
Computer Science at Kent

Defect Patterns and Structural

Properties in a Mature Well-Specified

Software System

Tim Hopkins

 Les Hatton, Kingston University.

Technical Report No. 5-08

Date

Copyright 2008 University of Kent

Published by the Computing Laboratory,

University of Kent, Canterbury, Kent CT2 7NF, UK

Defect patterns and structural properties in a

mature well-specified software system

TIM HOPKINS

University of Kent, UK

and

LES HATTON

Kingston University, UK

Software engineering is not an empirically based discipline. As a result, many of its practices
are based on little more than a generally agreed feeling that something may be true. Part of
the problem is that it is both relatively young and unusually rich in new and often competing
methodologies. As a result, there is little time to infer important empirical patterns of behaviour
before the technology moves on. Very occasionally an opportunity arises to study the defect growth
and patterns in a well-specified software system which is also well-documented and heavily-used
over a long period.

Here we analyse the defect growth and structural patterns in just such a system, a numerical
library written in Fortran evolving over a period of 30 years. This is important to the wider
community for two reasons. First, the results cast significant doubt on widely-held long standing
beliefs and second, some of these beliefs are perpetuated in more modern technologies. Since we
obviously generalise from older languages to new, it makes good sense to use empirical long-term
data when it becomes available to re-calibrate those generalisations. At the same time, the results
contain intriguing glimpses into defect behaviour which may transcend whatever technology is in
use.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics—Complexity Met-

rics; D.2.2 [Software Engineering]: Design Tools and Techniques—Software libraries

General Terms: Measurement
Additional Key Words and Phrases: Correlations, defects, numerical software, principal compo-
nent analysis, software metrics

1. OVERVIEW

The ability to predict future program failures from static properties of programs
(i.e., properties which can be directly measured from the source code) has long
been a goal of software engineering researchers. Efforts based on predicting future
failures based on dependence on error-prone language features (for example, mech-
anisms which lead to the loss of significant bits) have generally proven fruitful, see

Authors’ addresses: Tim Hopkins, Computer Science Department, University of Kent, Canterbury,
Kent CT2 7NF, UK; email: T.R.Hopkins@kent.ac.uk; Les Hatton, CISM, Kingston University,
Penrhyn Road, Kingston-upon-Thames, Surrey KT1 2EE, UK; email: L.Hatton@kingston.ac.uk
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · T. Hopkins and L. Hatton

Pfleeger and Hatton [1997]. Unfortunately, efforts attempting to find satisfactory
correlation of program failure with structural properties such as the number and
type of decisions, are undermined by the very disparate nature of software with
many programming languages in use based on numerous different paradigms.

Despite this, some beliefs have become surprisingly well-entrenched across nu-
merous languages in a wide range of application areas. For example, in spite of
significant evidence to the contrary (see [Fenton and Neil 1999]) cyclomatic com-
plexity [McCabe 1976], a graph theoretic measure essentially related to the number
of decisions in computer programs, has been widely used in many disparate devel-
opments as a predictor of components which will be unreliable in some sense. The
danger of its continuing use is that it might become a design criterion for limiting
components to a maximum cyclomatic number as is the case in the recent Joint
Strike Fighter C++ standard, a safety-critical environment, ([Joint Strike Fighter
2005, AV Rule 3]).

Even longer standing is the debate over the goto statement. The result of this
debate initiated by Dijkstra [1968], which was unconstrained by any relevant mea-
surement at the time, was that the goto statement is to this day believed to be
strongly correlated with program failure in whatever context it arises, including its
implicit forms such as the continue and break statement which appear in numer-
ous modern languages. This appears in such influential standards as both editions
of MISRA C ([MIRA Ltd. 1998, Rule 56], [MIRA Ltd. 2004, Rule 14.4]), the
Joint Strike Fighter C++ standards, [Joint Strike Fighter 2005, AV Rule 189], and
the European Space Agency Ada standard [European Space Agency 1998]. Other
language independent code fragments which have invited opprobrium include the
so-called dangling else if, being an if .. else if .. clause with no else statement
([MIRA Ltd. 2004] and [Joint Strike Fighter 2005]), and also restrictions on the
maximum depth of nesting of control structures, [European Space Agency 1998].

It is clear then that these beliefs are well-entrenched in modern development.
However, as we show here, none of these appear to have any statistically significant
basis in fact when studied over a long period in a well-documented and well-specified
system in which such effects should have appeared if they had any substance. We
do not seek to rehabilitate the goto statement or indeed any of the programming
fragments which have attracted negative comment over the years. However, we do
strongly emphasise the importance of empirical evidence in supporting claims if
we are to understand the essence of software engineering in order to improve its
rather erratic history of systems failure. That such beliefs still appear in a modern
context and are accepted without empirical challenge is sufficient motive for the
present work. The nature of design and component interactions does indeed evolve
with time as programming languages implement more or less of such paradigms
as OO, but all programs must make decisions and such decisions are often tainted
with beliefs formulated in the distant past without much intervening influence from
measurement.

Not only are some practices condemned without measurement but others are
similarly supported without measurement. Although some recent efforts [Subra-
manyam and Krishnan 2003] have produced interesting results for structural met-
rics in OO systems, other empirical studies [Hatton 1998] suggest that some of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Defect patterns and structural properties in a mature well-specified software system · 3

suggested benefits of such systems may be rather more illusory than was hoped.
However, all such efforts rely on the availability of high quality failure records over
a period of time coupled with access to source code and excellent version control.
Such opportunities do not arise very often and here we are able to analyse one such
dataset acquired over an unusually long period and present the results using stan-
dard statistical tests of significance as a contribution to the empirical base of this
subject. The large number of components measured give much confidence in the re-
sults while the relevance of these results to the wider community is unquestionable
for the reasons outlined above.

In the interests of both pedagogy and repeatable science, the sanitised raw data
are freely available for download and analysis 1 in the form of a zipped Excel
spreadsheet.

1.1 The analysis of a numerical software library

The NAG (Numerical Algorithms Group) Library [NAG 1999] is a very widely-used
set of scientific procedures. Over the last thirty years, they have been continually
enhanced to keep pace with research in numerical analysis and have also spread from
the original implementation language of Fortran 66 and 77 into other languages such
as C, Ada and Fortran 95. Here we analyse the Fortran 77 library over a number of
releases which provides an excellent opportunity to study defect growth for several
reasons

—The package has a complete and carefully maintained defect history which was
embedded in program headers and for which perl scripts to mine the header
defect information could easily be designed.

—The package is large; 266,123 executable lines of code (XLOC) as analysed in
3659 subroutine/functions,

—As is often the case with software experiments, no usage or coverage data was
available but the data shown here covers a period of three decades, a relatively
long maturity time and the defect density is likely to be more asymptotically
representative.

—The package is of good quality for its generation (1978 onwards) and covers
a difficult application area with an asymptotic defect density of 4.9/KXLOC
(thousand executable lines of code).

—The package is unusually well-specified for a software system as it implements
procedures defined in mathematical notation. It is therefore effectively free of the
problems which occur in many systems through imprecisely defined requirements.

1.2 Extraction of static measurements

The complete source code of the library was made available to us and we designed
and implemented parsing tools for the full Fortran 77 language. This turned out
to be necessary in order to be able to extract all the desired static code measure-
ments. The parsing engine was designed using hand-crafted lexical and syntactical
analysers to cater for

1http://www.leshatton.org/Defect Correlations 05-02-2008.html

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · T. Hopkins and L. Hatton

—The generally non-significant behaviour of the space character in Fortran 77 (the
first lexical step is to discard all spaces outside strings or in the first 5 character
positions of a Fortran line).

—The arbitrary nature of the look-ahead in Fortran necessary to resolve grammat-
ical structures such as the I/O implied DO loop.

The code measurements, often known as metrics, were chosen on the basis of their
common occurrence in the literature or anecdotally over the years. As a result, 15
properties were extracted for the 3659 components. The five letter codes after
each item header will be used as abbreviations for the corresponding parameter
throughout the rest of the paper. We will continue to refer to these as parameters
rather than metrics in order to preserve conventional mathematical definitions of a
metric.

(1) Knot count: STKNT. A knot is a crossing of control flow as illustrated, for
example, by Shooman [1985]. Knots only occur in languages which have explicit
non-structural jump constructs such as the eponymous goto statement in its
various forms. The goto statement is a necessary but not a sufficient condition
for a knot as it can be used to simulate nested (knot-free) structures as well as
non-nested structures. The existence of knots is often referred to informally as
‘spaghetti’ code.

(2) Cyclomatic complexity: STCYC. A graph theoretic measurement which is es-
sentially a count of the number of decisions as first introduced by McCabe
[1976].

(3) Extended cyclomatic complexity: STMCC. An extension to the cyclomatic com-
plexity based on complex predicates introduced by Myers [1977]. A complex
predicate contains either logical disjunctive (‘or’) or conjunctive (‘and’) phrases
or both.

(4) Maximum level of nesting of if statements: STMIF. This is included for anec-
dotal reasons. It is thought to be associated with testing difficulties.

(5) Number of declared objects actually used: STVAR. This is included for anecdotal
reasons.

(6) Number of subroutines in a file: STSUB. This is included for anecdotal reasons,
however, it should be noted that in Fortran 77, unlike C, the file has no special
linguistic meaning.

(7) Number of executable lines of code: STXLN. Executable lines of code counts
the number of lines which generate executable code when compiled. Many
defect models have been built using executable lines of code as an independent
variable. Note that Fortran continuation lines were not counted.

(8) Number of backward jumps: STBAK. This is included for anecdotal reasons. It
is thought to interfere with readability.

(9) Number of dangling elseifs, i.e., an if .. else if with no else clause: STELF.
This is included for anecdotal reasons and is believed to indicate the presence
of incomplete logical thought.

(10) Number of gotos: STGTO. There has been so much discussion of this over
the years since the initial comments of Dijkstra [1968], that we felt we could

ACM Journal Name, Vol. V, No. N, Month 20YY.

Defect patterns and structural properties in a mature well-specified software system · 5

not leave it out. In addition, Fortran 77 has a rich set of goto forms including
the arithmetic if and the absence of any form of WHILE construct means that
goto statements in various forms are used unusually frequently.

(11) Number of undeclared variables: STUNV. There has again been largely anec-
dotal attribution that this indicates some level of sloppiness and may therefore
be related to defect.

(12) Length of shortest, and longest jump via a goto: STLJM, STHJM. The ratio-
nale behind this is, once again, anecdotal.

(13) Logarithm of the path count: STLPT. The path count is the number of ways
through a particular program assuming that all paths are equally likely [Hatton
1995]. The rationale behind it is that it is more sensitive to decision complexity
than the cyclomatic number (for example, it can distinguish between a sequen-
tial series of if statements and a single switch statement containing the same
number of clauses which have the same cyclomatic complexity). This is similar
to the NPATH metric put forward by Nejmeh [1988].

(14) Total number of operator tokens: STOPT. The rationale behind this is, once
again, anecdotal. More details can be found in Shooman [1985].

2. STATISTICAL ANALYSIS

Here we study the correlation between and amongst defects and parameters asso-
ciated with some of the more commonly occurring beliefs using regression analysis.

2.1 Cyclomatic complexity versus executable lines of code

A short analysis revealed that cyclomatic complexity is very highly correlated with
executable lines of code as shown in Figure 1 yielding a regression equation of

XLOC = 10.0 + 3.64v(G) (1)

where v(G) is the cyclomatic complexity with associated p-values for both the
constant and v(G) around zero. In essence, this equation states that it is extremely
likely that there will be a decision about every 3–4 executable lines in a typical
program in this library, a perhaps not unsurprising observation. This has also been
noted very recently and emphatically across different languages by van der Meulen
[2008] on a very much larger sample. Here we simply confirm the observation that
the cyclomatic complexity appears to add no additional significant information to
that already contained in the count of executable lines and they are effectively
interchangeable.

2.2 Pairwise linear correlations with defects

As we have shown above, a number of existing beliefs which have found their way
into modern programming standards for safety-critical systems relate to assertions
about a positive correlation between defect and the appearance of a particular pro-
gramming construct such as the eponymous goto statement, or the presence of if

.. else if statements without an else clause, (the so-called dangling else construct),
or the cyclomatic number. In this study however, the confused nature of the rela-
tionship between nearly any of the significant parameters measured here and the

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · T. Hopkins and L. Hatton

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400

X
L

O
C

Cyclomatic complexity

Cyclomatic complexity v. executable lines

Fig. 1. A scatter diagram between the number of executable lines and the cyclomatic complexity.
A high correlation is clearly visible.

growth of defect data is exemplified by Figure 2 which shows a scatter plot of de-

fects against number of goto statements. This graph is typical of the unsmoothed
relationship between defects and most parameters. In each case, using the t-test
on the product-moment correlation coefficient confirms that, although significant
at the 1% level, the correlations are weak at best [Spiegel and Stephens 1999].

2.3 Pairwise linear anti-correlations with defects

Other long-standing beliefs of positive correlation turned out to be negatively cor-
related in the current study.

For example, it was mentioned above that defects are believed to be associated
with the appearance of the dangling else if construct described above and various
of the quoted standards continue to mitigate against their use. This rule also occurs
in many of the standards described in Hatton [2004]. In fact, the opposite appears
to be true in the current study where there is modest anti -correlation between
the number of dangling else if statements and the number of defects which is
statistically significant at the 5% level.

Another example is shown in Figure 3 which shows a scatter plot of defects
against maximum depth of nested if statements. Again, in a number of the stan-
dards described in European Space Agency [1998] and Hatton [2004], advice is given
to avoid deeply nested decision statements. Here, however, there is a modest but
clear anti-correlation which turns out to be significant at the 1% level. It is unclear
what the mechanism for this is, but one possible explanation is that nested if state-
ments are inherently more complex to deal with logically and that programmers
automatically take more care in such situations. However another possibility is that

ACM Journal Name, Vol. V, No. N, Month 20YY.

Defect patterns and structural properties in a mature well-specified software system · 7

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200

#
 d

e
fe

ct
s

goto statements

goto statements v. Defects

Fig. 2. A scatter diagram between the number of defects and the number of goto statements.

covering deeply nested statements may be more difficult implying that defects in
deeply nested code are harder to illuminate. Either way, the data is not compatible
with the advice often provided.

Given the confused nature of these simple relationships, we then chose to expand
this approach using Principle Component Analysis (PCA) on normalised parameter
data to see if we could identify any more emphatic relationship between the 15
parameters measured and the general shape of the defect data cloud. In particular,
we were interested to see if there were any obviously dominant parameters.

Essentially, PCA constructs a data cloud using these 15 independent variables.
Such data clouds are rarely isotropic implying that some parameters are more im-
portant than others in fitting the observed defect growth. PCA excludes parameters
with no effect automatically and rotates the data cloud amongst the remaining pa-
rameters looking for principle directions or components which match the observed
shape of the defect growth well. The data were normalised to correct for the very
different scales observed for the parameters, for example, executable lines of code
might run up to 2000 or so whilst the maximum depth of if nesting might only be
6.

2.4 Principle Component Analysis

Of the initial 15 parameters, 9 were rejected early on as having a p-value greater
than 0.05, a standard criterion for rejecting parameters in such analysis. We have
already explained that cyclomatic complexity is so highly correlated with executable
lines of code that they are effectively indistinguishable so of the two, cyclomatic
complexity was temporarily retained here.

PCA on the 6 remaining significant parameters revealed the eigenvalues shown

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · T. Hopkins and L. Hatton

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

#
 d

e
fe

ct
s

Maximum nesting level of if statements

Maximum nesting level of if statements v. Defects

Fig. 3. A scatter diagram between the number of defects and the maximum level of nesting of if

statements.

Eigenvalue number Value

1 2.55

2 1.32

3 0.92

4 0.55

5 0.42

6 0.25

Table I. The dominant eigenvalues of the Principle Components.

in Table I.
In essence this means that re-aligning the axes using linear combinations of these

parameters is able to account for most of the shape of the observed data cloud and
the biggest eigenvalue corresponds to that linear combination which is in the direc-
tion of the largest variability. It is often the case in principle component analysis
that one eigenvalue tends to dominate as we have here. However the correspond-
ing eigenvector contains relatively equal contributions from each parameter as can
be seen in Table II. In other words, we have a confusing picture with no single
candidate from the original parameters emerging as being in any way dominant in
defining the principle direction of the data cloud.

We conclude that in the NAG dataset, there is no simple linear relationship in

the raw data between single parameters and defect growth which could justify the

nature of the rules given in the coding standards described earlier even though the

dataset is of sufficient maturity that by now, any such phenomenon, if present,

would be expected to have manifested itself significantly. Instead, the predominant

ACM Journal Name, Vol. V, No. N, Month 20YY.

Defect patterns and structural properties in a mature well-specified software system · 9

Parameter Normalised contribution

STCYC 0.50

STELF 0.34

STGTO 0.44

STUNV 0.31

STOPT 0.43

STKNT 0.39

Table II. The contributions to the principle eigenvector from each parameter.

variability in the data cloud is aligned along a direction which is defined by a
complex combination of several parameters which would appear to defy any attempt
to render into a simple rule.

Given this degree of noise, an obvious avenue to explore is whether smoothing
reveals any underlying subtle pattern.

2.5 Smoothed data

Over the years, there has been much interest shown in relating the number of
defects to the number of lines of code used (see, for example, Lipow [1982], Hatton
[1997] and Koru et al. [2007]). As was mentioned earlier, one of the problems
with software defect data analysis is that there is generally no idea of how much a
particular component has been used. Even for mature systems such as this one, it
is perfectly possible for a component to have had very little usage and, therefore,
simply not have enough time to present a representative defect profile. This can
be circumvented to a certain extent by computing the average size of component
in executable lines of code associated with each number of defects. Such data
is inevitably very noisy but the dataset under study here is so large that when
this is done, strong evidence of logarithmic behaviour emerges. The logarithmic
behaviour appears to take the form of d ∼ x log x where d is the number of defects
recorded in a component and x is the number of executable lines as can be seen in
Figure 4, which shows significant zones of linearity. This functional behaviour has
previously been recorded by Lipow [1982]. The departure at lower values of x log x

is interesting and will be commented on shortly. Note that there were insufficient
components with more than 7 defects to calculate a statistically reliable mean so
the data is truncated at 7 defects, although the maximum number of defects in any
component was 11.

3. POWER-LAW BEHAVIOUR IN COMPONENT SIZES

There is current interest in the observed distribution of component sizes in systems,
(see, for example, [Potanin et al. 2005] and [Hatton 2008]), so evidence for this
behaviour was also sought. A power-law distribution has the general form

p(s) =
k

sα

(2)

where p(s) is the probability that a certain size s will appear. On a log p − log s

scale, this is a straight line with negative slope. However, as noted by Potanin et al.
[2005], there are some drawbacks in using this with discrete systems, as rare events

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · T. Hopkins and L. Hatton

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200 1400 1600

N
u

m
b

e
r

o
f

d
e

fe
ct

s

stxln * log(stxln)

Modified logarithmic behaviour of defects with STXLN

Fig. 4. The number of defects plotted against STXLN log(STXLN). Zones of linearity are clearly
visible.

are quite noisy in the following sense. There might, for example, be component
sizes of 1000 lines and 1500 lines in a particular system, with no component sizes in
between. To circumvent this, it is common practice to look for power-law behaviour
in rank ordering rather than size and this is what we did here.

The relevance of this is (as Hatton [2008] demonstrates using an argument based
on statistical mechanics) that an a priori power-law distribution of component sizes
(i.e., where components are rank ordered as frequency against size, the distribution
obeys an inverse power law) will automatically lead to an x log x distribution of de-
fects in a software system as it approaches maturity, i.e., enters a quasi-equilibrated
state, although the approximations used in the mathematical development tend to
degrade for small x. The question arises as to whether such power-law behaviour
is present from the beginning, i.e., a property of the design stage, or whether it
emerges as software systems tend to an equilibrium state. Although our data here
does not stretch back to the very first release of this library, there appears to be
very little difference in the component size distribution with different releases over
many years even though the library grew by a factor of two in this period as Figure
5 illustrates. In other words such power-law behaviour appears to be present from
a very early stage in the evolution of the library. The work of Hatton [2008] then
implies that the x log x behaviour demonstrated for larger x in Figure 4 is inevitable
and independent of the implementation details.

4. DISCUSSION AND CONCLUSIONS

A large and widely used mature scientific subroutine library has been analysed to
test a number of widely-held beliefs about the relationship between defects and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Defect patterns and structural properties in a mature well-specified software system · 11

 0.001

 0.01

 0.1

 1 10 100 1000

F
re

q
u

e
n

cy

size z

Each Fortran Mark 12-19

Mark 12
Mark 13
Mark 14
Mark 15
Mark 16
Mark 17
Mark 18
Mark 19

Fig. 5. The distribution of component sizes displayed as the probability of a certain component
size appearing as a function of its rank-ordering plotted as a log− − log display as is normal for
power-law behaviour.

either the structural properties of the code or its language features. The relevance
of this to the wider community is that such beliefs have been held for many years
and are widely applied in modern programming standards even in critical systems,
and may therefore influence the failure behaviour of such systems. Such beliefs
include the relationship of defects with the goto statement, dangling else constructs,
maximum levels of decision nesting, component size and a number of other code
features which occur frequently in programming standards for all languages.

We conclude the following

—Principle Component Analysis shows that no single measurement parameter of
the 15 given here is dominant in determining the defect behaviour. In particular,
the belief that the goto statement is strongly related to defects is not upheld by
this study and the cyclomatic complexity number appears to have little if any
utility as a predictor of defect over and above that contained in a count of the
executable lines of code.

—Some patterns which are commonly believed to be positively correlated with
defect, such as the presence of the dangling else statement, turn out to be anti-
correlated as does the maximum level of decision nesting.

—When the data is averaged over component size, defects appear to be broadly
proportional to x log x where x is the number of executable lines of code although
the data is still noisy.

—Power-law behaviour of component size appears across all versions of the library
considered here, spanning more than 30 years. The unchanging nature of this

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · T. Hopkins and L. Hatton

whilst the library continues to grow strongly suggests that this behaviour appears
naturally at the design stage. In other words, it appears to have been present
from the very beginning.

We stated, at the beginning of this paper, that a number of long-held beliefs have
found their way into modern standards for development across multiple languages,
even for safety-critical systems. Such beliefs inevitably influence the way that
developers produce systems so it is of some considerable importance to underpin
them with empirical support wherever possible. In the present study on a mature
system over many years, a number of those beliefs if supported should have left
identifiable traces at some level of significance. They have not.

We conclude therefore that the beliefs are probably erroneous. This is just one
study but it is very large, covers a long period and was carried out in an application
area which was unusually well-specified implying that the resulting defect data is of
higher precision than in less well-specified areas. Perhaps the biggest single lesson
therefore is that beliefs unsupported by any empirical evidence are fundamentally
unreliable and if we are to make progress in avoiding failures with modern tech-
nologies, only those methodologies soundly based on empiricism are likely to be of
any lasting help.

REFERENCES

Dijkstra, E. 1968. Go to statement considered harmful. Comm. ACM 11, 3, 147–148.

European Space Agency. 1998. Ada coding standard.
ftp://ftp.estec.es.nl/pub/wm/wme/bssc/bssc983.pdf.

Fenton, N. and Neil, M. 1999. A critique of software defect prediction models. IEEE Transac-

tions on Software Engineering 25, 5, 675–689.

Hatton, L. 1995. Safer C: Developing software in high-integrity and safety-critical systems.
McGraw-Hill, London. ISBN 0-07-707640-0.

Hatton, L. 1997. Re-examining the fault density v. component size connection. IEEE Soft-

ware 14, 2, 89–98.

Hatton, L. 1998. Does OO sync with the way we think ? IEEE Software 15, 3, 46–54.

Hatton, L. 2004. Safer language subsets: an overview and a case history, MISRA C. Information

and Software Technology 46, 465–472.

Hatton, L. 2008. Power-law distributions of component sizes in general software systems. IEEE

Transactions on Software Engineering . Submitted for publication - second review.

Joint Strike Fighter. 2005. Air vehicle C++ coding standards.
http://www.jsf.mil/downloads/documents/.

Koru, A. G., Zhang, D., and Liu, H. 2007. Modeling the effect of size on defect proneness for
open-source software. In PROMISE ’07: Proceedings of the Third International Workshop on

Predictor Models in Software Engineering. IEEE Computer Society, Washington, DC, USA,
10.

Lipow, M. 1982. Number of faults per line of code. IEEE Transactions on Software Engineer-

ing 8, 4, 437–439.

McCabe, T. 1976. A software complexity measure. IEEE Transactions on Software Engineer-

ing 2, 4, 308–320.

MIRA Ltd. 1998. Guidelines for the use of the programming language C in vehicle based systems.

http://www.misra.org.uk/.

MIRA Ltd. 2004. Guidelines for the use of the programming language C in critical systems.
http://www.misra.org.uk/.

Myers, G. 1977. An extension to cyclomatic measure of program complexity. SIGPLAN No-

tices 12, 10, 61–64.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Defect patterns and structural properties in a mature well-specified software system · 13

NAG. 1978–1999. NAG Fortran library. http://www.nag.com/.

Nejmeh, B. 1988. NPATH: A measure of execution path complexity and its applications. Comm.

ACM 31, 2, 188–200.

Pfleeger, S. and Hatton, L. 1997. Do formal methods really work ? IEEE Computer 30, 2,
p.33–43.

Potanin, A., Noble, J., Frean, M., and Biddle, R. 2005. Scale-free geometry in OO programs.
Comm. ACM. 48, 5 (May), 99–103.

Shooman, M. 1985. Software Engineering , 2nd ed. McGraw-Hill, London.

Spiegel, M. and Stephens, L. 1999. Statistics, 3rd ed. Schaum. McGraw-Hill, London.

Subramanyam, R. and Krishnan, M. 2003. Empirical analysis of CK metrics for object-oriented
design complexity: Implications for software defects. IEEE Transactions on Software Engi-

neering 29, 4 (April), 297–310.

van der Meulen, M. 2008. The effectiveness of software diversity. Ph.D. Thesis, City University,
London.

ACM Journal Name, Vol. V, No. N, Month 20YY.

