
Crossover operators to control size growth in linear GP and

variable length GAs

Dominique Chu and Jonathan E. Rowe

Abstract— In various nuances of evolutionary algorithms it
has been observed that variable sized genomes exhibit large
degrees of redundancy and corresponding undue growth. This
phenomenon is commonly referred to as “bloat.” The present
contribution investigates the role of crossover operators as the
cause for length changes in variable length genetic algorithms
and linear GP. Three crossover operators are defined; each is
tested with three different fitness functions. The aim of this
article is to indicate suitable designs of crossover operators
that allow efficient exploration of designs of solutions of a wide
variety of sizes, while at the same time avoiding bloat.

I. INTRODUCTION

A common problem of variable sized genomes is that

solutions tend to get infested with non-functional parts that

hitchhike with fit solutions, a phenomenon commonly known

as bloat. Bloat might lead to substantial increases of the

genome size relative to what would actually be required.

This phenomenon is well known from many varieties of

evolutionary computation and has received particular atten-

tion in the field of genetic programming (see for example

Langdon et al.[11] or Banzhaf and Langdon[1]). In GP the

most common method to limit bloat is so-called maximal

depth restriction[10]; basically this method sets a limit to

the allowed maximal depth of individual candidate solutions.

A number of variants of this method exist. A problem

common to all approaches that in some way cap the size of

individuals is that the best solutions might require encodings

that are longer than the chosen cap-size. Another possibility

is to allow bigger individuals as long as their increased size

is somehow counterbalanced by an increased fitness; one

method that achieves this is parsimony pressure (see for

example [14], [20]). Again, the problem with these methods

is that it needs to be specified precisely how fitness can

counter-balance size; in the context of parsimony pressure

this problem has been recognized and addressed by Luke[13].

Finally there have also been attempts to control bloat by

introducing and limiting a “resource” that is required to

construct candidate solutions. Then bloat is controlled by

the scarcity of this resource; see for example Silva et al.[18],

[19].

This contribution will specifically focus on the problem

of bloat in the context of linear GP[3] and variable length

genetic algorithms (GA). Standard GAs[6] are traditionally

used with a fixed length genome. This is suitable for many

optimization tasks but can also be restrictive in certain appli-

cations. Specifically in situations where the optimal size of

D. Chu is with the Computing Laboratory, University of Kent, UK (email:
D.F.Chu@kent.ac.uk); J. Rowe is with the School of Computer Science,
University of Birmingham, UK (email: J.E.Rowe@cs.bham.ac.uk).

the system to be evolved might not be known. One example

where this could be the case is the evolution of chemical

systems, such as for example cell signaling networks[5].

Furthermore, there is strong evidence that growth phenomena

are important in the evolution of real genomes[9].

There are relatively few attempts to use variable length

GAs. Harvey introduced the species adaptation genetic

algorithm[8] which allowed certain variations of genome

sizes in GAs; this work was recently further developed

by Bull[4]. Other applications include Grefenstette et al

who constructed a GA to learn tactical decision rules[7],

Wu and Garibay introduced the “Proportional Genetic

Algorithm”[21]; this is a more biologically motivated version

of classical GAs that uses explicit genes to encode informa-

tion about the genome.

As far as bloat reduction in linear GP and variable length

GAs is concerned, similar concerns apply as described above:

Limiting the maximum allowed genome length excludes all

(potentially very good) solutions beyond the chosen limit.

Applying a fitness penalty to the genome size introduces an

additional arbitrary parameter. This might again lead to good

(but long) solutions being missed if this parameter is not

set correctly. A second possibility is to reduce redundancy

at run-time by removing junk-entries in the genomes. The

problem here is that it might not be obvious whether or not

a particular part of the genome is actually redundant or not.

Precisely how feasible this approach is will depend on the

specific circumstances of the application.

Instead of focusing on various ways to control bloat once it

arises, this article will concentrate on the designs of crossover

operators (for variable length GAs and linear GP) that min-

imize its occurrence in the first place, more specifically the

design of the cross-over operator: With respect to the cross-

over operator, the main difference between fixed length GAs

and variable length GAs/linear GP is that in the latter the

operator needs to be defined for chromosomes of un-equal

length. Precisely how the cross-over points are chosen will

determine the possible range of the length of the offspring.

In general there are two conflicting requirements that need

to be satisfied by the cross-over operator. Firstly, as stated

above, the operator should be designed in such a way as to

minimize bloat. This requirement would be best satisfied by

a fixed-length representation. Hence, the second requirement

is that the GA/linear GP has some mechanism to explore

solutions from a range of different sizes. Again, if this second

requirement is given too much weight, then code bloat is the

inevitable result. The ideal operator would enable exploration

without causing extensive code bloat.

In this article we will test a number of crossover operators

with respect to these formulated criteria. The aim is to find

a design that strikes a good balance between exploration

and code bloat. The focus of this paper on the crossover

operator is not meant to imply that careful design of the

crossover operator can/should be the only way to reduce bloat

in variable length GAs/linear GP. Also crossover may not

be the only source of size variation in a specific variable

length GA/linear GP. Such additional sources of length

variation and their impact on bloat will then need to be

considered separately. This article will ignore any additional

such sources and concentrate on investigating the effects of

possible crossover operators on bloat.

Previous work on bloat in variable length GA/linear GP

includes theoretical predictions of the length distribution of

genomes. Rowe and McPhee [17] considered an infinite

population model and a flat fitness function. For various

operators they derive the limiting length distribution of the

population. While the results of this work are exact, they

assume very simplified scenarios.

The present article is organized as follows: In section II the

3 fitness functions that are used as test functions are defined;

each of these functions has different characteristics in terms

of the length of solutions it favors; furthermore none of the

functions used here represents particularly hard problems.

This allows the GA to find the optimal solution quickly

thus providing a good basis for comparing the tendency for

bloat among the optimal solutions. These operators are also

introduced in section II.

Section III presents the main results of our simulations.

Since the chosen fitness functions are relatively easy to solve,

in all experiments discussed below the optimal solution has

been found within very short time (except for one case; see

below). Hence, what varies throughout the simulations is

not the fitness of the solutions but rather the length of the

genomes as the evolutionary system explores neutral mutants

of the optimal solutions. Throughout this contribution we will

therefore concentrate on this aspect of genome length rather

than on the fitness of the solution.

What is absent from all experiments below is mutation. In

all simulations the mutation rate was set to zero. The reason

for neglecting mutations is that they introduce a number of

second order effects. Our studies have shown that these do

lead to interesting effects; yet it is not clear how these effects

are to be interpreted in a more general context. We decided

therefore not to include the role of mutations into this report.

II. DESCRIPTION OF THE MODEL

The model is a simple implementation of a variable

length GA. In all the experiments reported here we used

a population size of 1000 and a tournament selection with

tournament size 10. In all simulations we performed 5 million

tournaments. For practical reasons it was necessary to set an

upper limit for the length of the genome; this was necessary

in order to prevent the occurrence of too large genomes that

would exhaust the available computational resources. This

limit was kept constant at 200000 for all experiments. The

population was initialized with random strings of 1’s and 0’s.

The initial length of strings was randomly chosen between

3 and 2000. The figures illustrating the changes of genome

length over time were produced as follows: At every 1000

time steps the sizes of all genomes in the population at

this time were recorded. This resulted in a data file with

5 million entries. The figures in this article were produced

by plotting every tenth point in these files. This reduction did

not qualitatively change the graphs but substantially reduced

the computational resources needed to produce and handle

the relevant figure files.

A. Fitness functions

We experimented with three different fitness functions.

The first fitness-function, ff1, was inspired by the Ising

model. If si is the i-th entry on the genome string of length

L, then ff1 is

ff1 = −

L−1
∑

i

diff(si, si+1)

L − 1

diff(x, y) =

{

0 if x 6= y

1 otherwise

Note that we follow the convention that small fitness values

are better than high fitness values.

In the case of ff1 the fitness is independent of the length,

in the sense that the fitness contribution is averaged over

the length of the genome. Hence, this fitness function has no

inherent length bias. The maximum fitness can be reached by

candidate solutions of all allowed sizes. Any solution longer

than 2 constitutes bloat.

The second fitness function simply measures the distance

of the solution from a target contents of exactly n 1’s in

the genome. In this report n was chosen to be 18. Thus a

string entirely consisting of zeros would have a fitness of 18,

whereas a string that is 100 long with exactly 18 1’s would

have the optimal fitness of 0. The second fitness function is:

ff2 =

√

√

√

√

(

L
∑

i

si − 18

)2

Other than ff1 this fitness function does have a certain

length bias. There is a minimum length (here: 18) which is

required for a solution to obtain the maximal fitness. Once

this maximum fitness is reached, there is no necessity for

solutions to grow any further in size, as it will not lead

to better fitness. If there are candidate solutions that are

substantially longer than 18, then this must be regarded as

an indication for bloat.

Finally the last fitness-function ff3 that will be investi-

gated here equates fitness with the number of leading 1’s

multiplied by -1. For example the string 0111111111 has

a fitness of zero, whereas 11011111011 has a fitness of

-2 (which is better). Unlike the first fitness function, in ff3

the fitness is not normalized by length, so there is a strong

length bias in the sense that the length of a solution sets a

hard limit for the best possible fitness value it can obtain.

So, an increase of length beyond a certain limit would not

be an indication of bloat; instead one could take the value of

ff3(L) + L as an indication of bloat; whenever it is greater

than zero, then bloat is present. As it will turn out, bloat,

however is not an issue with ff3. Instead, in the present

context experiments with this fitness-function will be taken

as an indicator whether or not a given crossover operator

can efficiently explore solutions of various lengths to find

the optimal solution (given the imposed upper limit of the

length of the genomes, the optimal solution would be of

length 200000).

In summary, we have chosen three different fitness func-

tions each with a different length bias and thus corresponding

potentials to exhibit bloat.

B. Crossover operators

We will now describe the crossover operators used. If the

crossover points on both parents are chosen randomly then

the length of the offspring will typically be different to the

length of both parents. Precisely how different the length

of the offspring is (in a statistical sense) will determine the

tendency of the corresponding operator to cause bloat. In this

article three different crossover operators are considered.

The first operator O1 is a straightforward extension of the

fixed length case. For each of the two parent strings p1 and

p2 the crossover point is chosen between 1 and the length of

the string L(px); denote the respective crossover points by

p1,n1
and p2,n2

. The offspring will then be the new string

composed of the left part of p1 and the right part of p2:

poff = p1,1.p1,2 . . . p1,n1
.p2,n2

.p2,(n2+1) . . . p2,L(p2).

One property of O1 is that the offspring poff might

substantially differ in length from its parents. While some

variation in length is desirable in variable length GAs/linear

GP, too much of it may not be. An alternative crossover

operator, O2, works according to the same principle as O1 but

the choice of the crossover points is constrained so that the

length of the offspring does not differ from L(p1) by more

than a fixed number; in all experiments reported here this

number was kept fixed at 10. The third crossover operator,

O3, works in the same way as O2 but the difference between

L(p1) and L(poff) may be up to 10 percent of p1.

III. RESULTS

A. Flat fitness

We performed a number of simulations to understand the

behavior of the variable length GA. In what follows we

are primarily interested in the lengths of the solution rather

than in their fitness. In order to understand the inherent

biases of the crossover operators we performed a number of

simulations with a flat fitness function (that is all genomes

have equal fitness).

Figure 1 & 2 show example-runs for the time evolu-

tion of the GA in a flat fitness-landscape under the three

crossover operators. Under the operator O1 the system shows

strong quantitative variations both between runs and over the

course of a single simulation, in the sense that the mean

Fig. 1. Flat fitness-function: Time evolution of the length of candidate so-
lutions under the crossover operators O1 (top) and O3 (bottom). Snapshots
of the entire population are plotted at regular intervals; see main text for a
precise explanation. The x-axis represents time (or more precise the number
of tournaments) and the y-axis is the length of the candidate solutions. The
figures represent single runs. The plot shows that the operator O1 causes
strong variations of genome sizes over time without any apparent trend to
settle on a specific length. In contrast, operator O3 settles on very short
genome sizes after a transient period.

and maximum length vary strongly. Qualitatively, however,

different runs are similar to one another, in the following

sense: The standard deviation is typically close to the mean;

for example in the particular run shown in figures 1 the

mean length of genomes taken over the entire simulation is

just under 380 with a standard deviation of 346. This large

deviation of the actual behavior from the mean behavior is a

consequence of intermittent explosions of the genome size;

these are clearly visible in figure 1. Larger genome-sizes

are distributed roughly exponentially (over the course of a

simulation). Figure 3 shows the histogram of the distribution

of the genome length in a simulation of O1 in a flat fitness

landscape (note that data plotted is taken from a different

run to that in figure 1). It is in agreement with a theoretical

prediction by Rowe and McPhee[17] of the behavior of an

infinite population.

Crossover O3 shows qualitatively different behavior. As

shown in figure 1 (right) there are large genomes at early

stages of the simulation. Over time the maximum sizes go

down, although variations persist. Roughly in the second

half of the run the genome sizes have substantially reduced.

Closer inspection shows that in this area the largest sizes are

around 200, apparently remaining stable over time from then

Fig. 2. Flat fitness-function: Time evolution of the crossover operator
O2 in a flat fitness landscape. The figures display the lengths of the entire
populations recorded at regular time intervals; see main text for a precise
explanation. The x-axis represents time and the y-axis is the length of the
candidate solutions. The figures are single runs. The initial lengths of the
genomes are chosen at random between 2 and 2000 (just about discernible
in the left hand side of the plot). After a short time, most of the genome
lengths have “died” out and eventually only a narrow band of possible
lengths remains. This is due to the “hoovering” effect described in the main
text. This qualitative effect is shown by all runs that use the same settings
but the location of the band of genome lengths on which the system settles
varies from run to run.

 1

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

fr
e
q
u
e
n
c
y
 o

f
o
c
c
u
re

n
c
e

genome length

Histogram: Distribution of genome sizes

Fig. 3. Histogram of the genome length recorded in a simulation of O1 in a
flat fitness landscape; note that this is a linear-log plot. Large genome lengths
are roughly exponentially distributed. This distribution is in agreement with
a theoretical prediction by Rowe and McPhee.

on. Note again that figure 1 shows a single run, yet repeated

simulations show the same qualitative behavior (data not

shown).

The observed behavior can be explained by the properties

of O3. The possible size of the offspring is limited to be

within 10 percent of the length of the parent. Hence the

longer the genomes in the population the more variation

one would expect; this variation can go in both directions,

towards longer and shorter genomes, but once the population

consists of short genomes only, the possible variations per

crossover event are smaller; as a results there will be less

growth in absolute terms; short genomes thus act as sinks.

For the particular parameters chosen the systems eventually

settles into an exponential distribution with a maximum

observed genome size of about 200.

Finally, the second crossover operator shows a similar ef-

fect yet with a different outcome. One genome size “hoovers”

up all others. A closer inspection of figure 2 shows that the

simulation with O2 starts with the lengths well distributed

over the initially allowed range between 0 and 2000. After a

short time, only 4 relatively narrow bands of genome sizes

remain; after about a fifth of the simulation time all but one

of them have died out and all genomes are in one single

narrow size band.

This effect is explained by a process similar to size related

growth. Note that independent of the length of a genome, it’s

offspring can always only differ from parent 1 by at most

10. Furthermore, note that the offspring created replaces a

randomly chosen member of the population. After inserting

the offspring into the population, the number of genomes

that are within 10 of parent 1 has either stayed the same

or increased by 1. Remember that parent 1 is also chosen at

random. The more genomes there are in a particular size band

the more likely it becomes that the next chosen parent 1 is

from this band and hence the more likely it is that the number

of genomes in this band grows by 1. The effect observed here

is closely related to well known examples of spontaneous

symmetry breaking in complex systems[2].

The width of the observed band depends on the allowed

absolute length change between parent 1 and offspring. In

the limit of very large allowed changes, the system would

approach the behavior of operator O1. By the same token,

smaller allowed variations lead to narrower bands.

In summary, experiments with the three crossover op-

erators show their different characteristics. Operator O1

approaches an exponential distribution. Operator O3 on the

other hand does have a bias for shorter solutions, in the sense

that once there are only short genomes in the population,

genome lengths will remain short. Finally, operator O2 has a

limited ability to explore various genome sizes, particularly

once the population has converged.

B. Introducing Fitness

In this sections we will describe results obtained with the

three crossover operators and the three fitness functions.

The first fitness function does not have a strong length

bias as solutions of all sizes can acquire maximal fitness.

Simulations with O1 show that the optimal fitness is found

within very short time (data not shown); from then on

only individuals with the optimal solution appear in the

population. At early stages of the simulation only short

genomes are retained. This is readily explained by the fact

that long genomes are very unlikely to have uninterrupted

long stretches of either only 1’s or only 0’s (and therefore

good fitness); very short random genomes are not only more

likely to have good fitness but it is also easier to improve their

fitness by a few crossovers only. This is reflected by the fact

that initially genome sizes are very short in the simulations

with O1 (in figure 4). In due course the GA also explores

longer solutions. Due to the particular characteristics of the

Ising model fitness function once solutions are found they

can easily be combined via crossover to give new optimal

fitness solutions. Once all sub-optimal solutions have been

Fig. 4. Fitness-function ff1: Time evolution of the genome sizes for the
operators O1 (top) and O2 (bottom). These figures show that for the first
fitness function operator O1 leads to bloat whereas the second crossover
operator quickly settles on very small genome lengths only. The third
operator shows similar behavior (data not shown).

removed from the population ff1 is essentially the same as a

flat fitness for the operator O1. This is also confirmed by the

distribution of the genome sizes; this distribution (data not

shown) is (after an initial period) identical to the flat fitness

case.

The qualitative behaviors of O2 and O3 are very similar

to each other but different to O1. They lack a substantial

exploration of longer optimal solutions and throughout the

simulation remain essentially restricted to short solutions.

This is caused by the “hoovering” effect described above

(in the case of O2) and the bias for short sequences (in the

case of O3).

The second fitness function has a minimum length re-

quired in order for the genome to acquire optimal fitness;

above this minimal genome size there are many solutions

with optimal fitness. When using ff2 there is thus a mini-

mum size for the genome below which a solutions cannot

compete (at least after the short initial period required for

the system to find one optimal solution). Using O1 with

this fitness-function leads again to an exponential distribution

of the genome sizes, however, with substantially higher

mean length and a maximum size that reached the cap-

size of 200000. It is unclear whether or not the maximal

solution would be bound in an un-capped version of the GA.

Fig. 5. Fitness-function ff2: Time evolution of the genome sizes for the
operators O1 (top) and O2 (bottom). The slight length bias of the second
fitness function leads to an increase of the observed genome lengths for
both simulations with O1 and O2. While for O2 this increase is slight, O1

shows a very substantial increased bloat if compared to figures 1 & 4. The
behavior of simulations with O3 are qualitatively similar to O2 (data not
shown).

Operators O2 (see fig. 5) and O3 (data not shown) show

qualitatively similar behavior. During the first half of the

simulation they settle on a symmetric distribution around

a mean of about 45. This then falls to somewhat lower

mean lengths between 25 and 35 (depending on the run).

Common to all simulations is that (after a transitional period)

the system never shows genome sizes that are substantially

longer than that.

The third fitness function has an inherent bias for long

solutions; the optimal solutions to ff3 must be the longest

allowed in the system. In the present case this is a genome

with the length equal to the cap size (200000). Figure 6

shows that both operators O1 and O3 quickly lead to this

optimal fitness solution. Closer inspection shows that in

both cases the population is dominated by genomes equal

in length to the capsize (as expected); all other sizes are

substantially less frequent; although not apparent from the

figure, in fact the length of nearly all solutions is equal to

the cap-size. In the case of O3 explorations of alternative

solutions is restricted to a relatively small band around the

capsize; note that every solution shorter than 200000 will be

immediately weeded out. So, the band represents solutions

that are one crossover away from the optimal solution; the

smallest genome length is thus 180000 which represents a

Fig. 6. Fitness-function ff3: Time evolution of the genome sizes for the
operators O1 (top), O2 (bottom). The first operator enables the system to
find the fitness maximum and thus the maximum length solution. Closer
analysis shows that nearly all genomes in the right figure are of length
200000. The operator O2 on the other hand impedes the necessary growth
to find the optimal solution. At the end of the simulation the genome lengths
are still under 45000 long.

length change of 10 percent of 200000. Similarly, in the

case of O1 we also only see solutions that arise by one

crossover, yet the possible change of length is greater in this

case; this is reflected by the wider range of sizes in figure

6. A very different picture is offered by O2. The population

shows linear growth over the course of the simulation. Yet,

the possible increases in size do not allow the system to find

the best possible solution within the simulation time.

IV. DISCUSSION

One of the foreseeable practical problems of variable

length GAs/linear GP is bloat. Whether or not bloat will

occur in a particular application of a variable size GA/linear

GP will also depend on the specific circumstances, the

fitness-function and the density of good solutions among

longer genomes. As such, the present results are limited

in their generality as would always be in a study of this

kind. Despite those shortcomings, we believe that the chosen

fitness functions and operators give at least some indications

about their inherent tendency to cause bloat.

The experiments with a flat fitness function (see figure 1 &

2) indicate the main characteristics of the chosen operators.

The first operator settles on a roughly exponential distribution

confirming a theoretical result by Rowe and McPhee[17].

Even though the length distribution of O3 is comparable to

Fig. 7. Fitness-function ff3: Time evolution of the genome sizes for the
operator O3. The operator O3 immediately finds the fitness maximum with
the associated maximum length genomes. As in figure 6 it is not apparent
(but true) that nearly all solutions are of the maximum length 200000.

O1 initially, after a transitional period the former settles onto

smaller genomes in the flat fitness case; O1 on the other hand

continues to show strong fluctuations of the genome length

for the entire simulation period. In practice this means that

O1 has an innate tendency for bloat.

In the case of the flat fitness function the actually observed

longest genomes in simulations of O1 were in the order of

10000 long; the cap length of 200000 was never reached

(see figure 2. If a bias for longer genomes is introduced the

situation changes drastically: The fitness-function ff3 has

a very strong bias for long sequences, in that the optimal

fitness can only be achieved by the longest possible solutions;

in this case it is therefore not surprising that nearly all

genomes actually take the maximal length (see figure 6).

More surprising is the fact that much weaker biases are

sufficient to cause substantial bloat. The fitness function ff2

has a more subtle bias in the sense that there is a minimum

required length of 18 in order to reach optimal fitness. This

threshold of 18 is relatively short compared to the longest

(and even the mean) genomes in the population observed

in the flat fitness case. Yet this comparatively weak bias of

ff2 was sufficient to cause an increase of the sizes of the

longest observed genomes by several orders of magnitude

also increasing the maximum genome size to the capsize;

this is evidenced in figure 5. (Note that this increase in

size cannot be justified by a corresponding increase in fitness

because the maximum fitness was reached at early stages of

the simulation.) On the other hand, the potential of O1 for

quick growth enabled it to quickly find the optimal solution

in the case of the third fitness function ff3 (see figure 6).

Altogether this shows that the operator O1 has a strong

tendency to cause bloat even in the absence of a bias for

longer solutions; this tendency is reinforced if the fitness

function has an additional bias, even a weak one. Hence,

operator O1 is good at exploration of solutions of various

sizes, but fairs poorly on the issue of bloat.

The simulations presented in this report suggest the oppo-

site conclusion for the third operator O2. The experiments

show that the capability of this operator to explore solutions

of various lengths is rather limited. In the case of a flat fitness

functions O2 locks itself into a narrow range of values (see

figure 2); similar behavior is observed when fitness functions

are introduced. Once the population has converged to a

certain genome length no big length variations can happen

any more. This has the effect that bloat is substantially

reduced; but it also leads to an inflexibility in the case where

optimal solutions are outside the range of initial values of the

population and/or outside the range of an initial convergence

of the population size. This is particularly well demonstrated

by the simulations of O2 with ff3 (see figure 7); here the

operator cannot keep up with the size changes required to

find the best possible solutions within the given time. This

operator thus seems to be fairly good at avoiding bloat, at

least when compared to O1, but does so at the expense of

not being able to explore larger intervals of genome sizes.

Operator O2 appears to strike a balance between those

extremes. At least in the test problems investigated here it

avoided bloat in the case of fitness functions ff1 and ff2

but was able to quickly find the best possible solution in the

case of the fitness function ff3.

V. OUTLOOK AND CONCLUSION

Altogether it thus appears that of the three operators

investigated here, O2 represents a useful combination be-

tween flexibility to explore solutions of various sizes and an

inherent bias for shorter genomes that avoids bloat, at least

in some circumstances. On the other hand, our experiments

indicate that operators O1 and O3 are perhaps not useful

except for applications that have very specific requirements.

There may be applications where the user wants to restrict

the length variations of the solutions or would like to explore

a wide range of genome sizes.

Only real practical applications can show to what extent

the results presented here will generalize to arbitrary fitness

functions. These experiments however do indicate some

broad characteristics of the operators under investigations;

this will be useful as a general guideline for the practitioner

who wishes to choose a crossover operator for a specific

optimization problem.

There are several ways in which the current work can

be extended. First of all it is desirable to mathematically

formulate and prove properties of the behavior of the pop-

ulation under various operators and fitness functions. This

is most likely only possible for the case of flat fitness and

very simple fitness functions. At least for the case of an

infinite population and the operator O1 this has already been

done[17].

Future experimental work will need to explore the effects

of various population sizes. The experiments presented here

assume a rather large population size of 1000. Such popu-

lation sizes might not be realistic in practical applications.

Finally, and most importantly the present experiments need

to be compared to harder problems. The fitness functions

used here are very much toy-problems; they were chosen

to investigate the specific aspects of bloat in variable length

GAs/linear GP. Real problems will normally be very different

in that good solutions will be rare. It is unclear to what extent

this influences the present conclusions.

VI. ACKNOWLEDGMENT

This work was funded by the EU Framework 6 project

“Digital Business Ecosystems.”

REFERENCES

[1] W. Banzhaf and W. Langdon. Some considerations on the reason for
bloat. Genetic Programming and Evolvable Machines, 3(1):81–91,
2002.

[2] Y. Bar-Yam. Dynamics of Complex Systems. Addison-Wesley,
Reading, 1997.

[3] M. Brameier and W. Banzhaf. Neutral variations cause bloat in linear
GP. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa,
editors, Genetic Programming, Proceedings of EuroGP’2003, volume
2610 of LNCS, pages 286–296, Essex, 14-16 Apr. 2003. Springer-
Verlag.

[4] L. Bull. Coevolutionary species adaptation genetic algorithms: A
continuing saga on coupled fitness landscapes. In M. Capcarrere,
A. Freitas, P. Bentley, C. Johnson, and J. Timmis, editors, Advances

in Artificial Life : 8th European Conference, ECAL 2005, Canterbury,

UK, September 5-9, 2005, Proceedings, pages 845–853. Springer,
September 2005.

[5] A. Deckard and H. Sauro. Preliminary studies on the in silico evolution
of biochemical networks. Chembiochem, 5(10):1423–1431, 2004.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization & Machine

Learning. Addison-Wesley, Reading, MA, 1989.

[7] J. Grefenstette, C. Ramsey, and A. Schultz. Learning sequential
decision rules using simulation models and competition. Machine

Learning, 5:355–381, 1990.

[8] I. Harvey. Species adaptation genetic algorithms: a basis for a
continuing SAGA. In F. J. Varela and P. Bourgine, editors, Proceedings

of the First European Conference on Artificial Life. Toward a Practice

of Autonomous Systems, pages 346–354, Paris, France, 11-13 1992.
MIT Press, Cambridge, MA.

[9] L. Hsieh, L. Luo, F. Ji, and H. Lee. Minimal Model for Genome
Evolution and Growth. Physical Review Letters, 90(5):101–104, 2003.

[10] J. R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[11] W. Langdon, T. Soule, R. Poli, and J. Foster. The evolution of size and
shape. pages 163–190, 1999. in: Advances in genetic programming:
volume 3.

[12] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry,
R. Roy, and R. K. Pan, editors, Second On-line World Conference

on Soft Computing in Engineering Design and Manufacturing, pages
13–22. Springer-Verlag London, 23-27 1997.

[13] S. Luke and L. Panait. Fighting bloat with nonparametric parsimony
pressure. In J. J. Merelo-Guervos, P. Adamidis, H.-G. Beyer, J.-L.
Fernandez-Villacanas, and H.-P. Schwefel, editors, Parallel Problem

Solving from Nature - PPSN VII, number 2439 in Lecture Notes in
Computer Science, LNCS, pages 411–421, Granada, Spain, 7-11 Sept.
2002. Springer-Verlag.

[14] S. Luke and L. Panait. Lexicographic parsimony pressure. In W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska,
editors, GECCO 2002: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 829–836, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.

[15] R. Poli, N. McPhee, and J. Rowe. Exact schema theory and markov
chain models for genetic programming and variable-length genetic
algorithms with homologous crossover. Genetic Programming and

Evolvable Machines, 5(1):31–70, 2004.

[16] R. Poli, J. Rowe, C. Stephens, and A. Wright. Allele diffusion in linear
genetic programming and variable-length genetic algorithms with
subtree crossover. In EuroGP ’02: Proceedings of the 5th European

Conference on Genetic Programming, pages 212–227, London, UK,
2002. Springer-Verlag.

[17] J. Rowe and N. McPhee. The effects of crossover and mutation opera-
tors on variable length linear structures. In L. Spector, E. D. Goodman,
A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2001),
pages 535–542, San Francisco, California, USA, 7-11 July 2001.
Morgan Kaufmann.

[18] S. Silva and E. Costa. Resource-limited genetic programming: the
dynamic approach. In H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold,
W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta,
K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis,
M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson, and
E. Zitzler, editors, GECCO 2005: Proceedings of the 2005 conference

on Genetic and evolutionary computation, volume 2, pages 1673–
1680, Washington DC, USA, 25-29 June 2005. ACM Press.

[19] S. Silva, P. J. N. Silva, and E. Costa. Resource-limited genetic pro-
gramming: Replacing tree depth limits. In B. Ribeiro, R. F. Albrecht,
A. Dobnikar, D. W. Pearson, and N. C. Steele, editors, Adaptive and

Natural Computing Algorithms, Springer Computer Series, pages 243–
246, Coimbra, Portugal, 21-23 Mar. 2005. Springer.

[20] T. Soule and J. A. Foster. Effects of code growth and parsimony
pressure on populations in genetic programming. Evolutionary Com-

putation, 6(4):293–309, Winter 1998.
[21] A. Wu and I. Garibay. The proportional genetic algorithm: Gene

expression in a genetic algorithm, 2002.

