
Embedding Wellformed Euler Diagrams

Peter Rodgers1, Leishi Zhang1, Gem Stapleton2, Andrew Fish2
1. University of Kent, UK, 2. University of Brighton, UK

{P.J.Rodgers@kent.ac.uk, L.Zhang@kent.ac.uk, G.E.Stapleton@brighton.ac.uk,
Andrew.Fish@brighton.ac.uk}

Abstract
Euler diagrams are collections of labelled closed

curves. They are often used to represent information about
the relationship between sets and, as such, they have
numerous applications including: visualizing biological
data, diagrammatic logics, and visual database querying.
Various methods to automatically generate Euler diagrams
have been proposed recently. Typically, the generation
process starts with an abstract description of an Euler
diagram, which is then converted to a planar dual graph.
Finally, the process attempts to embed the Euler diagram
from the dual graph. This paper describes a method for
embedding wellformed Euler diagrams from dual graphs.
There are several mechanisms to generate dual graphs but,
prior to the novel work described here, no general method
for embedding a wellformed Euler diagram from a dual
graph had been demonstrated. The method in this paper
achieves an embedding of any wellformed Euler diagram.
The method first triangulates the dual graph. Then, using
the faces of the triangulated graph, an edge labelling
technique identifies the vertices of polygons which form the
closed curves of the Euler diagram. The method is
demonstrated by a Java implementation. In addition, this
paper discusses a number of layout improvements that can
be explored for this embedding method.

Keywords---Euler diagrams, Venn diagrams, graph

drawing, information visualization.

1. Introduction

Euler diagrams are a popular and intuitive notation for
representing information about sets and their relationships.
To illustrate, the Euler diagram in Figure 1 shows the
relationship between parts of the British Isles. Euler
diagrams allow the representation of concepts such as one
set being a subset of another or that two sets are disjoint.
The term Venn diagram is often applied to such examples,
however Venn diagrams are a specific type of Euler
diagram which represents all set intersections [12], and, as
the number of sets increases, they quickly becomes visually
cluttered.

Euler diagrams consist of a finite collection of labelled
closed curves, called contours. The minimal (non-empty)

regions are called zones. For example, Figure 1 has a
contour with label “Ireland”, and a contour with label
“United Kingdom”. The zone which is inside both these
contours contains the item “Northern Ireland”. The zone
that is in the contour “Ireland” but not in the contour
“United Kingdom” contains the item “Republic of Ireland”.

The demonstrable popularity of Euler diagrams lies in
their wide-ranging applications, including the visualization
of statistical data [1], displaying the results of database
queries [17] and representing non-hierarchical computer
file systems [2]. They have been used in a visual semantic
web editing environment [16] and for viewing clusters
which contain concepts from multiple ontologies [8].
Another major application area is that of logical reasoning
[15] and such logics are used for formal object oriented
specification [10].

Figure 1. British Isles Euler diagram by Sam

Hughes.

Currently, in all but some restricted cases, Euler

diagrams must be laid out by hand. In all of the above
application areas, the automated layout of Euler diagrams
will bring substantial benefits, allowing complex diagrams

can be developed and permitting Euler diagrams to be used
with visualization systems.

When defining generation and layout techniques, one
should place a high importance on the usability of the
diagram produced. Usability can be correlated with a range
of desirable properties, sometimes called wellformedness
conditions. Perhaps the most commonly required properties
are the absence of concurrency between curves, the absence
of triple points (or worse) of intersection, the absence of
disconnected zones, and the use of simple curves only.
Each of the diagrams in Figure 2 breaks one or more of the
wellformedness conditions.

In this paper we use single letters to label contours.
Each zone can be described by the contour labels in which
the zone is contained. An abstract description of an Euler
diagram, describing precisely which zones are required to
be present, is a collection of zone descriptions. For
example, the abstract description for the Euler diagram in
Figure 3c is ∅ a b ab bc abc, where ∅ indicates the zone
which is contained by no contours, called the outside zone.

A

B C

A

B C

Figure 2a.

A triple point.

A
B C

A
B C

Figure 2b.

Concurrent curves.

A

B

A

B

Figure 2c.

Disconnected zones.

AA

Figure 2d.
A non-simple curve.

Previous work on generation produces Euler diagrams

satisfying certain wellformedness conditions [1],[4],
[11],[17]. However, abstract descriptions that cannot be
drawn under certain wellformedness conditions exist, such
as ∅ a b c ab ac bc (shown embedded in Figure 2a) and ∅
ab bc (shown embedded in Figure 2b). In addition there are
nine set abstract descriptions that cannot be drawn with
simple curves [17].

To generate an Euler diagram, the standard approach is
to take an abstract description and, first, derive a planar
dual graph. Each node in the dual graph represents a zone

and is labelled by that zone’s abstract description. In simple
cases, edges between nodes arise when there is exactly one
contour label difference between node labels; this single
label is used to label the edge. The dual graph is then
embedded in the plane (see Figure 3a); see [4] for further
details. Finally one attempts to embed the Euler diagram by
routing each contour with label l through the edges labelled
l (see Figure 3b). In these diagrams, the dual graph is
shown with dotted lines to more easily distinguish it from
the Euler diagram.

Figure 3a. A dual graph for ∅ a b ab bc abc.

Figure 3b. An embedding of the Euler diagram

from the dual.

Even if an embedding can found, there is no guarantee

that the layout of the Euler diagram will be usable. Apart
from the properties illustrated in Figure 2, other features
such as smooth, well spaced contours are desirable. The
layout of the dual graph will have an impact on the
presence of features, as will the mechanism used for
determining the routing of the contours through the dual.
An Euler diagram after layout improvement, is shown in
Figure 3c.

Figure 3c. The final diagram ∅ a b ab bc abc.

This paper addresses the Euler diagram embedding

problem. We define a technique for routing contours
through the dual in such a way that we create a wellformed
diagram (a diagram that has contours which meet
transversely whenever they intersect and has none of the
properties shown in Figure 2: no triple points, concurrent
curves, disconnected zones or non-simple curves)
whenever this is theoretically possible. We take a dual
generated by the method described in [4] that is guaranteed
to admit a wellformed Euler diagram and triangulate it. We
then label the triangulation edges with the difference
between incident node labels; these labels identify the
contours that will pass through the edge. The labels are
then placed in an order on the edge which indicates how the
contours will pass through each triangle, that is, which (if
any) contours will intersect in the triangle.

This paper also presents methods for improving the
layout of the diagrams which take advantage of this
triangulation approach. First, we modify the plane
embedding of the dual through a force directed layout
method, which adds a node-edge repulsive force in addition
to the normal node-node repulsive force. Secondly, we
optimize the positioning of the edge labels (each of which
is placed where the relevant contours will cut the edge) in
order to obtain contours with a more regular shape.

The method we use to route the contours through
triangulated duals is described in Section 2. Section 3
discusses improvements to the layout of Euler diagrams.
Section 4 shows some examples of the method in operation.
Finally, Section 5 gives our conclusions and further work.

2. Forming diagrams from dual graphs

This section describes the process of taking a plane
embedding of a graph dual in order to produce an
embedding an Euler diagram with the required zone set.

2.1. Generating a wellformed dual graph

To generate a dual graph we follow the methodology
of [4]. This generates connected duals that admit diagrams
that have contours which, whenever they intersect, do so
transversely. There are at most two contours intersecting at
any point, with no concurrent contours, all contours are
simple curves, and each zone is a connected component of
the plane. Starting with an abstract description, the method
first creates the nodes of a dual graph called the superdual;
the zone descriptions are the node set and edges connect
two nodes whenever they have exactly one contour label
difference; and this difference forms the edge label. The
superdual is then transformed (possibly including edge
removal) into a connected plane graph, called the plane
dual, that satisfies the connectivity conditions and face
conditions (defined below). Currently implementation
imports the open source library JGraphEd to test for
planarity and to find a plane layout of the dual, although we
are experimenting with other planar layout tools.

The connectivity conditions are a simplification of
those used in [5] and state that the dual is connected and for
each contour label used in the abstract description, if the
nodes without that contour label present are removed
(recall, a node is a collection of contour labels) then the
graph remains connected and, similarly, if the nodes
without that contour label present are removed then the
graph must also remain connected.

In order to define the face conditions, we first define
crossing index: the crossing index of a face is the number
of pairs of labels which occur on the edges which bound
the face in a non-nested manner. For example, given the
face edge label cycle uavbwbxay the letters a and b are
nested whereas they are not nested in uavbwaxby. The
non-nestedness of a pair of labels corresponds to the need
for their associated contours to cross within the face. The
face conditions state that for each face of the plane dual
graph the crossing index must be one less than the number
of distinct labels on the edges bounding the face.

The embedding method presented in this paper takes a
dual that meets these conditions, and draws the contours
around the nodes respecting the enclosure information
provided. So, each contour will enclose precisely the nodes
which include that contour’s label. The contours are drawn
with polygons and we identify which faces that each
contour must pass through by considering the edge
labelling: if a label appears on an edge bounding a face
then the contour with that label must pass through the face.
Moreover, the contour cuts through precisely the edges
with that contour label.

2.2. Difficulties when routing contours

In general, straight lines cannot simply be drawn
between edges of the dual to show where contours pass
through faces, because a face may not be convex. Hence

the line could cut other edges which do not include the
contour label, possibly introducing incorrect contour
intersections and so failing to form the required zone set. If
an arbitrary polyline routing through the face is taken,
incorrect intersections can again occur, also possibly failing
to form the required zone set. See Figure 4, where the zone
c appears but does not exist in the abstract description, and
the zone a is a disconnected region, appearing both at the
bottom and top right of Figure 4. The difficulty of routing
contours motivates the use of a triangulation. The convex
nature of the triangles means that the above problems can
be avoided, but we must establish how to route contours
through the triangles.

Figure 4. An incorrect embedding for

∅ a b ab ac abc.

2.3. Embedding a Euler diagram

First, we triangulate the faces of the plane dual graph.
Instead of triangulating the infinite face we form a border
of nodes with empty labels around the graph and
triangulate the polygon that is formed. As with the dual
graph, each triangulation edge is labelled with the
difference between the labels present in its incident nodes,
see Figure 5a, the triangulated edges are shown in blue and
with a wider dash than the dual edges. Again, as with the
dual, the labels on the triangulation edges indicate which
contours will cut them when we produce an embedding.
However, unlike the dual, there may be multiple contours
passing through any triangulation edge.

Figure 5a also shows the label ordering along the
triangulation edges identifying where each contour will
pass through the edge. The ordering is produced in such as
was as to ensure that all required contour crossings occur
exactly once in a dual face (the method is described below).
Figure 5b shows the contours passing through the
subsequent contour cutting points. For the purposes of this
method we treat dual graph edges as triangulation edges.

Figure 5a. A triangulated graph. The 16 border

nodes around the bounding rectangle are hidden.

Figure 5b. Embedding contours through the

triangulated dual.
The contours that cross in a dual face can be found by

the method described in Section 2.1, i.e. through
establishing nestededness in the face-cycle around the face.
In the large dual face in Figure 6a with face-cycle abcacb
the contours a and b must cross, as must a and c. It is then
possible to assign these crossings so that they occur in a
particular face of the triangulated dual, provided those
contours pass through the triangle.

The triangulation edge label ordering process
progresses through the face, assigning the order of the
labels on a triangulation edge in a triangle where two

triangulation edges already have their contour order
assigned. At the start of the process there are at least two
triangles with two edges assigned labels; these are triangles
with two edges that appear in the original face - because
they are labelled with a single contour they have a trivial
contour order. Any ordering of the labels is permitted
provided the resulting ordering around the triangle results
in the enclosed face satisfying the face conditions. Figure
6a shows triangulation edges for the inner faces which have
not yet got ordered labels. The two triangles connecting
nodes ∅, b, bc and a, ab, abc have two edges with contour
order assigned. If the triangle made from nodes ∅, b, bc
has a label order given to its third edge as shown in Figure
6b, then a further triangle (made from nodes ∅, b, bc) will
have two edges with a label order. The process then
continues until all triangulation edges are fully assigned, as
in Figure 5a.

Figure 6a. Unassigned triangulation edges

Figure 6b. Ordering edge labels

Contours cross triangles with straight lines, so the
order of labels on triangulation edges defines which
contours will cross in the triangle. Figure 6b shows a single
triangulation edge ordering of the edge that does not create
a crossing. For the next step, as there is a triangle
connecting nodes ∅, bc, abc with two edges ordered, then
the edge labelled abc can have an order assigned. We can

read around the two edges with label order already
assigned, starting from the ∅ node to get a word bca. If we
order the unassigned edge similarly from the ∅ node, we
would get no crossings. Swapping any pair of labels in this
edge order would give one contour crossing, for example
ordering the contours b, a, c along the edge from ∅ to abc
would mean contours a and c cross in this triangle.
However, in Figure 5a, it can be seen that the order has
been defined as a, b, c so that a crosses with both b and c.

We take a greedy approach to assigning label ordering
to triangulation edges. That is, the first time we encounter a
triangle where it is possible to order edge labels in such a
way that it will result in contours crossing where that
crossing is deemed necessary from the associated dual face,
we choose such an ordering. If contour crossings that may
introduce extra zones are possible in the triangle (for
instance, because two separate pairs of contours may cross
in the triangle), then we find the contour label that makes
the maximum number of crossings in that triangle. We then
ensure that our label ordering means that all crossings in
that triangle involve that contour.

It is relatively easy to increase the number of triangles
if the granularity of the layout is desired to be finer,
although there are other similar mechanisms to improve
layout by adding points to polygons independent of
triangulation [7]. Figures 7a and 7b illustrate how new
triangles might be added, although this is not currently
implemented in our system. The edge labelling on the new
triangle edges is given by the intersection of labels on the
two original triangle edges that the new triangle edge splits.

Figure 7a. A triangle face with assigned edges.

Figure 7b. Routing with extra triangles.

b

bc

abc

ac

c

bc

bc

abc

ac

ab

abcd

b

a

c

d

a b c d

ab

abcd

b

a

a b c d

c

d

a

b c
d

2.4. Non-atomic diagrams

Up to this point this paper has only included examples
of atomic diagrams, that is, diagrams where no set of
contours are completely disconnected from another set in
the diagram. Non-atomic, or nested, diagrams [6] have
disconnected components. The above method can be used
to draw both atomic and non-atomic diagrams. However,
for reasons of algorithmic efficiency, as well as improved
layout, it is desirable to lay these diagrams out as separate
components, which are joined at a later date. Figure 8
shows a nested diagram: ∅ a b ab ac ad ae acd.

Nested components can be identified from the dual
graph by articulation points in the graph and placed in a
maximal rectangle that can found in the appropriate zone,
as shown in Figure 8. Where multiple nested components
are present in a single zone, the rectangle can simply be
split into the required number of sub rectangles. Any nested
component may have further nesting present, in which case
the process is simply repeated.

Figure 8. A nested diagram, showing the rectangle

(in which the nested components can appear.

3. Layout improvements

The layout of Euler diagrams with the method
described in Section 2 leads to diagrams that can have
undesirable features, such as line segments that are too
close together, or that have jagged edges. We attempt to
improve the layout of the diagrams with optimization
mechanisms on the triangulated dual. First, the layout of
the triangulated graph is improved, and secondly, the
positions of the edge labels, where the contours pass
through, are modified, whilst maintaining the label ordering
assigned to the triangulation edges. We also remove the
empty node from the dual to enable the contours to be more
evenly distributed around the diagram.

Planar layout mechanisms often lead to poorly laid out
graphs, with long, narrow faces. A triangulation obtained
from such layouts often has narrow triangles, see Figure 9a.
To improve the layout of the triangulated graph we apply a

force directed graph drawing algorithm. The result of
applying this layout is shown in Figure 9b. This is a spring
embedder with an additional force, a node-edge repulsion.
The goal is to maintain planarity and to keep the current
faces in the graph, whilst improving the regularity of the
triangles. This force also evens out the bordering nodes
(hidden in Figure 9b) so that they are at a more even
distance from the dual graph.

The points where a contour cuts a triangulated edge in
both figures 9a and 9b are the places where the labels are
positioned; initially, the labels are evenly distributed.
However we can attempt to improve the layout of the
diagram by moving the edge labels, as long as we do not
change their order (which may cause incorrect contour
crossings to occur) or bring them too close to each other or
the nodes at either end of the edge (possibly making a zone
too small to be easily seen). We use a simple heuristic, that
of attempting to make each angle on the contour equal,
which will tend to make the polygons more regular. This is
not an exact heuristic, as different length lines between
edge labels can adversely affect the regularity of the
polygon. In addition, label positions that indicate a convex
contour are heavily penalized, as concave contours tend to
make diagrams less understandable. More advanced
heuristics for contour layout are given in [7].

The heuristic is applied to each contour point of each
contour in turn. Each contour point is moved up and down
the triangulation edge to see if an improvement can be
found. For each contour, the algorithm traverses the
contour in one direction, then reverses the direction in an
attempt to avoid large bias. A number of iterations occur
and on each iteration an attempt is made to improve the
layout of all of the contours in the diagram. On each
iteration the distance the contour points are moved is
reduced in a cooling schedule. See Figure 9c for an
example showing the result of this optimization.

The outer node (node with no label) is essential for
checking the connectivity and face conditions and when
finding a plane layout, as it must appear in the outer face of
the planar graph. However, this node is not required at the
contour layout stage, since no contours will enclose it.
Once the planar layout is completed, the outer node can be
removed and the force directed and edge label
redistribution can be applied. If the outer node is present,
nodes connect to it with a straight line, so producing an
undesired orientation to the diagram. Removing the outside
node allows the remaining nodes to be evenly distributed
around the graph by the force directed layout method. An
example of output when the outer node is removed and the
subsequent layout improvements are applied is shown in
Figure 9d.

Figure 9a. Triangulated graph after planar layout.

Figure 9b. Triangulated graph after force directed

layout.

For any contour with label l, we can define the allowed

region in which it can be routed. This is formed from the
two polygons defined as follows. An inner-polygon (resp.
outer-polygon) is formed by joining the edge labels inside
(resp. outside) the contour which are on the edges through
which the contour passes and immediate neighbours of l.
The allowed region where contour a can be placed is shown
in Figure 10. This region should allow us to form more
sophisticated optimizations for the layout in future work.

Figure 9c. Triangulated graph after contour point

optimization.

Figure 9d. Removal of outer zone node.

4. Results

In this section we give some examples of output from
our software. Figure 12 shows how large diagrams can
draw nicely, especially when there are relatively few curve
intersections. This diagram, like all in this section, has been
drawn with the empty set present.

Figure 13 shows an atomic Euler diagram with six
contours. The layout is quite effective despite the relatively
complex nature of the diagram. The removal of the empty
set has allowed the contours adjacent to the outside zone to
be evenly distributed around the diagram.

Figure 10. Allowed region for contour a.

Figure 11. Final diagram for ∅ a b c ab ac bc abc.

Figure 12. A Euler diagram with ten contours and

a number of nested components

Figure 13. An Euler diagram with six contours.

Figure 14. An Euler diagram with ten contours in

need of further improvement.

Figure 14 shows a complex Euler diagram. The large
number of contours and zones in this diagram means that a
simple heuristic to optimise contours in turn begins to
prove ineffective. Whilst many of the contours have a
reasonable layout, contours c, d and f, which all cross a
number of other contours are badly laid out. A compromise
layout that makes a great improvement for one contour in
exchange for a slightly worse layout for another contour
might well improve the overall layout. In addition, there is
a contour j, in the intersection of contours g, h and i. As the
zone it appears in is small, there is no room for i to be
drawn effectively This illustrates the limitations of not
considering the size of zones in which nested diagrams will
appear when drawing the parent diagram.

5. Conclusions and future work

We have presented a method for embedding an Euler
diagram from a wellformed dual. As far as we know this is
the first Euler diagram embedding technique implemented
for all such diagrams. We also have presented novel layout
improvement techniques that integrates with our
embedding method. Current efforts to improve this work
include generalizing to diagrams that are not wellformed,
as well as further layout improvements.

We consider that this method will be readily applicable
to diagrams that are not wellformed. This is not only an
embedding problem, but also requires an extension of the
generation method to abstract descriptions that might not
have dual graphs that pass the conditions described in
Section 2.1. Multiple contour crossing points such as triple
points can be dealt with by choosing triangles in which to
place the multiple points. However, some method needs to
be implemented that distinguishes between various multiple
points as the number of intersections between contours at a
point goes beyond three.

Concurrent contours, where segments of curves run in
parallel, can also be present in Euler diagram. A dual that
results in a Euler diagram with concurrent contours has
edges labelled with more than one contour. Routing two
curve segments along the same line is not likely to be
problematic. If we wish to generate Euler diagrams where
the zones may consist of more than one component of the
plane then an approach is to allow dual graphs to have a
node for each required zone component.

The choice of triangle in which crossings are placed
can be investigated from a usability perspective -- perhaps
choosing triangles that make routing the crossing contours
most regular would be beneficial; at the moment the choice
does not take into account any layout considerations.

We also intend to continue to improve the layout of
diagrams from a usability perspective. A simple approach
would be to smooth out the current polygons using Bezier
curves or similar approximations. In addition, we can
already find allowed regions for contours to be drawn
within, so that we can attempt to fit shapes such as circles
and ovals into the region, rather than polygons. The current
layout methods could be improved by the application of
previous contour layout work [7] which contains more
sophisticated heuristics. Moreover, applying heuristics to
movements of groups of edge labels, rather than
concentrate on one edge label at a time is likely to bring
significant benefits.

6. ACKNOWLEDGMENTS

This work has been funded by the UK Research
Council, the EPSRC, under grants EP/E010393/1 and
EP/E011160/1.

REFERENCES
[1] S. Chow and F. Ruskey. Drawing area-proportional

Venn and Euler diagrams. In GD 2003. LNCS 2912,
pages 466–477. Springer, 2003.

[2] R. DeChiara, U. Erra, and V. Scarano. VennFS: A
Venn diagram file manager. In Proc. IV03, pages 120–
126. IEEE Computer Society, 2003.

[3] A. Fish, J. Flower, and J. Howse. The semantics of
augmented constraint diagrams. Journal of Visual
Languages and Computing, 16:541–573, 2005.

[4] J. Flower and J. Howse. Generating Euler Diagrams,
Proc. Diagrams 2002, LNAI 2317, Springer, 2002.

[5] J. Flower, A. Fish and J. Howse. Jean Flower. Euler
Diagram Generation. To appear in the Journal of
Visual Languages and Computing, Elsevier, 2008.

[6] J. Flower, J. Howse, and J Taylor. Nesting in Euler
diagrams: syntax, semantics and construction, Journal
of Software and Systems Modeling, pp 55-67, 2003.

[7] J. Flower, P. Rodgers and P. Mutton. Layout Metrics
for Euler Diagrams. Proc. IV03. pp. 272-280. 2003.

[8] P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer, M.
Mehrotra, and D. Bobrovnikoff. Collaborative
knowledge capture in ontologies. In Proc. Knowledge
Capture, pp. 99–106, 2005.

[9] J. Howse, G. Stapleton, and J. Taylor. Spider diagrams.
LMS J. Computation and Mathematics, 8:145–194,
2005.

[10] J. Howse and S. Schuman. Precise visual modelling. J.
Software and Systems Modeling, 4:310–325, 2005.

[11] H. A. Kestler, A. Müller, T.M. Gress and M.
Buchholz. Generalized Venn diagrams: a new method
of visualizing complex genetic set relations.
Bioinformatics 21(8) 2005

[12] F. Ruskey. A Survey of Venn Diagrams. The
Electronic Journal of Combinatorics. March 2001.

[13] H. Sawamura and K. Kiyozuka. JVenn: A visual
reasoning system with diagrams and sentences. In
Proc. Diagrams 2000, LNAI 1889. pages 271–285.
Springer-Verlag, 2000.

[14] S.-J. Shin. The Logical Status of Diagrams. CUP,
1994.

[15] G. Stapleton, J. Howse, and J. Taylor. A decidable
constraint diagram reasoning system. Journal of Logic
and Computation, 15(6):975–1008, December 2005.

[16] Tavel, P. Modeling and Simulation Design. AK Peters
Ltd. 2007

[17] A. Verroust and M.-L. Viaud. Ensuring the drawability of
Euler diagrams for up to eight sets. Proc. Diagrams 2004,
Cambridge, UK. LNAI 2980, pp. 128–141. Springer, 2004.

