
 1

Coordinating Access Control in Grid Services 
David W Chadwick, Linying Su, Romain Laborde1 

Computing Laboratory, University of Kent, Canterbury CT2 7NF, UK 
1Institut de Recherche en Informatique de Toulouse (IRIT), Université Paul Sabatier, 118 Route de 

Narbonne, F-31062, TOULOUSE CEDEX 9, France 
 

ABSTRACT 
We describe how to control the cumulative use of distributed grid resources by using coordination 
aware policy decision points (coordinated PDPs) and an SQL database to hold “coordination” data. 
When access to a resource is granted, obligations in the security policy ensure that the coordination 
database is updated. The coordination database is a normal grid service, thereby providing 
distributed access to the coordinated PDPs. Access to the databases is secured by the Grid Security 
Infrastructure (GSI) and its own PDP, so that only authorized users (the coordinated PDPs) can 
access it. A coordinated PDP is imbedded into the Globus Toolkitv4 authorization chain as a custom 
PDP so that any grid service can be protected by a security policy that provides a coordination 
capability. Each coordinated PDP uses the services of an uncoordinated PDP to make its access 
control decisions, so that any existing stateless PDP can be supplemented with a coordination 
capability. We provide performance results for the coordinated PDPs and compare these with two 
stateless PDPs. Virtually the entire performance penalty of using coordinated PDPs is accounted for 
by the heavy costs of using GSI to secure the communications between the coordinated PDPs and the 
coordination database. 

Keywords: PDP, coordinated access control, grid security 

1. INTRODUCTION 
Automated Teller Machines (ATMs) have the capability to coordinate the withdrawal of money on a 
daily basis from any cash point in the world. This is achieved by standardization of the protocols 
within and between the banks, direct access to the user’s account and the transactions that he has 
made, and the ability to write information to the security token (the bank card) that the user carries 
around with him. Providing a similar capability for grid jobs, for example, to limit the amount of 
storage or cpu that a user may request per day or per job from any location on the grid, is not so easy. 
The grid job will almost certainly run on different machines under different administrative control, 
will probably run under different account names on each machine, and the access control mechanism 
of one machine is typically unable to communicate with those of the other machines. The security 
token that is often passed from machine to machine is the proxy certificate [1] but this is not used by 
the policy decision points (PDPs) to communicate with each other, and is not under their direct 
control (unlike the bank card inserted into an ATM). Consequently the design of a policy based 
coordinated access control system presents a number of challenges. 

The lack of communication between the PDPs of distributed applications can be addressed today by 
sidestepping the issue and using a centralised PDP with a common policy that is used by all the grid 
resources (see Figure 1). Such a system has been available for several years to Grid applications that 
use Globus Toolkit (GT) from v3.3 onwards. GT is capable of making an external authorization 
callout using the GGF SAML Authorisation protocol specification [3] and several PDPs such as 
PERMIS [2] and PRIMA [9] have implemented this protocol. This sort of access control 
infrastructure allows a common policy to be used by all the resources of a grid but since most PDPs 
today are stateless, they are still unable to coordinate their access control decisions across multiple 
access requests.  A further disadvantage of this configuration is that the central PDP is a bottleneck 
to performance because every request needs to be diverted to it. 



 2

Figure 1. Use of a common policy in today’s distributed grid applications 
From performance and trust perspectives, it is preferable for each site to have its own PDP under its 
direct control and for the common policy to be distributed to the administrators so that they can 
review it and load it into their PDPs. But this approach still lacks coordination throughout the 
distributed application. Furthermore, the common policy will contain superfluous information for 
each of the PDPs, since it must cater for access requests to all of the resources in the grid.  
To counteract these problems we have taken a multi-pronged approach. Firstly, in order to remove 
the superfluous information from each PDP’s policy, we have designed and built a policy refinement 
engine that will decompose a common grid-wide policy and create resource specific policies for each 
resource PDP. We do not propose to describe the policy refinement process in this paper, but 
interested readers can consult [4]. Secondly, in order to address the coordination problem, the 
common policy (and consequently each refined resource specific policy) contains conditions and 
obligations that allow coordination to take place between multiple access requests. Conditions are 
placed on granting access to a user’s request that depend upon previous access control decisions e.g. 
a project member is allowed access to memory only if less than 20GB memory has already been 
requested [for this job / project / day etc]. Obligations are then placed on the policy enforcement 
point (PEP) to record the resources that have been authorized for consumption. Coordination 
between the PDPs takes place by successively retrieving and updating this state information that is 
stored in an external coordination database.  We chose to implement the system by using an external 
coordination database rather than storing the state information in each PDP for several reasons. 
Firstly most of today’s PDPs, including ones with standard policies such as XACML [6], are 
stateless, so they will not need to be modified in order to support our secure coordination service. 
Secondly, if the state information was stored in each PDP, then each PDP would need to 
communicate with every other PDP, which would become increasingly difficult to engineer and 
manage as the number of PDPs grows. The periodic exchange of this state information has been 
suggested by another researcher [10] but we will comment more on this in Section 6 (Related 
Research). Thirdly, by using database technology to store the state information we benefit from its 
data persistency properties and the extensive research into fast and efficient data handling, searching, 
locking, distribution etc. Finally, by making the coordination database a grid service, we get the 
benefits of distributed access and secure communications between the PEP/PDP and the database 
service by using the existing Grid Security Infrastructure (GSI) [5].   



 3

 
Figure 2. Coordinated decision making in distributed applications 

A simplified picture of our overall design is shown in Figure 2. Each PDP loads its own resource 
specific policy, which may have optionally been created by refinement of a common grid wide 
policy. When coordinated access control decisions need to be made, each PDP communicates 
indirectly with all the other PDPs in the grid via the coordination database, to ensure that all the 
policy conditions are obeyed. This architecture is designed to have optimal performance for the 
decision making, since local uncoordinated decisions wont need to interact with the coordination 
database, whilst only coordinated ones will need to. 
The rest of this paper is structured as follows. Section 2 describes the coordination policy, with its 
coordination attributes and obligations. Section 3 describes the coordination database grid service 
which holds the coordination data. Section 4 describes the coordinated PDP and how this is currently 
integrated into GT4. Section 5 presents the results of our performance measurements of coordinated 
and uncoordinated decision making and comments upon them. Section 6 compares our work with 
that of other researchers. Finally Section 7 concludes by looking at the limitations of the current 
implementation, and indicating where future development is still needed. 

2. COORDINATION POLICIES 
In our model, a PDP is considered to be stateless and makes its access control decisions against the 
current policy in isolation to all past, present and future access control decisions. This is in direct 
contradiction to the ISO Access Control Framework [11], which has the concept of retained access 
control decision information (ADI) that is stored internally in the PDP and is used to ensure that 
current decisions can be made according to the results of previous decisions. Obviously retained ADI 
is often needed, as many real world policies depend upon it, such as the ATM example given earlier. 
However, retained ADI stored internally in one PDP cannot be used by another PDP, without it 
being shared between them. The ISO model does not consider a distributed set of PDPs that need to 
share retained ADI, but we have to in a grid context. Consequently in our model we store the 
retained ADI externally to the PDPs, and pass it to the PDPs along with the other access control 
decision information when they need to make an authorization decision, so that the correct 
distributed and coordinated access control decisions can be made. We call the retained ADI 
coordination data in this paper. 

A PDP is given access control decision information in the form of attributes about the subject, the 
resource, the requested action and the environment. This set of attributes is known as the request 



 4

context in the XACML specification [6]. The policy may place constraints on any of the request 
context attributes i.e. on the subject (e.g. only subjects who are students), the resource (e.g. only 
resources of type printer), the action (e.g. only print a maximum of 10 pages), and the environmental 
(e.g. only between 9am and 5pm) attributes. If any access control decision will affect future access 
control decision, then coordination between the access control decisions is required, which is why 
coordination data is needed. For example, if the policy states that students can only print up to 10 
pages per day, then if a student asks to print 5 pages this will be allowed but the granted action must 
be remembered so that the next time the same student makes a request on the same day he will only 
be allowed to print up to 5 pages. This type of policy constraint on subject, action and/or 
environmental attributes will always require coordination between access control decisions, 
regardless of whether the system has a single centralised PDP or multiple distributed PDPs. The use 
of a policy to specify the constraints, and a coordination database to hold the coordination data, 
makes the coordination process independent of the number of PDPs involved in the grid access 
control decision making.  

2.1 Coordination Attributes 
We model the coordination data as a fifth type of request context attribute, which we term the 
coordination attributes. Coordination attributes are conceptually the same as any other type of 
request context attribute (resource, subject, action or environment) but in this case they are attributes 
of the coordination object, rather than the resource, subject, action or environment objects. The 
coordination object is conceptually a repository storing the coordination data that is necessary to 
allow coordination to take place between all of the access control decisions in a distributed system. 
The semantics of the coordination attributes are known to the coordination object but not to the 
PDPs, since the latter do not know the semantics of any of the attributes of the request context 
(environment, subject etc.). The PDPs only know that the request context attributes hold values that 
need to be compared with those in the access control policy to see if the access control conditions are 
fulfilled. 

The coordination object is considered to be persistent and stateful, in much the same way that the 
environment object stores the environmental attributes in a persistent way. In this way the PDPs 
remain stateless. A significant difference between the environmental and coordination attributes is 
that the access control process only needs to read the former, whereas it needs to read and update the 
latter. Furthermore, a coordination attribute is related to attributes of a subject, resource, action, or 
the environment, and can be indexed on any combination of them, because policy constraints can be 
placed on any combination of them. 

We specify a coordination attribute as follows: 
Att[SubDim, ResDim, ActDim, EnvDim](C) 

where Att is the name of a coordination attribute belonging to the coordination object C, and 
[SubDim, ResDim, ActDim, EnvDim] are optional multiple dimensions of the coordination attribute. 
SubDim, ResDim, ActDim and EnvDim denote the subject, resource, action and environment 
dimensions of the coordination attribute, respectively. Every attribute in SubDim (ResDim, ActDim 
or EnvDim), if any, come from the request context. 
Examples of coordination attributes and related policies are:  

- usage(C) means the coordination attribute called usage has a single value that is used by all 
subjects accessing all resources over all actions and environments, for example, when a 
policy states that the sum total of all resources used by everyone in any way can only be up to 
a certain amount and then all access must cease. 

- usage[username(S), type(R)](C) means the coordination attribute called usage has a different 
value per subject per resource, where each subject is identified by their username attribute 



 5

and each resource by its type, for example, when a policy states that each user can use each 
type of resource up to a certain predefined amount.  

Consider the following policy with a coordination constraint: users, identified by their userIDs, 
cannot use more than 3GB of storage each throughout the grid. This could be expressed 
mathematically as type(R)=storage∧type(A)=use∧amount(A) + alreadyUsed[userID(S)](C) ≤ 3.  
Most stateless PDPs should now be capable of evaluating this type of policy, providing the request 
context contains the value of the alreadyUsed[userID(S)] coordination attribute. The fact that the 
coordination attribute contains embedded encoding in the form of [userID(S)] should be transparent 
to the PDP, since the names of attributes have no semantic meaning to the PDP. They are simply 
strings which need to be compared when matching attribute names. Providing the name of the 
coordination attribute is identical in the policy and in the request context (including the embedded 
encodings) the PDP should be able to compare the attribute names by matching the strings. Once the 
names are seen to be identical, all the PDP needs to do is to compare the value of the coordination 
attribute presented in the request context with the corresponding value in a policy constraint 
according to the mathematical function in the constraint (<, >, ≤ etc.). 

2.2 Obligations 
The next thing we need to ensure is that the coordination attributes are updated once the user has 
been granted access to the resource. This is achieved by the use of appropriate obligations in the 
coordination policy. Obligations are actions placed on the PEP that have to be obeyed if/when the 
user is given or denied the requested access to a resource. In the XACML standard [6] an obligation 
is defined as a set of attribute assignments, for example, assign balance[id(S)](C) + amount(A) to 
balance[id(S)](C). Since it is the PEP that enforces the grant or deny decisions of the PDP, and is 
responsible for enforcing all obligations, it seems appropriate that the PEP should also be the entity 
that updates the coordination object. We have extended the XACML concept of obligations by 
adding an optional directive to them which tells the PEP when to carry out the obligated actions. We 
have called this the Chronicle directive and it can take one of three values: Before, After or With. 
Chronicle=After indicates that the obligation should be enacted only after the user’s access request 
has been enforced. Chronicle=Before indicates that the obligation should take place before the user’s 
request is enforced. Chronicle=With indicates that the obligation and the user’s request should be 
enforced as an atomic action. It is up to the coordination policy writer to determine which Chronicle 
value to use. Note that XACML does not have a Chronicle parameter, since it implicitly assumes the 
semantics of Chronicle=With. We believe that this is insufficient in practice, but there are important 
implications in the use of the alternative Chronicle values.  

Chronicle=Before means that the coordination attribute will be updated before the user’s request is 
processed. Therefore if the user’s request subsequently fails for some unexpected reason e.g. the 
ATM machine jams and cannot dispense any money, the user may be prevented from performing the 
same action again at a later time. This is because the coordination attribute has already recorded the 
obligation prior to the action taking place. Similarly Chronicle=After means that the user is allowed 
to perform his action before the coordination attributes are updated. If anything goes wrong with the 
subsequent coordination attribute update, the obligation will not be recorded and the user may be 
allowed to perform the same request again, in contravention of the policy. However Chronicle=After 
might be the option that some policy writers prefer e.g. banks might prefer ATM withdrawals to 
occasionally allow a customer to withdraw over his daily limit than to risk upsetting him by 
occasionally not allowing him to withdraw his daily limit. Chronicle=With does not suffer from 
either of the previous deficiencies, since the user’s request and the coordination attribute update are 
performed as an atomic action. However this means that transactions have to be enacted on the 
coordination database, a two phase commit protocol with the resource and the coordination database 
will be needed by the PEP, and the coordination attributes will have to be write locked for the 



 6

duration of the user’s action. This may cause an unacceptable overhead and bottleneck to 
performance in many grid applications that can run for hours or even days. Therefore the policy 
writer has to choose the most appropriate Chronicle setting for his resources and the applications that 
use them. 

Further details about the coordination policy specification and its refinement can be found in [7]. 

3. THE COORDINATION DATABASE GRID SERVICE 
The coordination database is a grid service with a backend SQL database that provides access to the 
coordination attributes needed by the multiple PDPs.  The service supports seven methods, namely: 

- checkWS checks if the service is available or not, and returns true or false 

- getCoordAttrVal returns the value of a coordination attribute given its name and a request 
context (that contains the values of the dimensional attributes that are embedded in the 
coordination attribute name). If no value currently exists for this element, then the service 
creates a new one and initializes it with the initial value known to the coordination object (note 
that the initial value is part of the meta-data or schema for the coordination attribute). 

- setCoordAttrVal sets the value of a coordination attribute. The service returns an exception if it 
fails, but void if it succeeds 

- isCoordAttr queries if a coordination attribute of this name exists in the coordination database, 
and returns the value true if it does, or false if it does not 

- getAttributeDefinition returns an XML element which contains the definition of the coordination 
attribute including the attributes that are embedded in its name, or an exception if the attribute 
does not exist 

- lockCoordAttrs allows one or more attributes in the database to be read or write locked, and 
returns true if the lock succeeds, or false otherwise 

- unlockCoordAttrs removes all the locks in the database held by the current thread, and returns 
true if it succeeds or false if it does not. 

The structure of the backend SQL database is a series of tables, in which each table represents one 
coordination attribute. In every table there is one column for each subject, action, resource or 
environment attribute that is contained in the definition of that coordination attribute plus one 
column to hold the coordination attribute values. The general formula for the size of a table is: 
 

(|SubDim|+|ResDim|+|ActDim|+|EnvDim|+1) x N 
 
where |XDim| represents the number of members in the set XDim and N represents the number of 
rows in the table. For example, the coordination attribute recording the number of user accesses in 
different modes to files in different filestores could be held as numberOfAccesses 
[id(S),id(R),mode(A),fileName(A)](C) and is represented as a table which consists of 5 columns. 
Every unique combination of user id, filestore id, mode of access and filename will create a new row 
in the table, with the final column recording the number of accesses for that user to that file in that 
access mode. Assume a subject (id = X) wants to access a file (mode = M, fileName = F) on a 
filestore (id = Y), then the current value of the numberOfAccesses may be located from this table by 
the following SQL command: SELECT value FROM numberOfAccesses WHERE id(S)=X AND 
id(R)=Y AND  mode(A)=M AND fileName(A)=F. If no record can be located using these 
dimensional attribute values, this means that it is the first user access of this kind to this file, and a 
new row, consisting of these dimensional attribute values and the initial value for the 



 7

numberOfAccesses should be inserted into the table. The initial value is part of the semantics of the 
coordination object and is defined in the schema for the coordination database service.  

3.1 Securing Access to the Coordination Database Grid Service 
The coordination database service, being a standard grid service, is protected by GSI and its own 
stateless PDP that ensures that only authorised coordinated PDPs can access it. This is easily 
achieved by assigning digitally signed X.509 attribute certificates (ACs) containing a role of 
“Coordinator” to the coordinated PDPs (actually to the Coordinator component in Figure 3), and 
having a standard role based access control (RBAC) policy in the stateless PDP that says that only 
subjects with the role of “Coordinator” are allowed to access the coordination database. This allows 
any number of coordinated PDPs to access the coordination database without needing to modify the 
RBAC policy, providing each has been given the “Coordinator” role AC issued by the trusted issuer. 
Each Coordination PIP has its own public key certificate and DN so that it can strongly authenticate 
to the coordination database grid service via GSI. For authorisation, we use the attribute pull model, 
so that the “Coordinator” role ACs are pulled by the database service’s Subject PIP (see below) from 
the Coordinator’s LDAP entry in the VO’s LDAP directory service. We could have used the attribute 
push model instead, and packaged the “Coordinator” role AC inside the proxy certificate, as in the 
VOMS model [12], but this would have meant extra overhead at the client side. We have used the 
PERMIS PDP to protect the coordination database, since this supports both the push and pull modes 
of attribute retrieval. 

4. THE COORDINATED PDP 
The GT4 authorisation framework implements a decision engine which is capable of evaluating a 
chain of PDPs in order to determine the access rights of the user making a request for a particular 
Grid service or resource (the Target in Figure 3). This authorisation chain may also include multiple 
Policy Information Points (PIPs), which do not return any decisions but instead are used to collect 
information i.e. attributes or attribute assertions, necessary for the decision-making process. Both 
PDPs and PIPs are classified by GT4 as interceptors. Globus Toolkit itself is the PEP that enforces 
the decisions made by the PDPs, and passes the information returned by the PIPs to the PDPs. PIPs 
are needed to pick up the attributes of the subject, the action, the resource and the environment. GT4 
requires that PDPs implement the org.globus.wsrf.security.authorization.PDP interface and return a 
permit or deny decision on the basis of the subject’s distinguished name (DN) (obtained from the 
proxy certificate), the requested operation and the request context. PIPs must implement the 
org.globus.wsrf.security.authorization.PIP interface, and must place the set of retrieved subject, 
action, resource and environmental attributes in the request context. 
Ideally we would like GT4 to be modified in order to integrate our coordinated authorization 
infrastructure directly into the PEP. However, if we did this it would cause integration problems for 
other users and long term support issues for us. Consequently we have adopted an interim approach 
of plugging our entire coordination infrastructure into GT4 as a single custom PDP. This has 
limitations as described in section 7, but still allows secure coordination to take place. In section 7 
we describe how the coordination infrastructure could be more tightly integrated into GT to become 
an integrally supported feature. 
 



 8

Figure 3. Adding coordination to GT4 
 
The coordinated PDP comprises two components: a Coordinator object and a stateless PDP (such as 
an XACML or PERMIS PDP). The Coordinator object comprises three functional components:  

- a context handler which is responsible for: receiving requests from and providing decisions 
to the GT4 PEP, making requests to and receiving decisions from the stateless PDP, and 
communicating with the other two internal objects, 
- a Coordination PIP which is responsible for retrieving coordination attributes from the 
coordination database, and 
- an Obligations Service which is responsible for evaluating obligations and updating the 
coordination database. 

When GT4 is given a user’s request to access a grid service, the coordinated PDP is called via the 
GT4 authorisation chain (step 1 in Figure 3). The Coordinator’s context handler calls the 
Coordination PIP to write lock and retrieve the required coordination attributes from the 
coordination database grid service (step 2). 

The obvious question to ask is, how does the Coordinator know which coordination attributes are 
needed, since the coordination database could contain many thousands of attributes. However, this 
question is not a new one, since even without coordination attributes the PEP still needs to know 
which other attributes (environmental, action etc) are needed by the PDP. There are (at least) three 
possible solutions to this problem. Firstly, the PEP can be configured in an application specific 
manner with the correct set of attributes that need to be passed to the PDP in each request context. 
Secondly, a getAttributes method can be added to the PDP which is called at initialisation time and 
returns the complete set of all attributes that are needed by the current authorisation policy. Thirdly, 
the PDP can dynamically return the set of additional attributes that are needed in order to answer the 



 9

current authorisation decision request. This third mechanism is the one adopted by XACML. Since 
the second mechanism is simply an automation of the first they will be treated as equivalent in the 
following discussion.  

Having the complete list of attributes at initialisation time will mean that the stateless PDP only 
needs to be called once per authorisation decision, but may result in surplus information being 
passed in the request context. Not knowing the correct set of attributes to pass when the PDP is 
called will result in multiple calls to the PDP, and possibly to the coordination database, but no 
surplus information will be passed in the request context. The latter approach is expected to be most 
efficient when policies are large and different attributes are needed for different policy rules, and 
especially when coordination is not needed for the majority of the access control decisions. As we 
will see from the performance results in Section 6, accessing a coordination database via GSI poses 
the largest overhead in all the steps of coordinated decision making, and therefore should not be 
taken when a coordinated decision is not needed. The former approach is expected to be the most 
efficient for small policies that only require a limited number of attributes, and when coordination is 
required for the vast majority of the access control decisions.  

We have currently implemented the second mechanism in our Coordinator and have added a 
getAttributes method to the XACML and PERMIS PDPs. This method is called during the 
initialisation phase of the coordinated PDP (Step 0 in Figure 3). A future development would be to 
implement the third mechanism as well in the Coordinator, and to repeatedly call the stateless PDP, 
but as described in Section 7, we think a better solution would be to implement this in GT4. 

When the appropriate coordination attributes have been returned from the coordination database grid 
service, the Coordination PIP adds them to the request context obtained from the GT4 PEP (step 3), 
and passes this expanded context back to the context handler for it to use in its call to the stateless 
PDP (step 4). The coordination attributes are actually packaged as environmental ones in the request 
context, since the stateless PDP cannot tell the difference between them. The stateless PDP returns 
an authorisation decision, according to its evaluation of the user’s request against the coordinated 
access control policy (step 5).  If the stateless PDP returns access granted, and the decision is a 
coordinated one, then the authorisation decision will contain obligations to update the appropriate 
coordination attribute values. The context handler makes various calls to the Obligations Service (see 
below) which evaluates the obligations (step 6), updates the coordination database, and removes the 
locks (step 7). The context handler returns the granted response to the GT4 PEP (minus the 
obligations) (step 8). The user is then allowed access to the service by GT4. The reader will note that 
this design only supports the Chronicle=Before option for obligations. In section 7 we describe how 
the other Chronicle options can be implemented. 

The obligations service has 3 methods: 
- getChronicle. This method is given the authorisation decision response and returns the value of 

the Chronicle parameter (Before, With or After), or an exception if the response does not contain 
any obligations. 

- evaluateObligation is passed the request context and authorisation response and evaluates the 
various attribute assignments in the obligation, including the arithmetic expressions such as 
addition, subtraction, multiplication etc. e.g. assign balance[id(S)](C) + amount(A) to 
balance[id(S)](C), and places the result in the response. 

- performObligation extracts the coordination attribute values from the response, updates the 
coordination database by making repeated calls to setCoordAttrVal, and finally removes the 
locks from the database.  

We have currently implemented a couple of simple services as proof of concept. One simulates 
requesting different amounts of storage from different resources on the grid, and the user is 



 10

constrained to a maximum allocation for his job. The other simulates multiple withdrawals from a 
series of ATM machines, and the user is constrained to withdrawing a maximum amount per day. 
We will describe the latter more fully and present the performance measurements for it with and 
without coordination between the withdrawals. 

5. PERFORMANCE MEASUREMENTS 
5.1 The ATM Service 
When the user asks to withdraw money from the ATM service, GT4 calls the custom PIPs to retrieve 
the attributes of the user, the requested action, the resource and the environment. GT4 then calls the 
custom PDP to make an authorisation decision. Without a coordination capability, a stateless PDP is 
used (XACML or PERMIS), but it can only have a policy constraint that limits each withdrawal to a 
particular fixed value (say £250) each time (amount(A) ≤ 250). If a user requests £250 or below, the 
request will be granted by the stateless PDP and the ATM service will return a positive response to 
the user. If a user requests greater than £250 the stateless PDP will deny access to the service. Of 
course, a user can make multiple consecutive requests for £250 or less and therefore withdraw an 
unlimited amount of money. Once the coordinated PDP is configured into GT4, the ATM service can 
be coordinated and the policy can now limit withdrawals to a fixed amount per person per day. The 
Coordinator retrieves the value of the coordination attribute (balance[subject-DN, date](C)) from the 
coordination database and adds this to the request context. Note that the initial value (250) for the 
coordination attribute balance is defined in the schema for the coordination database. The 
Coordinator now calls the stateless PDP, which can be the same one as was used by the 
uncoordinated ATM service, only now it has a different policy in which the constraint refers to the 
coordination attribute value rather than a fixed value i.e. (amount(A)≤balance[subject-DN, date](C)), 
and also contains an obligation on permit to update the coordinated amount (balance[subject-DN, 
date](C)←balance[subject-DN, date](C) – amount(A)). If the request is granted, the stateless PDP 
returns a granted decision plus the obligation. The Coordinator updates the Coordination database 
and returns granted to the GT4 PEP. When the user makes a second ATM request, the updated value 
of balance is retrieved by the Coordinator. Once the user has been granted his daily allowance, all 
subsequent requests are denied. The system works regardless of how many different ATM services 
and PDPs are plugged into GT4, since all the PDPs coordinate their decisions via the same 
coordination database service. Initially, each balance array element has the value of 250 and it drops 
when an amount of money is withdrawn by a subject on a date. The subject DNs and dates are 
collected by the custom PIPs, so that when different subjects withdraw money on different days, the 
coordination attribute balance[subject-id, date](C) will refer to different values, e.g. 
balance[“cn=mary,o=uok,c=gb”, “2007-01-26”] and balance[“cn=jack, o=uok,c=gb”, “2007-01-
25”]. Whatever the user cn=jack,o=uok,c=gb withdraws on 25th January 2007 will not affect his next 
day’s limit because balance[“cn=jack,o=uok,c=gb”, “2007-01-26”]  refers to a different data 
value. Similarly whatever Mary withdraws on one day will not effect what Jack can withdraw on the 
same day. 

5.2 Performance Measurements 
The performance measurements were conducted on a set of six Linux machines – see Figure 4. The 
coordination database grid service and ATM application services 3 and 4 ran on Intel Pentium(R) D 
2.8GHz machines with 1GB memory. ATM applications 1 and 5 ran on 2GHz machines with 0.5GB 
memory, with ATM service 2 running on a 1.4GHz machine. ATM service 5 was on the same LAN 
segment as the Coordination service which accounts for its faster performance than ATM service 1. 
All six machines had Globus Tool kit 4.0.0 installed. We performed all the performance tests using 
the ATM simulation service described above (or a variant of it). We performed three distinct sets of 
tests. The first set was designed to measure the performances of the individual functional 
components that make up the overall coordinated access control decision making, and used a single 



 11

ATM service and the coordination database service both running on 2.8 GHz machines. We tested 
this system using both the PERMIS PDP [28] and Sun’s XACML PDP [29], in order to compare 
their performances as well as that of the coordinated PDP.  

The second set of test was designed to test scalability and functionality, by using multiple distributed 
PDPs simultaneously accessing the same coordination attribute in the coordination database. For 
this, we deployed the ATM service on between one and five PCs, with each simultaneously 
withdrawing money from the same user account so that they could coordinate their decision making 
via a single coordination attribute. The functional results of this testing were as expected, that the 
user was only allowed to withdraw a total of £250, regardless of how much was attempted to be 
withdrawn from which service machine. The performance results showed a marked degradation as 
more services joined the network, since each user’s request blocks all the other requests due to the 
coordinator locking the attribute in the coordination database until it has finished. 

The third set of tests was designed to test concurrent accesses to the coordination database service 
from different applications. For this set of tests we modified the ATM service on each machine to 
specify a different coordination attribute, so that each coordinated PDP would lock different 
attributes (tables) in the coordination database and consequently would not block or hold each other 
up. The performance degradation in these tests was significantly lower than that of concurrent access 
to the same coordination attribute. 

Figure 4. Configuration for Performance Measurements showing various Time collection 
points 



 12

Note that in all the above tests, whether GT4 calls the coordinated PDP or the PERMIS PDP or the 
XACML PDP is specified in the service’s security descriptor, so it is possible to alter the system 
architecture purely by configuring the security descriptor and changing the access control policy to 
suit. 

5.2.1 Performance of Individual Components 
Each set of performance measurements was carried out 100 times. In each set of 100 results we 
found some spurious results which were significantly larger (~200ms) than the others, sometimes an 
order of magnitude or more. According to Shewhart [30], when a process is in control, 
approximately 1% of the measurements will be greater or less than three times the standard 
deviation, and approximately 5% will be outside two times the standard deviation. We suspect that 
our spurious out of control measurements are due to Java garbage collection that kicks in at random 
intervals, although those that depended upon network communications could also be affected by 
random network delays. In order to counteract this, we set the upper control limit to 3 times the 
standard deviation, and removed all the spurious measurements that were above this limit. This 
necessitated us having to remove between 1% and 10% of the measurements when computing the 
results. 
We measured the performance of each PIP, the stateless PDP (Time10-Time9), the obligations 
service, the various coordination database actions (lock, read, write, unlock), the time for GT4 to 
transfer messages to and from the Coordination Service (Time4-Time3-Time8+Time7) both with and 
without GSI, and the overall time for coordinated decision making (Time2-Time1) both with and 
without GSI. The overall time comprised the sum of the times consumed by the coordination PIP, the 
obligations service and the stateless PDP. We made sure that each request in a set of 100 was either 
grated or denied by only withdrawing £1 each time for grants, or >£250 for denies. The average 
times and standard deviations for coordinated decision making (Time2-Time1) are shown in Table 1.  

Table 1.  Decision Making with Coordination (ms) 
Use of GSI Response Average time (ms) STD DEV 
With GSI DENY 824 70 

Without GSI DENY 320 32 

With GSI GRANT 809 77 

Without GSI GRANT 345 34 

 
Whilst we might expect coordinated Grants to take longer than coordinated Denies since they have to 
process obligations, the overheads of GSI and making network calls to the coordination database 
service appear to completely swamp any minor differences in processing time, so that we can 
conclude that both coordinated grants and denies take approximately the same amount of time to 
complete in this configuration.  
By way of comparison with uncoordinated decision making, the time taken to make an 
uncoordinated  authorization decision (time10-time9) using a stateless PDP was 1.5±0.26ms for the 
PERMIS PDP and 6.4±2.2ms for Sun’s XACML PDP. This is approximately two orders of 
magnitude faster than coordinated decision making. We note that the PERMIS PDP always 
outperforms Sun’s XACML PDP by a factor of approximately 4. There are several reasons for this. 
PERMIS policies are monotonic, being based on the paradigm that everything is denied except that 
which is allowed by the policy. Thus once a grant is discovered, policy processing can stop and the 
grant result can be returned. XACML policies on the other hand are not monotonic and allow 
conflicting grant and deny rules to be present. These are mediated by rule and policy combining 
rules. Consequently XACML always has to process every policy rule, along with the combining 



 13

rules, before it can return a result. Finally XACML policies are syntactically more complex 
(although more comprehensive) than PERMIS policies, as is the structure of their obligations, and 
this also contributes to the increased processing cost. 
The overall time taken by the coordinated PDP consists of locking the coordination attribute in the 
database, reading its current value, merging this together with the attributes from the other PIPs, 
making an authorisation decision by calling the stateless PDP, getting the decision response, 
extracting and evaluating the obligations, updating the coordination attribute value in the 
coordination database, releasing the locks, and finally returning the result to the GT4 PEP. In order 
to reduce the delays introduced by network round trips, we combined the database lock/read 
commands into one network message, and the update/unlock commands into a second message 
thereby reducing four message exchanges to two. Table 2 present the performance results of the 
various components of the Coordination PDP when it returns grant responses using the PERMIS 
PDP. We present results with and without GSI securing the GT4 connection to the coordination 
database service. 

Table 2.  Time Taken by Each Component of the Coordinator (ms) 
 Coordinatio

n PIP 
(Time4-
Time3) 
(lock/read) 
with GSI 

Coordinatio
n PIP 
(Time4-
Time3) 
(lock/read) 
without GSI 

Merge 
attributes 

Authz 
decision 

Get 
response/ 
Evaluate 
obligation
s 

Write-
unlock 
(Time6-
Time5) 
with GSI 

Write-
unlock 
(Time6-
Time5) 
without GSI 

AVERAGE 382 169 0.89 1.50 1.0 385 170 
STD DEV 17 17 0.8 0.26 0.12 18 18 

 
The significant result is that lock/read the database and write/unlock the database take two orders of 
magnitude longer than the other coordination tasks. This is because all of these involve remote 
operations on the coordination database, using GT4 and optionally GSI to secure the connection. 
Furthermore, using GSI more than doubles the overhead of this connection. In order to determine 
how much of this time is spent in the coordination database server, and how much establishing the 
GT4 connection, we measured the time taken by each of the components in the coordination database 
service from the time the request was received by the Subject PIP (Time7) until the service returned 
its response to the GT4 PEP (Time8). The results are shown in Table 3. 

Table 3.  Time Taken by each Component of the Coordination Database Service (ms) 
 Subject 

PIP 
Resource 
PIP 

PERMIS 
PDP 

Lock/Rea
d 

Write/Unloc
k 

Overall 
(Time8-Time7) 

AVERAGE 11.0 3.7 1.0 1.50 1.21 20 
STD DEV 1.8 1.0 0.3 0.26 0.17 2.8 

 
It can be seen that the process of authorizing access to the coordination database service and then 
performing the requested actions takes approximately 20ms, of which over half of this time is spent 
in the subject PIP retrieving and validating the coordinator’s role AC from an LDAP directory. We 
can deduce that the overhead of the network connection and GT4 transport of the messages between 
the coordinator and the database service, without GSI, is approximately 150ms per round trip, whilst 
GSI adds an additional 215ms to this. The coordination database service therefore accounts for only 
about 5% of the time taken by the Coordination PIP to read a coordination attribute. 

Finally we measured the performances of the various PIPs. The task of the subject PIP is to return 
the subject’s DN, which it obtains from the proxy certificate. It also contacts the VO’s LDAP service 



 14

to pull a role attribute certificate (role=Customer) that has been assigned to the subject. The task of 
the action PIP is to return the requested action and its parameter, which are taken from the user’s 
request. In these tests the action is withdraw and the parameter is the amount to be withdrawn e.g. 
withdraw amount=200. The task of the resource PIP is to return the service’s DN, whilst that of the 
environment PIP is to return the current date. The performance results of the PIPs are shown in Table 
4. Note that our results showed that the performance of the Action, Subject, Resource and 
Environment PIPs was independent of which PDP is called by GT4, or the decision that was made. 
You can also see that the performance of the subject PIP and resource PIP in the ATM service is 
approximately the same as those in the coordination database service (Table 3). 

Table 4.  Custom PIP Performance Measurements (ms) 
Action PIP Subject PIP Resource PIP Environment PIP 

Average STD DEV Average STD DEV Average STD DEV Average STD DEV 
1.19 0.18 12.04 2.26 3.60 1.00 1.47 0.34 

 

Although both the subject and resource PIPs are implemented using the same PERMIS Credential 
Validation Service (CVS), the different times taken by them is due to the different work that is being 
done. The Subject PIP is returning the subject’s role attribute value (which is embedded in an X.509 
attribute certificate (AC) stored in an LDAP directory) as well as the subject’s DN. The Resource 
PIP is only returning the resource’s DN because the resource does not have an X.509 AC. The 
environment PIP returns the current date and time taken from the system clock, but by replacing this 
with a PERMIS CVS it would be possible to retrieve a secure timestamp from a trusted time 
stamping authority and use this instead of the system clock. Clearly, the time taken by the action, 
subject, resource and environment PIPs will vary depending upon what attributes they are required to 
fetch and validate from where. For example, we have already shown that the Coordination PIP takes 
approximately 380ms (with GSI) and 170ms (without GSI) to fetch an attribute from a grid enabled 
database service. This compares very unfavourably with the 12ms it takes the Subject PIP to fetch an 
attribute (an X.509 AC) from an LDAP directory. An alternative future design for the coordination 
database service will be to replace the GT4 communications mechanism with a much lighter and 
faster alternative. 

5.2.2 Scalability Performance of Accessing the Same Coordination Attribute 
Each set of performance measurements was carried out 100 times. We first ran the tests using each 
ATM service on its own. This provided the base performance figures for each machine which is 
shown in row 1 of Table 5. The figure before ± is the average time and after ± is the standard 
deviation from the average. We then ran the tests again with either two, three, four or five ATM 
service machines running in parallel. When there were one or two machines, we found that between 
3 and 5 results where larger than three times the standard deviation and these were removed from the 
figures shown below. When there were 3 or more machines in parallel, all the results fell within 3 
times the standard deviation, so we set the upper control value to two times the standard deviation 
and found that approximately 10% of the measurements fell outside this range and needed to be 
removed before calculating the results presented below. We did this in order to get acceptable 
standard deviations. 
 
 
 
 



 15

Table 5. Performance results (ms) for services accessing the same coordination attribute 
(Time2-Time1) 

No of ATM 
Services 

ATM Service1 ATM Service2 ATM Service3 ATM Service4 ATM Service5 

1 809±85 785±90 730±74 709±71 684±58 
2 867±128 843±104    
3 1065±108 1052±121 1102±107   
4 1442±119 1414±111 1453±115 1456±119  
5 1790±149 1790±124 1812±130 1815±133 1819±124 

 
From 2 services upwards, performance degraded almost linearly as the number of ATM machines 
increased, as shown in Figure 5. This is because each service was blocked for longer as more 
services were added, since they all compete to lock the same coordination attribute. By consulting 
Table 2, one would expect the time increase to approach 380ms per additional ATM service, as this 
is the time between a service taking a lock and releasing it. The reason why the second service did 
not appreciably degrade performance was that whilst the first service had the coordination attribute 
locked, and was performing the GSI communications overheads for the write/unlock request, the 
second service was performing the GSI communications overheads for the lock/read request. Both 
completed these at approximately the same time, and then the two services switched roles and the 
second service took hold of the lock. Thus performance degradation was small. 

Figure 5. Graphical display of Table 5. 
In order to ensure a fair distribution of the database lock when more than two services were 
competing for it, we had to introduce a FIFO queuing mechanism into the coordination service, so 
that as each new service request arrived, unless it already held the existing lock, it was placed at the 
tail of the FIFO queue, and then went to sleep for 1ms. Each time the service request awoke, if it was 
not at the top of the queue, it would go to sleep again for another 1ms. Eventually it would awake to 
find itself at the top of the queue, whereupon it would perform its database queries, and then remove 
itself from the queue when it was asked to execute the unlock request. 

5.2.3 Scalability Performance of Accessing Different Coordination Attributes 
In this set of results each application service accessed a different coordination attribute, hence no 
process would be blocked waiting for another process to release locks on the coordination attribute. 
In this case the limiting factor will be the processing power of the coordination service PC, since it is 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4 5 6

No of ATM services

(m
s)



 16

being driven in parallel by between 2 and 5 application machines. The performance figures are 
shown in Table 6 below and depicted in Figure 6. 
Table 6. Performance results (ms) for services accessing different coordination attributes 
(Time2-Time1) 
No of Services Service 1 Service 2 Service 3 Service 4 Service 5 

1 809±85 785±90 730±74 709±71 684±58 
2 812± 91 833±111    
3 875±99 889±110 881±119   
4 994±138 968±147 905±138 940±115  
5 1117±126 1112±143 1038±151 1047±139 1070±148 

 

Figure 6. Graphical display of Table 6. 
The performance appears to decrease with a mild exponential curve. In order to determine who much 
of this decrease was due to extra time taken by the coordination service and how much was due to 
extra time taken processing the GSI communications, we also measured (Time8-Time7). The results 
are shown in Table 7. We can see that the coordination service only accounts for about 10% of the 
decrease in performance. 
Table 7. Performance results (ms) for services accessing different coordination attributes 
(Time8-Time7) 

No of Services Lock/Read Att Write/Unlock 
1 20.0±2.9 19.0±2.4 
2 23.5±5.6 22.0±5.4 
3 26.2±10.0 25.9±9.2 
4 34.0±15.7 33.2±14.9 
5 47.4±21.7 49.0±23.4 

 
We conclude that the main inhibitors to fast overall performance and scalability of the current 
coordination service implementation are the overheads of using Globus Toolkit to transport the 
messages between the coordinator and the coordination service, with GSI posing a particularly heavy 

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6

No of services in parallel

(m
s)



 17

burden to secure the communications. Further research will need to investigate more efficient ways 
of performing secure communications between the coordinator and the coordination database 
service. 

6. RELATED RESEARCH 
Numerous projects such as AKENTI [13], CAS [14], GridSite [20], GSI [5], PERMIS [2], PRIMA 
[9], SAZ [19] and VOMS [12] have focused on grid security and have provided technological 
solutions for some aspects of authorization and access control, each providing different sets of 
capabilities. However, none of them have included the capability of coordinating access control 
decisions across time and space. Likewise, many researchers have considered history based access 
controls systems e.g. for mobile code [21], for separation of duties [22], for running code in JVMs  
[23], but none have considered how these might be applied to distributed grid systems. Research into 
grid accounting systems is probably the closest research related to ours. 
The primary objective of the SweGrid Accounting System (SGAS) [8] is to enforce shared resource 
quotas across organisational boundaries. Their model is based on a virtual Bank which has accounts 
for grid research projects, into which resource quotas are periodically placed by administrators. 
When a grid researcher submits a job, the request is intercepted by the Job Account Reservation 
Manager (JARM), and a time-limited hold is placed on sufficient funds to run the job from the 
project’s account. When the job has finished, JARM intercepts the job execution process to calculate 
the actual cost of the job, then asks the Bank to remove the hold and debit the account with the actual 
amount of resources consumed (which must be less than or equal to the held amount). JARM gains 
access to the bank account by using the proxy certificate delegated to the job by the user. The Bank 
service keeps a complete transaction history of all accesses to a user’s account, and holds on units 
automatically expire after the timeout period to cater for jobs that crash prematurely. The model 
supports soft authorisation controls by allowing an overdraft facility on accounts and setting the 
job’s execution priority. An overdraft of zero with no differential priorities equates to hard 
authorisation decision making, since a user with insufficient funds will be denied permission to run 
his job. A large overdraft facility and/or different job priorities equates to soft authorisation decision 
making, since users can consume more than their quotas up to the limit of their overdraft, or have 
their job’s priority downgraded if they have insufficient resources. Operational experience has 
indicated that researchers need these facilities because they typically work in burst mode, with 
periods of heavy activity followed by periods of calm. The SGAS Bank serves a similar purpose to 
our coordination database, and JARM to our coordination PDP. A primary difference is that SGAS 
intercepts a job before and after it has completed, whereas ours only intercepts it before submission 
(we discuss this further in Section 7). Project quotas in SGAS can be delegated and distributed to 
members of project teams, in order to increase the granularity of accounting, though it still isn’t as 
granular as our coordination attributes which can be filtered on action and environmental parameters 
as well as resource and subject ones. Operational experience of SGAS found the system to be too 
complex and time consuming to manually allocate resources to projects, and to have PIs delegate 
quotas to project members. In comparison, our system has a schema which automatically allocates 
initial values to all coordination attributes. 
Sundaram and Chapman [17] [18] have developed a policy-based decision framework, called Policy 
Engine, that provides authorization and accounting. Their goal is to define a resource broker that 
automatically selects the best resource grid that is available based on the requirements of the user’s 
job. The solution considers both the user’s permissions at the broker side and the accounting details 
at the resource side to ensure the allowed quotas and usage credits are not exceeded. Usage credits 
are not defined but depend upon a negotiated agreement between the broker and the resource site for 
the accounting metrics that reflect the resource’s usage. In the first version [17], policies are 
specified as a set of (attribute, value) pairs stored in text files. Each value states the maximum 



 18

allowed usage value for the associated attribute. The policy evaluation module includes a set of 
attributes managers that are responsible for ensuring that the values are not exceeded by a job. In 
version 2 [18], policies are specified in XML format. The policy language is also improved with the 
use of logical and arithmetic operators. A new attribute “type” is also added to define the scope of 
each rule: when its value is “site”, the rule applies for all users, when it is “user”, it applies for a 
specific user. However, their attributes are not as flexible as our coordination attributes which allow 
any granularity to be defined over users, resources, actions and the environment to define the scope 
of a policy rule. Furthermore, coordination attributes allow more flexible and precise information to 
be coordinated rather than just resource credits. Finally, whilst their system provides history based 
decisions, there is no distributed coordination between PDPs. 
Dumitrescu et al. propose a model for usage policy [24] and a distributed approach [10] for grid 
resources brokering. The policy for the allocation of resources is a set of 5-tuples of the form 
<resource-type, provider, consumer, epoch-allocation, burst-allocation> where epoch and burst 
allocations specify a percentage for a period. The management architecture [10] can include more 
than one VO decision point (which they name VO policy enforcement points). All the VO decision 
points are connected in a mesh.  Each VO decision point maintains a view of the global environment 
via the periodic (in their experiments they used three minutes) exchange of information about the 
recent jobs they have authorized, which they send to the other VO decision points. Their resource 
types are limited to low level grid resources (CPU, network bandwidth and storage).  In addition, 
exchanging information periodically is not a good solution for coordinating the VO decision points. 
If the period is too long, the VO decision points’ view of the global environment will not reflect 
current reality. If the period is too short, many useless messages are exchanged. Finally, no 
obligations can be specified. 
Gama et al. in [15] propose a scalable architecture that is able to enforce history-based policies. The 
policy language [27] is an extension of SPL [26], is named xSPL, and it allows history based 
constraints to be specified in obligation policies. This architecture has been adapted to enforce 
policies for grids [25]. In their context, they have obligations, but these don’t have exactly the same 
semantics as in our approach. Their obligations enforce mandatory constraints on future users’ 
actions, whereas our obligations place an immediate action on the PEP that is to be enacted along 
with the current user action. Furthermore, coordination between multiple PDPs is not considered by 
them, and there isn’t anything equivalent to our Chronicle parameter. 
Other related research can be found in different contexts. Prepaid systems (PPS) provide a popular 
service for mobile telecommunications. These require the customer to pre-purchase a certain amount 
of time before any calls can be made. When customers have used all the time they have paid for, they 
can’t originate any more phone calls until they further provisions their accounts. These systems are 
time and space independent, and different solutions have been developed e.g. [16]. For example, in 
the wireless intelligent network approach, the mobile switch centers, before allowing a 
communication, ask a prepaid service control point that maintains the balance of the customer’s 
account if there are sufficient funds present in it. This is similar to our coordination database 
approach. 

7. LIMITATIONS, CONCLUSIONS AND FUTURE WORK 
As stated previously, our current implementation only implements the Chronicle=Before option, 
since the Coordinator has to update the coordination database before returning the granted response 
to the GT4 PEP. It would have been possible to implement the After and With options as well if the 
GT4 PEP had been configurable to make a second call out to our Coordinator after the user’s service 
had completed successfully. Our preferred solution is for the coordination infrastructure to be more 
tightly integrated into GT by taking the various components of the Coordinator and integrating them 
into the GT PEP as shown in Figure 7. 



 19

The Coordination PIP and Obligations Service, which are currently part of the Coordinator, would 
become stand alone services directly called by a future GTn PEP. In addition, the GTn PEP will need 
enhancing to repeatedly call the custom PIPs and the PDP, in a loop, if the PDP returns a set of 
additional attributes that are needed before an authorization decision can be made (as in the XACML 
model). Once an authorization decision has been returned the PEP will need to call the obligations 
service for it to process the obligations, update the coordination database, and then remove the 
coordination database locks. 

 
Figure 7. Preferred Model for Integrating Coordination into GT 

In order to correctly handle the Chronicle parameter, the PEP needs to undertake enforcement of the 
user’s access request and updating of the coordination database in different sequences. Unfortunately 
the type of Chronicle is not known until after the authorization decision has been made, but locking 
the coordination database is needed before the decision is made, i.e. when the coordination values 
are first read by the coordination PIP. This leads us to define two different procedures for the PEP, 
which we term Lock All Decide Once and Multiple Decisions. The former procedure is used if the 
PEP is able to get the full set of attributes that are needed at initialization time, the latter if it is not 
(i.e. the XACML model). Both procedures require the PEP to call the obligations service before and 
after the user’s request has been enforced. 

In Lock All Decide Once, the PEP obtains the full set of coordination and environmental attributes 
that are needed by the PDP in either an application specific manner or via a call to the PDP’s 
getAttributes method at initialization time. After a user presents an access request, the PEP calls the 
custom PIPs, and the coordination PIP locks and fetches the appropriate coordination attributes from 
the coordination database. The PEP then calls the stateless PDP passing it the full set of request 
context attributes. An authorization decision and obligations are returned. The PEP makes the first 
call to the obligations service which determines the value of the Chronicle parameter. If 
Chronicle=After, the obligations service removes the coordination attribute locks and returns to the 
PEP for it to enforces the user’s access request. After the user’s request has finished the PEP makes 
the second call to the obligations service for it to update the coordination database. If 
Chronicle=Before, the obligations service updates the coordination attributes, removes the locks and 



 20

returns to the PEP for it to enforce the user’s access request. The second call to the obligations 
service performs a null action. If Chronicle=With, the obligations service returns to the PEP for it 
enforce the user’s access request. After the user’s access has completed, the PEP calls the obligations 
service for the second time and it updates the coordination attributes and removes the locks. 
In the Multiple Decisions procedure the PEP does not call getAttributes at initialization time, nor the 
environmental or coordination PIPs when a user’s access request is first presented, but rather calls 
the subject, action and resource PIPs followed by the PDP. The PDP returns the set of environmental 
and coordination attributes that are needed for this access request, and the PEP calls the appropriate 
PIPs. If the coordination PIP is called, it will lock the coordination database and retrieve the 
coordination attributes. The PDP is then called for a second time, passing it the required 
environmental and coordination attributes. (Note that this process may need to be repeated again if 
the PDP returns further needed attributes instead of an authorization decision.) Once the 
authorization decision and obligations are returned the procedure continues in the same way as 
before in the Lock All Decide Once procedure. 
In conclusion, we have shown how coordination between access control decision making can be 
modeled and implemented in a grid environment. We have defined the necessary coordination 
attributes and obligations that are needed to support the model, including a Chronicle parameter that 
indicates when the coordination attributes have to be updated. We have implemented the 
Chronicle=Before procedure in GT4 by building a coordinated PDP and presented the performance 
results. Finally, we have described how coordinated decision making can be more tightly integrated 
into GT so as to support the Chronicle=After and Chronicle=With variants as well. We are not aware 
of any other similar research, although several grid accounting systems have similar objectives to our 
work. Future research could usefully investigate integrating our coordinated authorization system 
with grid accounting systems and finding a more efficient way of securing the communications 
between the coordinated PDP and the coordination database service so as to reduce the 
communications overheads of GSI. 

8. ACKNOWLEDGMENTS 
We should like to thank the UK EPSRC who have funded this research under the Distributed 
Programmable Authorisation project (GR/S69061/02). 

9. REFERENCES 
1.  S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson. “Internet X.509 Public Key Infrastructure (PKI) 
Proxy Certificate Profile”. RFC3820, June 2004. 
2.  D.W.Chadwick, A. Otenko “The PERMIS X.509 Role Based Privilege Management Infrastructure”. Future 
Generation Computer Systems, 936 (2002) 1–13, December 2002. Elsevier Science BV  
3.  Von Welch, Rachana Ananthakrishnan, Frank Siebenlist, David Chadwick, Sam Meder, Laura Pearlman. “Use 
of SAML for OGSI Authorization”, Aug 2005 
4.  Su, L. Chadwick, D.W., Basden, A., Cunningham, J.A.. “Automated Decomposition of Access Control 
Policies”. Proc of 6th IEEE International Workshop on Policies for Distributed Systems and Networks, Stockholm, 6-8 
June 2005. pp 3-13 
5.  Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J., Kesselman, C., Meder, S., 
Pearlman, L., and Tuecke, S. (2003) “Security for Grid Services”, 12th IEEE International Symposium on High 
Performance Distributed Computing 
6.  OASIS “eXtensible Access Control Markup Language (XACML) Version 2.0” OASIS Standard, 1 Feb 2005 
7.  David W Chadwick, Linying Su, Oleksandr Otenko, Romain Laborde. “Coordination between Distributed 
PDPs”. Proc of 7th IEEE International Workshop on Policies for Distributed Systems and Networks, London, Ontario, 5-
7June 2006 pp163-172 



 21

8.  E. Elmroth, P. Gardfjell, O. Mulmo, and T.Sandholm. An OGSA-Based Bank Service for Grid Accounting 
Systems. In J. Wasniewksi et. al. (eds). Applied Parallel Computing. State-of-the-art in Scientific Computing. Springer 
Verlag, Lecture Notes in Computer Science, 2004. 
9.  Markus Lorch, Dennis Kafura. “The PRIMA Grid Authorization System”. Journal of Grid Computing, Volume 
2, Number 3 / September, 2004 
10.  Catalin L. Dumitrescu , Michael Wilde and Ian Foster. A Model for Usage Policy-Based Resource Allocation 
in Grids, in Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks 
(POLICY'05), p 191 – 200, IEEE Computer Society, 2005. 
11.  ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 “Security Frameworks for open systems: Access control 
framework” 
12.  Alfieri, R., Cecchini, R., Ciaschini, V., Dell'Agnello, L., Frohner, A., Lorentey, K., Spataro, F., “From 
gridmap-file to VOMS: managing authorization in a Grid environment”. Future Generation Computer Systems. Vol. 21, 
no. 4, pp. 549-558. Apr. 2005 
13.  Johnston, W., Mudumbai, S., Thompson, M. “Authorization and Attribute Certificates for Widely Distributed 
Access Control,” IEEE 7th Int Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET 
ICE), Stanford, CA. June, 1998. Page(s): 340 -345 
14.  L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. “A Community Authorization Service for Group 
Collaboration”. Proceedings of the IEEE 3rd International Workshop on Policies for Distributed Systems and Networks, 
2002 
15.  Pedro Gama, Carlos Nuno da Cruz Ribeiro and Paulo Jorge Pires Ferreira. A Scalable History-based Policy 
Engine, in Proceedings of the Seventh IEEE Workshop on Policies for Distributed Systems and Networks (Policy 2006), 
IEEE Computer Society, 2006. 
16.  Yi-Bing Lin, Ming-Feng Chang, Herman Chung-Hwa Rao, Mobile prepaid phone services, in IEEE Personal 
Communications, Vol. 7, N°3, p6-14, 2000. 
17.  Babu Sundaram, Barbara M. Chapman. Policy Engine: A Framework for Authorization, Accounting Policy 
Specification and Evaluation in Grids Source, in Proceedings of the Second International Workshop on Grid Computing, 
LNCS 2242, pages 145 - 153, 2001. 
18.  Babu Sundaram, Barbara M. Chapman. XML-Based Policy Engine Framework for Usage Policy Management 
in Grids, in Proceedings of the Third International Workshop on Grid Computing, LNCS 2536, pages 194 - 198, 2002. 
19.  Saz. See http://www.fnal.gov/docs/products/saz/v_vo1/SAZ.htm 
20.  A. McNab, “The GridSite Web/Grid security system” Softw. Pract. Exper., vol. 35, no. 9, pp. 827-834, 2005. 
21.  Edjlali, G., Acharya, A., and Chaudhary, V. 1998. History-based access control for mobile code. In Proc. 5th 
ACM Conf. on Computer and Communications Security (San Francisco, California, USA, November 02 - 05, 1998). 
CCS '98. ACM Press, New York, NY, 38-48 
22.  T.T.Simon and M.E.Zurko. “Separation of duty in role-based environments”. Proc. 10th Computer Security 
Foundations Workshop, pp.183-194. IEEE Computer Society Press, June 1997. 
23.  Mart´ın Abadi, C´edric Fournet. “Access Control based on Execution History”. Proc of 10th Annual Network 
and Distributed System Security Symposium, (NDSS’03), San Diego, California, 6–7 February 2003. 
24.  Catalin Dumitrescu, Ioan Raicu and Ian Foster. DI-GRUBER: A Distributed Approach to Grid Resource 
Brokering, in Proceedings of ACM/IEEE conference on Supercomputing, 2005. 
25.  Pedro Gama, Carlos Nuno da Cruz Ribeiro and Paulo Jorge Pires Ferreira. Heimdhal: A History-based Policy 
Engine for Grids, in Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid 
(CCGrid’06), IEEE Computer Society, 2006. 
26.  Carlos N. Ribeiro, André Zúquete, Paulo Ferreira and Paulo Guedes. SPL: An access control language for 
security policies with complex constraints. In Proceedings of Network and Distributed System Security Symposium 
(NDSS’01), February 2001. 
27.  Pedro Gama and Paulo Jorge Pires Ferreira. “Obligation policies: an enforcement platform”, in Proceedings of 
Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (Policy 2005), IEEE Computer 
Society, 2005.  
28. The PERMIS PDP can be obtained from http://sec.cs.kent.ac.uk/permis/ 
29.  Sun’s XACML PDP can be obtained from http://sunxacml.sourceforge.net/ 
30.  Shewhart Control Chart. See http://www.itl.nist.gov/div898/handbook/mpc/section2/mpc221.htm 



 22

 


