Apart from spawn expressions, process identifiers returned
by other built-in functions, such as self/1, could also be
annotated in a similar way.

So far, this algorithm does not handle complex pattern
matching and message passing, therefore only partial pro-
cess information is annotated into the AAST. However,
methods have been taken to indicate whether the information
annotated to a process identifier is complete or not.

User input is still needed when an undicidable situation
occurs, but we try to reduce this kind of situations by the use
of slicing techniques when it is possible.

5.2 Program Slicing
Apart from annotating AAST with process information, we
have also exploited the use of program slicing techniques
to reduce the number of uncertainties encountered by the
refactoring engine.

The concept of program slicing was first introduced by
Weiser. In [30], Weiser defines a program slice S as a re-
duced executable program obtained from a program P by
removing statements, such that S replicates part of the be-
haviour of P. The slicing process generally starts for a slicing
criterion, which represents the point in the code whose im-

pact is to be observed with respect to the entire program. A
backward slice contains all parts of a program that may have
an effect on the criterion in question; by contrast, forward
slices contain all parts of a program that may be affected by
the selected criterion. Program slicing has its applications
in many areas, such as debugging, code understanding, re-
verse engineering, program testing, etc. Program slicing it-
self could also be refactorings. For example, a function re-
turning a tuple could be sliced into two functions, each of
which returns an element of the tuple.

Within the context of refactoring Erlang programs, we
have mainly exploited the use of static program slicing to
reduce the scope of the program to be analysed, with the
hope to reduce those undicidable cases for which Wrangler
needs to ask for user’s input or issue warning messages in
order to proceed with the refactoring process. Both forward
and backward inter-function slicing of Erlang programs have
been implemented. Due to space limit, we are not going
into the details of the implementation, instead we focus on
benefits of slicing during the refactoring process.

5.2.1 Forward slicing
Given an expression or a subset of the arguments of an Er-
lang function, Wrangler’s forward slicer returns all parts of
the program that may be affected by the value of the se-
lected expression or arguments by employing data depen-
dency analysis. The slicing algorithm operates cross func-
tion borders if the returned value of the function depends
on the slicing criterion or any expression that depends on
the slicing criterion is passed as a parameter to a function
defined within the application in question. For instance, the
example code (b) in Figure 9 shows the slicing result for the
first spawn(Fun) expression in function f/1.

(a)

f(Fun)->

Pid = spawn(Fun),

g(Pid),

Pid1 = spawn(Fun),

g(Pid1).

g(Pid)->

Msg = "Hello world!"

Pid ! Msg.

→

(b)

f(Fun)->

Pid = spawn(Fun),

g(Pid).

g(Pid) ->

Pid ! Msg.

Figure 9. Forward slicing

The major benefit of forward slicing is that it gives a
clear scope of the program which might be dependent on
the selected criterion, therefore a confined scope for pro-
gram analysis if only the parts of the program that depend on
the slicing criterion is necessary to be analysed. For exam-
ple, to check whether a spawned process has been registered
by other processes, we only need to check those registration
expressions that belong to the slice produced by taking the
spawn expression as slicing criterion. Reducing the analy-

sis scope also reduces the number of undicidable situations
encountered.

5.2.2 Backward slicing
In contrast to forward slicing, backward slicing uses a back-
ward traversal of the data dependency flow from the point
of interest given in the slicing criterion, and returns the parts
of the program that could potentially affect the value of the
selected expression. Depending on the applications of the
computed slices, some will require that the returned slice
is executable, while others only need the relevant expres-
sions to be returned without checking whether those expres-
sions form a syntactically well-formed program or not. With
Wrangler, backward slicing has been used mainly with two
scenarios. More details follow.

• Slice in order to evaluate. In some situations, it would
help the refactoring process if Wrangler could know
the possible values of a specific variable or expression.
One approach is to use the functionalities provided by
the module erl eval, which defines an Erlang meta
interpreter for expressions. For example, the function
erl eval:exprs/2, or its variants, can be used to evalu-
ate a sequence of expressions in an abstract syntax repre-
sentation. First slice then evaluate could ensure that only
those expressions which could affect the value of the se-
lected expression will be evaluated. More than that, in
the case that the expression sequence to be evaluated de-
pends on some formal parameters of the enclosing func-
tion, inter-function slicing provides more chances for the
evaluation to be successful.
For instance, with refactorings such as rename a reg-
istered process, register a process, Wrangler needs to
know the process names that have already been used
by the program, however this is not always straightfor-
ward when a process name can be dynamically com-
posed as shown in the example code (a) in Figure 10.
Taking the variable ProcessName from the expression
register(ProcessName, Pid) as the slicing crite-
rion, Wrangler’s backward slicer will return the expres-
sion shown in part (b) in Figure 10. If there are multiple
applications of the enclosing function of the slicing crite-
rion, or functions that call this function either directly or
indirectly, the slicer will return a list of expressions, each
of which corresponds to a non-recursive call chain that
leads to the function containing the slicing criterion. Note
that it is not always the case that the produced slices can
be evaluated, because of the lack of bindings for some
functions for example, but again one strategy of wrangler
is to extract as much as information needed as possible.
• Like forward slicing, backward slicing can also be used

to refine the scope of analysis. For example, taking a
process identifier as the slicing criterion, backward could

(a)
start() ->

Prefix = "ch1",

State = [1,2]

start(Prefix, State).

start(Prefix, State) ->

ProcessName=list_to_atom(Prefix++"_proc"),

Pid=spawn(ch1, init,[ProcessName, State]),

register(ProcessName, Pid).

(b)
fun(Prefix) ->

ProcessName = list_to_atom(Prefix++"_proc"),

ProcessName

end (begin Prefix = "ch1", Prefix end).

Figure 10. Backward slicing

help to locate where the process is spawned, and even the
initial function of the process identified.

The current slicing algorithms implemented in Wrangler do
not handle process communication, and this aspect will be
further investigated in the future.

5.3 Process-related refactorings supported by
Wrangler

A number of process-related refactorings have been imple-
mented using the enhanced infrastructure of Wrangler, and
they are:

• Register a process, which register a process identifier
with a user-provided name, and replaces the use of the
process identifier in a send expression with the use of
the process name whenever this is safe. Registering a
process with a name allows any process in the system to
communicate with the process without knowing its Pid.
• From function to process, which turns a function defini-

tion into a process, and all the calls to this function into
communication with the new process. This refactoring
provides potential for memorisation of the computed re-
sults and adding new functionalities.
• Rename a registered process, which renames a process’

registered name to a user-provided new name. The main
challenge of this refactoring is to detect whether an atom
with the same name in the program presents a process
name or not.
• Add a tag to the messages sent/received by a process,

which adds a tag to all the messages received (or sent)
by a process. This refactoring affects not only the pro-
cess where the refactoring is initiated, but also the other
processes which commutate with it. The refactoring does
not distinguish individual messages received (or sent) by
a process, therefore all the messages belonging to the
processes involved will be added the same tag. The tags

added can then be renamed manually by the user to dis-
tinguish different kinds of messages. While not ideal, this
refactoring still help to mark out the a clear scope that
needs inspection.

6. Eclipse integration
There are some imitations to the way in which Wrangler is
integrated into the Emacs editor, and so we have investigated
integrating Wrangler in Integrated Development Environ-
ment (IDE). In doing this we aimed to make as few changes
to Wrangler as necessary, and to use it as a ‘black box’ to
provide services to the IDE. On the other hand, this integra-
tion work provides a perspective on the design of Wrangler
(and indeed Eclipse and its refactoring model) and we dis-
cuss this at the end of the section. Before that we describe
the background to the work, and then give an overview of
the integration work; full details of this work are given in
the project report, [25].

6.1 Emacs
Emacs [3] is an highly configurable text editor with syntax
highlight tool, debugger interface among many other fea-
tures, but – as its name says Editor MACroS – it is just an
editor with additional functionalities. What is more the fun-
damentals of the current version were originally written in
1984, when the developers of the tool, in a very understand-
able way, did not address refactoring support.

So the support provided by Emacs for various code trans-
formation scenarios is not as good as it might be. To be more
specific

• A typical refactoring will affect a complete project, rather
than a single file. When integrating a refactoring tool with
Emacs it therefore becomes necessary to define a notion
of project, by, for instance, specifying a set of search
paths.
• A number of refactorings – such as those which move

a definition from one module to another, or those which
rename a module – affect the way in which a project is
built using‘make’ or other systems. Changes made within
the editor-embedded refactorer will not by default be
reflected in the build infrastructure of the system.
• Emacs has a notion of ‘undo’, related to the editing op-

erations; a refactoring tool will also provide a separate
‘undo’ operation; it is not at all clear how the two sepa-
rate ‘undo’ operations can be put together.

Taken together these arguments against editor-embedded
refactoring systems prompted us to investigate ways in
which Wrangler could be integrated with an IDE.

6.2 Eclipse
The best developed open source IDE is Eclipse [6, 12],
which is an open source community whose projects are fo-
cused on building an extensible development platform, . . .

Figure 11. Wrangler in Erlide

for building, deploying and managing software across the
entire software lifecycle. Many people know us . . . as a Java
IDE but Eclipse is much more than [that] [6]. In particular
Eclipse has a plug-in architecture [4] which supports the in-
tegration of new functionality for Java and other languages.
Plug-in distribution and update is provided by the Eclipse
organisation.

For us, the most important thing is the refactoring sup-
port of Eclipse. It provides a very well documented refactor-
ing API, the Eclipse Language Toolkit (LTK) [9], with fully
support for integration into various aspects of the infrastruc-
ture of Eclipse, including

• the refactoring menu,
• refactoring previews, and,
• ‘undo’ and ‘redo’ support.

The LTK is described in more detail in Section 6.4 below,
when we describe how Wrangler refactorings are integrated
into Eclipse. Integration of this sort has already been devel-
oped for the Ruby language [5].

Eclipse is designed to be a universal tool platform and
provides several extension points and APIs to extend it. The
basis of Eclipse is the kernel (or runtime), which loads plug-
ins as needed. On top of this are four components

Workspace. The Workspace component handles the re-
sources, including files, directories, projects, connec-
tions. Every modification of a resource is handled by
the Workspace component; it also stores the history of
each resource, letting the user undo or redo changes.

Workbench. The Workbench is the graphical interface next
to the kernel. It is implemented in Eclipse’s own Standard

Widget Toolkit (SWT), giving OS native look-and-feel. It
manages all the views, editors, and user actions as well.
Of course it is also extensible using its extension points.

Team. This provides support for working with CVS / SVN
repositories among other version management systems.

Help. This supports the definition and contribution of many
kind of documentation.

Plug-ins can declare extension points, which can be used by
others to extend its functionality in a controlled way. The
Wrangler plug-in uses the following extension points:

org.eclipse.ui.editorActions: This allows plug-ins to add
menus and toolbars to the workbench, when the selected
editor type becomes active. In our case this was used to
add the Refactor menu.

org.eclipse.ui.bindings: A binding is used to define rela-
tions between sets of conditions, commands and keybind-
ings, and is used to create shortcuts for refactorings.

org.eclipse.ui.commands: This is used to create commands
and command categories. A command is an abstract rep-
resentation of a semantic behavior; in our case it makes
the connection between actions and bindings.

6.3 Erlide
The Erlide [7] plug-in provides an Eclipse-based devel-
opment environment for Erlang, with features including a
built-in console, automated build tool, syntax highlighting,
code completion and debugging support, outline and run-
ning processes view and live expression evaluation; see Fig-
ure 11. The Erlide backend is a Java interface for an Erlang
node [2]. It provides thread safe RPCs (Remote Procedure

Call) to each node, and each project is linked to a backend.
This backend starts and stops when the project is opened or
closed.

6.4 Integrating Refactorings using the LTK
The LTK provides a toolkit for integrating refactorings into
Eclipse. This has a number of advantages, such as integrating
them with the preview mechanism and the undo/redo mech-
anism, but it does provide a somewhat different workflow for
refactorings than that assumed by Wrangler. An initial prob-
lem was that Wrangler is designed to modify source files,
and we needed first to modify it so that it returns a new copy
of the file. More fundamentally, the LTK workflow follows
this pattern

1. The user initiates the refactoring.

2. An initial check is made of some of the preconditions.

3. User interactions (e.g. getting a new variable name).

4. According to the user input, another check is called; if no
error occurs, the changes are calculated.

5. A preview dialog appears (optionally), then the calcu-
lated changes are applied if required.

while the Wrangler workflow is thus:

1. The user initiates the refactoring.

2. User interactions.

3. Applying the refactoring (within the Wrangler system)

(a) checking conditions

(b) calculating modifications

(c) applying them to the AAST

(d) writing them back to a new source file

Clearly, the Wrangler workflow will not allow the initial
check (LTK 2) and so this stage becomes trivial, with user
interactions (LTK 3) preceding the call to Wrangler (LTK 4).
This call will generate a new source file, from which a set of
differences, calculated using an open source ‘diff’ tool, can
be generated, as required by LTK 4. This ‘diff’ set forms the
input for the final stage (LTK 5).

This correspondence gives a high-level overview of the
way that a number of refactorings, such as renaming func-
tions and variables, and tupling of arguments, can be inte-
grated into Erlide and Eclipse. We next turn to some of the
difficulties presented by the integration exercise.

6.5 Integration challenges
The model presented in the last section allows informa-
tion to be gathered prior to any further processing, and this
supports certain kinds of refactoring as discussed above.
However, others require a more fine grained interaction.
This includes function generalization and folding expres-
sions against function definitions,which we discuss now.

In function generalization, a user selects a sub-expression
of the function body, provides a new parameter name, and
once this is done the user will be prompted by Wrangler for
further confirmation in the case that the expression contains
free variables or potentially causes a side-effect. This extra
interaction is accommodated in the plug-in by means of
Eclipse pop-up windows.

Folding instances of a function body into a call to that
function will in general result in multiple instances of that
body, and so multiple requests to the user for confirmation.
In order to integrate this, it was necessary to change the
Wrangler workflow for this refactoring, to return all the
candidates in a single step, then to be iterated through within
Erlide.

In both those cases, it was necessary to modify the refac-
toring to fit the LTK model of a refactoring. Some refac-
torings appear to go beyond the LTK model entirely. Any
refactoring which modifies the files used by a system – such
as renaming a module, or creating a new module by moving
a definition to a non-existent module – cannot be accommo-
dated in the LTK model.1

Other ‘refactorings’ – like clone detection – are not quite
refactorings, and it would be artificial to include them in the
LTK interface; we are currently investigating including them
in a general ‘search’ interface.

6.6 Reflections on Wrangler
The LTK workflow presented in Section 6.4 suggests that
the architecture of Wrangler might be modified to fit more
tightly into Eclipse. In particular, it would be possible to
refactor the pre-conditions of refactorings into two parts.

• The first part could be checked independently of the user
input: in the example of ‘rename function’ this might
include checking that the current position of the cursor
is on a function identifier.
• The second part will use the user input – in our example

the new name for the function – and check that, for
instance, this name is not already used in the module, or
imported from another module.

As we have noted earlier, the output of Wrangler after a
refactoring is a new file, from which we calculate a ‘diff’
set; it would be possible to modify Wrangler to produce a
‘diff’ set directly. We aim to investigate these modifications
in the months to come, and to continue our overall project
to integrate Wrangler as tightly as possible into Eclipse and
Erlide.

7. Conclusions and future work
It is clear that as we look at more advanced refactorings
– such as those involving wholesale transformation of data
representations, or others which address inter-process com-

1 The Eclipse Java refactoring systems allows these file changes, but note
that it was implemented prior to the definition of the LTK.

munication – then more complicated analyses are required.
Indeed, we would contend that for these more advanced
transformations it is impossible to make them automatic,
and that the role of the refactoring tool becomes one of a
refactoring assistant, which can provide support for various
aspects of the refactoring process, rather than a completely
automated process. Perhaps this should be no surprise, as
this is the case in machine proof, where theorem-provers
and proof assistants co-exist, and there is more than a lit-
tle in common between meaning-preserving refactoring and
proof. We therefore expect that our work will take us towards
more complex, user-driven, interactions.

We also see in the work that we report there is a sub-
stantial investment in infrastructure in any tool building of
this sort. While it may not be evident from the high-level re-
port of the Eclipse integration that we provided, the project
report [25] shows this was not a trivial, or even a straightfor-
ward exercise, and considerable work remains to be done.
Nevertheless we expect to contribute our refactoring tools to
the general Erlide project, which shows great promise.

On the same theme we and the team from Eötvös Loránd
University hope to evolve a common infrastructure between
our two systems, so that user can take advantage of the two in
a seamless way. This common infrastructure will also allow
us to test the two systems against each other.

The Kent team would like to acknowledge the support
of the UK EPSRC in funding work on Wrangler, as well as
support provided by Vlad Dumitrescu for his work on Erlide,
the members of the Erlide development mailing list, and the
members of the Eclipse JDT development mailing list for
support provided in the port of Wrangler to Eclipse.

References
[1] J. Armstrong, R. Virding, M. Williams, and C. Wikstrom.

Concurrent Programming in Erlang. Prentice Hall, 1996.

[2] D. Byrne. Integrating Java and Erlang. http://www.

theserverside.com/tt/articles/article.tss?l=

IntegratingJavaandErlang.

[3] E. Ciccarelli. An Introduction to the Emacs Editor. Cambridge,
Massachusetts: MIT AI Lab., AIM-447, 1978.

[4] E. Clayberg and D. Rubel. Eclipse: Building Commercial-
Quality Plug-ins. Addison Wesley, 2006.

[5] T. Corbat, L. Felber and M. Stocker. Refactoring Support for
the Eclipse Ruby Development tools. Diploma thesis, Univ. of
Applied Sciences, Rapperswil, Switzerland, 2006.

[6] Eclipse project. http://www.eclipse.org/.

[7] Erlide. http://erlide.sourceforge.net/.

[8] M. Fowler, et. al. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[9] L. Frenzel. The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs. Eclipse Magazin, 2006.

[10] L. Gorrie. Distel: Distributed Emacs Lisp (for Erlang). In
The Proceedings of Eighth International Erlang/OTP User

Conference, Stockholm, Sweden, November 2002.

[11] Z. Horváth et al.: Refactoring Erlang Programs.
http://plc.inf.elte.hu/erlang/

[12] S. Holzner. Eclipse. O’Reilly, 2004.

[13] H. Li, C. Reinke, S. Thompson. Tool support for refactoring
functional programs. Proceedings of the ACM SIGPLAN
workshop on Haskell, Uppsala, Sweden, 2003.

[14] H. Li, S. Thompson, C. Reinke: The Haskell Refactorer,
HaRe, and its API. Electronic Notes in Theoretical Computer
Science 141(4) (2005) 29–34

[15] H. Li: Refactoring Haskell Programs. PhD thesis, Computing
Laboratory, University of Kent, UK, September 2006.

[16] H. Li, S. Thompson: A Comparative Study of Refactoring
Haskell and Erlang Programs Sixth IEEE International
Workshop on Source Code Analysis and Manipulation, 2006

[17] H. Li, et. al. Refactoring Erlang programs. In: The Proceed-
ings of 12th International Erlang/OTP User Conference, Stock-
holm, Sweden (2006) http://www.erlang.se/euc/06.

[18] H. Li, S. Thompson: Testing Erlang Refactorings with
QuickCheck. In Proceedings of IFL2007, Freiburg,, 2007.

[19] H. Li, S. Thompson: Tool Support For Refactoring Functional
Programs. In: In Partial Evaluation and Program Manipulation
(PEPM’08). San Francisco, California, USA (2008).

[20] H. Li and S. Thompson. Clone Detection and Removal for
Erlang/OTP within a Refactoring Environment. In P. Achten,
et. al. eds, Draft Proceedings of the Ninth Symposium on
Trends in Functional Programming, The Netherlands, 2008.

[21] L. Lövei, Z. Horváth, T. Kozsik, R. Király. Introducing
Records by Refactoring In: Proceedings of the 2007 SIGPLAN
Erlang Workshop, Freiburg, Germany, Oct 2007

[22] L. Lövei, et. al. Refactoring Erlang programs. To appear in:
Periodica Polytechnica – Electrical Engineering (2007)

[23] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Transactions on Software Engineering 30(2) (2004)

[24] T. Nagy, A. Vı́g. Erlang refactor tool. Master thesis, Eötvös
Loránd University, Budapest, Hungary, 2007.

[25] G. Orosz. The Eclipse integration of the Wrangler Erlang
refactor tool. Report, Computing Lab, Univ. of Kent, 2008.

[26] Benjamin C. Pierce and David N. Turner. Pict: A program-
ming language based on the pi-calculus. In G. Plotkin, et. al.
eds, Proof, Language and Interaction: Essays in Honour of
Robin Milner. MIT Press, 2000.

[27] C. H. Roy and R. Cordy. A Survey on Software Clone
Detection Research. Technical report, School of Computing,
Queen’s University at Kingston, Ontario, Candada, 2007.

[28] R. Szabó-Nacsa, P. Diviánszky, and Z. Horváth. Prototype
environment for refactoring Clean programs. In CSCS 2004,
Szeged, Hungary,, 2004.

[29] VIM Editor homepage. http://www.vim.org/. 2006.06.01.

[30] M. Weiser. Program Slicing. In ICSE ’81: Proceedings of the
5th International Conference on Software engineering, pages
439–449, Piscataway, NJ, USA, 1981. IEEE Press.

http://www.theserverside.com/tt/articles/article.tss?l=IntegratingJavaandErlang
http://www.theserverside.com/tt/articles/article.tss?l=IntegratingJavaandErlang
http://www.theserverside.com/tt/articles/article.tss?l=IntegratingJavaandErlang
http://www.eclipse.org/
http://erlide.sourceforge.net/
http://www.erlang.se/euc/06

	Introduction
	Wrangler
	Tool Structure

	Tuple function parameters
	Introduce records
	From Tuple to Record
	Types and the refactoring
	Replace tuple with record

	Process-related Refactorings
	Annotate AST with Process Information
	Program Slicing
	Forward slicing
	Backward slicing

	Process-related refactorings supported by Wrangler

	Eclipse integration
	Emacs
	Eclipse
	Erlide
	Integrating Refactorings using the LTK
	Integration challenges
	Reflections on Wrangler

	Conclusions and future work

