Tool Support for Refactoring Functional Programs

Huiqing Li
Computing Laboratory, University of Kent, UK
H.Li@kent.ac.uk

Abstract

We present the Haskell Refactorer, HaRe, and the Erlang
Refactorer, Wrangler, as examples of fully-functional refac-
toring tools for functional programming languages. HaRe
and Wrangler are designed to handle multi-module projects
in complete languages: Haskell 98 and Erlang/OTP. They are
embedded in Emacs, (gVim and Eclipse) and respect pro-
grammer layout styles.

In discussing the construction of HaRe and Wrangler, we
comment on the different challenges presented by Haskell
and Erlang due to their differences in syntax, semantics and
pragmatics. In particular, we examine the sorts of analysis
that underlie our systems.

Categories and Subject Descriptors D.2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques; D.2.6 []:
Programming Environments; D.2.7 []: Distribution, Main-
tenance, and Enhancement; D.3.2 [PROGRAMMING LAN-
GUAGES]: Language Classifications—Applicative (func-
tional) languages; Concurrent, distributed, and parallel lan-
guages; D.3.4[]: Processors

General Terms Languages, Design

Keywords Haskell, Erlang, refactoring, HaRe, Wrangler,
program analysis, program transformation, semantics.

1. Introduction

Our project ‘Refactoring Functional Programs’ (Refactor-
fp), has developed the Haskell Refactorer, HaRe (Li et al.
2003), providing support for refactoring Haskell (Peyton
Jones|2003)) programs. HaRe covers the full Haskell 98 stan-
dard language, and is integrated with the two most popular
development environments for Haskell programs: gVim and
(X)Emacs.

HaRe is itself implemented in Haskell. The current (third)
release of HaRe supports 24 refactorings, and also exposes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WRT’08, October 19, 2008, Nashville, Tennessee, USA.

Copyright (© 2008 ACM 978-1-60558-339-6/08/10. .. $5.00

Simon Thompson

Computing Laboratory, University of Kent, UK
S.J. Thompson@kent.ac.uk

an API (Li et al.[2005)) for defining refactorings or more gen-
eral program transformations. The refactorings supported by
HaRe fall into three categories: structural refactorings which
concern the name and scope of the entities defined in a pro-
gram and the structure of definitions; module refactorings
which concern the imports/exports of modules, and the re-
location of definitions among modules; and data-oriented
refactorings which concern the data type definitions. The
ongoing work with HaRe currently focuses on data-related
refactorings.

Following the ‘Refactoring Functional Programs’ project,
we are developing Wrangler (Li and Thompson| |[2006; |Li
et al.|2006)), a tool for refactoring Erlang/OTP (Armstrong
2007) programs. The current (fifth) release of Wrangler
works with the complete Erlang/OTP language, and sup-
ports a few structural refactorings and functionalities for
duplicated code detection. Wrangler is still under active de-
velopment.

Building a refactoring tool for Erlang allows us to con-
tinue our investigation of the application of refactoring
techniques to the functional programming paradigm. Both
Haskell and Erlang are general-purpose functional pro-
gramming languages, but they also have many differences.
Haskell is a lazy, statically typed, purely functional program-
ming language featuring higher-order functions, polymor-
phism, type classes, monadic effects, and program layout
sensitiveness. Erlang is a strict, dynamically typed func-
tional programming language with built-in support for con-
currency, communication, distribution, and fault-tolerance.
The differences in syntax, semantics and pragmatics of
Haskell and Erlang impose difference challenges, and result
in different implementation strategies and techniques.

In this paper, we discuss the construction of HaRe and
Wrangler, and comment on the challenges we had to solve.
In particular, we examine the sorts of analysis that underline
our systems. Finally, we give an overview of our recent work
in extending the Wrangler system and in formal verification
of refactorings.

2. An Overview of HaRe and Wrangler

Both HaRe and Wrangler support interactive refactoring of
multi-module programs. Snapshots of Wrangler embedded

[£4 emacs@HL-LT . |
File Edit Options Buffers Tools [Erang] Help

Indent [P
DeExR@ < e

-module (test) . Syntax Highlighting 4 oz

TAGS »
-expoprt ([£00/01) .
Skeletons 3
%% This is an example.
repeat(0) -> ok; Shell »
Tepeat (N) ->
io:format ("5).
repeat (I-1) .

Compile »
Distel »

foo{) =¥ repeat(s). Refactor » Rename Variable Name

Rename Function Name

Version
Rename Module Name
Generalise Function Definition
Move Function to Another Module
Function Extraction

Fold Expression Against Function
Tuple Function Arguments

Detect Duplicated Codle in Current Buffer
Detect Duplicated Code in Dirs
Expression Search

Undo (C-u
-— (Unix)** test.erl 211 (8,25) (Erlang 1

(2] E [t

|4 emacs@HLLT
File Edit Options Buffers Tools Erlang Help

DedxHBE y2ERE8XE

-module (test) . <

~expoprt ([£00/0]) .

N - 1).

foo() -> repeat(fun () -> io:format() ‘end, 5).

== (Unix)-- test.erl 211 (6,7) (Exlang EXT:hi@hl-1t)

DLl

| cMD: refac_gen:generalise ("c:/cygwin/home/hl/distel-wrangler-0.2/test/test.exl”, {8,3}, 2
(8,25}, "Fun", ["c:/cvgwin/hame/hl/distel-wrangler-0.2/test"]).

0

Ll

-1** #erl-output* All (3,0)
Refactoring succeeded!

(Fundamental)

Command attempted to use minibuffer while in minik Customize Wrangler

Figure 1. A snapshot of Wrangler showing the menus

in the Emacs environment are shown in Figures [1] and
HaRe has a similar appearance.

HaRe and Wrangler have very similar user interfaces. To
perform a refactoring with HaRe or Wrangler, the focus of
refactoring interest has to be selected in the editor first. Next
the user chooses the refactoring command from the refactor
menu, and inputs the parameters(s) in the mini-buffer if
required. Then the refactorer checks that the focused item
is suitable for the refactoring selected, that the parameters
are valid, and that the refactoring’s preconditions (or side-
conditions) are satisfied.

If all these checks are successful, the refactorer will per-
form the refactoring, and update the buffer with the new pro-
gram source, otherwise it will give an error message, and
abort the refactoring with the program unchanged. Undo is
supported by both HaRe and Wrangler, and can be applied
multiple times until the refactoring history is empty. With the
current implementation of HaRe and Wrangler, the refactor-
ing undo does not interact with the editor-side undo/redo,
therefore undoing a refactoring will lose the editing done af-
ter this refactoring. Tighter coupling of tool and editor would
support the integration of the two undo mechanisms.

All the refactorings implemented in HaRe and Wrangler
are module-aware. To ensure the correctness of transfor-
mation when multiple modules are invovled, the refactorer
needs to know which modules are in the scope of the cur-
rent programming project. Because of the different under-
lying infrastructure, HaRe and Wrangler use different ways
to specify the project boundary. With HaRe, a project should
be created before doing any refactorings. With Wrangler, the
user takes the responsibility to customise the refactorer with
the lists of Erlang source directories belonging to the project
under consideration.

We return to the snapshot of Wrangler in Figure[I] which
shows a particular refactoring scenario: the user has selected
the expression io:format ("Hello\n") in the definition of

Figure 2. Wrangler after generalising a function definition

repeat/1, has chosen the Generalise Function Definition
command from the Refactor menu, and is just entering a new
parameter name Fun in the mini-buffer. Then, the user would
press the Enter key to perform the refactoring. After side-
condition checking and program transformation, the result
of this refactoring is shown in Figure |2} the new parameter
Fun has been added to the enclosing function definition
repeat/1, which now becomes repeat/2; the highlighted
expression has been replaced with Fun () ; and at the call-site
of the generalised function, the selected expression, wrapped
in a fun-expression, is now supplied to the function call as
its first actual parameter. We enclose the selected expression
within a function closure because of its side-effect, so as
ensure that the expression is evaluated at the proper points.

To retain the recognisability of programs, both HaRe and
Wrangler preserve comments and layout of the refactored
programs as much as possible, though the approaches taken
are different.

While HaRe accepts only syntactically correct programs,
Wrangler is able to refactor programs with or without syntax
errors. When refactoring an Erlang program with syntax
errors, function/attribute declarations to which these errors
belong are not affected by the refactoring, but warnings
asking for manual inspection of those parts of the program
are given.

3. Implementation

This section discusses the construction of HaRe and Wran-
gler, comments on the challenges presented by Haskell and
Erlang due to their differences in language design and pro-
gramming idioms, and address how they are handled by the
two systems in section [3.3]

3.1 Semantics and Transformation

Each refactoring comes with a set of preconditions, which
embody when a refactoring can be applied to a program
without changing its meaning. In order to preserve the func-
tionality of a program, refactorings require awareness of var-
ious aspects of the semantics of the program. The following

semantic information is needed by either HaRe or Wrangler,
or both of them.

¢ The binding structure of the program.
® Module structure.

¢ Type information.

¢ Side-effect information.

e Comment and Layout information.

More detail on how each of these is used can be found in our
paper tool support for refactoring functional programs (L1
and Thompson|2008a).

3.2 Tool Support for Refactorings

Given a refactoring command, most static analysis-based
refactoring tools (or engines) go through the following pro-
cess, although detailed implementation techniques might be
different.

First transform the program source to some internal rep-
resentation, such as an abstract syntax tree (AST); then anal-
yse the program to extract the static semantic information
needed by the refactoring under consideration, such as the
binding structure of the program, type information and so
forth.

After that, program analysis is carried out based on the in-
ternal representation of the program and the static semantic
information to validate the preconditions of the refactoring.
If the preconditions are not satisfied, the refactoring process
stops and the original program is unchanged, otherwise the
internal representation is transformed according to the trans-
formation rules of the refactoring. Some interaction between
the refactorer and the user might be or helpful during pre-
condition checking and/or program transformation.

Finally, the transformed representation of the program
needs to be presented to the programmer in program source
form, with comments, and even the original program appear-
ance, preserved as much as possible.

Almost all the available refactoring tools are embedded
within one or more programming environments, therefore
the integration of a refactoring tool with the intended pro-
gramming toolkit(s) is an unavoidable part when tool sup-
port for refactorings is concerned. Another unavoidable is-
sue for a refactoring tool to be useful in practice is the sup-
port for undoing refactorings. The underlying implementa-
tion mechanism for both the integration with programming
environments and the supporting for undo could vary signif-
icantly from system to system.

Unsurprisingly, this analysis applies to the implementa-
tion of both HaRe and Wrangler.

3.3 Implementation Techniques

Different techniques have been used in the implementation
of HaRe and Wrangler. HaRe is implemented in Haskell
using the Programatica (PacSoft) frontend (including lexer,
parser and module analysis) for Haskell, and the Strafun-

ski (Lammel and Visser 2001) library for generic AST
traversals. For efficiency reason, we used the type checker
from GHC - the Glasgow Haskell Compiler, instead of Pro-
gramatica, to derive type information. In HaRe, we use
both AST and token stream as the internal representation
of source code. Layout and comment information is kept
in the token stream, and some layout information is kept in
the AST. The refactorer carries out program analysis with
the AST, but performs program transformation with both
the AST and the token stream, that is, whenever the AST is
modified, the token stream will also be modified to reflect
the changes. After a refactoring, we extract the new source
code from the transformed token stream.

Wrangler is implemented in Erlang using the Erlang Syn-
tax Tools (Carlsson|[2004) library from the Erlang/OTP re-
lease and Distel (Gorrie [2002) which is an extension of
Emacs Lisp with Erlang-style processes and message pass-
ing, and the Erlang distribution protocol. Distel provides a
very convenient way to integrate the refactoring tool with
the Emacs editor. Erlang Syntax Tools provides function-
alities for reading comments from Erlang source code and
for inserting comments as attachments to the AST at correct
places; and also the functionality for pretty-printing of Er-
lang AST(s) decorated with comments. Traversing an Erlang
AST generated Syntax Tools is straightforward because all
the non-leaf nodes in the AST have the same type. We have
extended the Erlang Syntax Tools library with functionali-
ties for adding static semantic and location information to
the AST.

Different from the approach taken by HaRe to program
appearance preservation, with Wrangler only ASTs are
transformed during the refactoring process. After a refactor-
ing, code for those functions/attributes that are not affected
by the refactoring is extracted from their token stream an-
notation; and code for other functions/attributes are format-
ted by an improved pretty-printer which respects the code’s
original layout.

As mentioned earlier, the multiple roles of atoms in an
Erlang program, and the facility for dynamic composition
of atom names impose real challenges for the correct imple-
mentation of certain refactorings. Currently, when an uncer-
tainty arises regarding to an atom, Wrangler issues a warning
message indicating which occurrence(s) of the atom causes
the problem. Wrangler currently relies on the user to ensure
that a refactoring is not affected by the dynamic composi-
tion of atoms, but we plan to tackle this problem by collect-
ing and analysing run-time information of the project under
consideration.

3.4 Availability of the Tools

HaRe and Wrangler can be downloaded respectively from

http://wuw.cs.kent.ac.uk/projects/refactor-fp
http://www.cs.kent.ac.uk/projects/forse

http://www.cs.kent.ac.uk/projects/refactor-fp
http://www.cs.kent.ac.uk/projects/forse

4. Recent developments

In this section we summarise our recent work on developing
facilities for duplicate code detection and data- and process-
oriented refactorings in Erlang, on integrating Wrangler with
Eclipse and also on the topic of the mechanical verification
of refactorings.

4.1 Duplicate code detection and refactoring

We have implemented a tool for detecting duplicate code (or
code clones) in Erlang projects, either in a single module or
across the whole project. The detection algorithm, reported
in the more detail in (Li and Thompson|2008b), uses a com-
bination of the token stream and the AST to ensure efficient
detection of syntactically-meaningful duplicate code.

Once a code clone set is found, it is possible to use
refactorings in Wrangler to remove the clones. First, the
duplicate code is extracted into a function, next it may be
generalised to abstract over any literals (which are neglected
in the clone detection algorithm). Finally, it is possible to
step though all the instances of this function in the code
base, deciding for each one whether or not to replace it by a
function call.

4.2 Additional Erlang refactorings

Our report (L1 et al.[|[2008) describes refactorings, imple-
mented by M. T6th, to turn a sequence of function arguments
into a single (tuple) argument, as well as describing prelimi-
nary work on refactoring to introduce record structures.

In the same paper we report on having begun work on
refactorings which address the process structure of an Er-
lang system. Since processes and the communication chan-
nels between them are implicit in an Erlang program, it is
necessary to perform static and dynamic analysis to extract
as much information as possible, as well as requiring non-
trivial user intervention too.

4.3 Wrangler and Eclipse

Using the Erlide Eclipse plugin for Erlang (Erl) G. Orosz
has incorporated a number of refactorings for Erlang into
Eclipse, using the LTK framework. This allows a full inte-
gration of the refactorings into the Eclipse system, including
the undo/redo system. On the other hand the LTK framework
imposes a number of restrictions on the refactoring work-
flow, and this and other challenges are discussed in more
detail in (L1 et al.[2008)).

4.4 Mechanical verification of refactorings

Nik Sultana and the second author have investigated ways in
which refactorings can be verified mechanically using the
Isabelle/HOL system (Sultana and Thompson|[2008a) and
how code for refactorings can be extracted from proofs of the
correctness of the corresponding transformations (Sultana
and Thompson|2008b)).

5. Conclusions

‘We have shown two tools, one mature and one under active
development, for refactoring functional programs, and as
well as giving details about their implementation. A number
of general reflections on the process of building tools for
refactoring functional programs can be found in Section 4 of
(Li and Thompson|[2008a)), of which this position paper is an
abbreviated and updated version.

References
Erlide - the Erlang IDE. http://erlide.sourceforge.net/.
J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

R. Carlsson. Erlang Syntax Tools. http://www.erlang.org/
doc/doc-5.4.12/1ib/syntax_tools-1.4.3, 2004.

L. Gorrie. Distel: Distributed Emacs Lisp (for Erlang). In The
Proceedings of 8th International Erlang/OTP User Conference,
Stockholm, Sweden, November 2002.

R. Lammel and J. Visser. Generic Programming with Strafunski.
http://www.cs.vu.nl/Strafunski/, 2001.

H. Li and S. Thompson. Tool Support for Refactoring Func-
tional Programs. In Partial Evaluation and Program Manipu-
lation (PEPM), San Francisco, California, USA, January 2008a.

H. Li and S. Thompson. A Comparative Study of Refactoring
Haskell and Erlang Programs. In M. Di Penta and L. Moonen,
editors, SCAM, 2006.

H. Li and S. Thompson. Clone Detection and Removal for Er-
lang/OTP within a Refactoring Environment. In Draft Proceed-
ings of the Ninth Symposium on Trends in Functional Program-
ming(TFP), The Netherlands, May 2008b.

H. Li, C. Reinke, and S. Thompson. Tool Support for Refactoring
Functional Programs. In Johan Jeuring, editor, ACM SIGPLAN
Haskell Workshop, Uppsala, Sweden, August 2003.

H.Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe,
and its APL. Electr. Notes Theor. Comput. Sci., 141(4), 2005.

H. Li, S. Thompson, G. Orosz, and M. Té6th. Refactoring with
Wrangler, updated. In Proceedings of the Seventh ACM SIG-
PLAN Erlang Workshop, ACM Press, September 2008.

Huiging Li, Simon Thompson, Lészlé Lovei, Zoltdn Horvith,
Tamads Kozsik, Aniké Vig, and Tamds Nagy. Refactoring Erlang
Programs. In The Proceedings of 12th International Erlang/OTP
User Conference, Stockholm, Sweden, November 2006.

PacSoft. Programatica. http://www.cse.ogi.edu/PacSoft/
projects/programatica/.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: the
Revised Report. Cambridge University Press, 2003.

Refactor-fp. Refactoring Functional Programs. http://www.cs.
kent.ac.uk/projects/refactor-fp/|

N. Sultana and S. Thompson. Mechanical Verification of Refactor-
ings. In Partial Evaluation and Program Manipulation (PEPM),
San Francisco, California, USA, January 2008a.

N. Sultana and S. Thompson. A Certified Refactoring Engine.
In Draft Proceedings of the Ninth Symposium on Trends in
Functional Programming (TFP), May 2008b.

http://erlide.sourceforge.net/
http://www.erlang.org/doc/doc-5.4.12/lib/syntax_tools-1.4.3
http://www.erlang.org/doc/doc-5.4.12/lib/syntax_tools-1.4.3
http://www.cs.vu.nl/Strafunski/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/

	Introduction
	An Overview of HaRe and Wrangler
	Implementation
	Semantics and Transformation
	Tool Support for Refactorings
	Implementation Techniques
	Availability of the Tools

	Recent developments
	Duplicate code detection and refactoring
	Additional Erlang refactorings
	Wrangler and Eclipse
	Mechanical verification of refactorings

	Conclusions

