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Abstract

Most of currently deployed Grid systems employ hierarchical or centralized approaches to simplify system management.
However, the approaches cannot satisfy the requirements of complex Grid applications which involve hundreds or thousands
of geographically distributed nodes. This paper proposes a Dynamic and Scalable Storage Management (DSSM) architecture
for Grid Oriented Storage (GOS) devices. Since large-scale data intensive applications frequently involve a high degree of data
access locality, the DSSM divides GOS nodes into multiple geographically distributed domains to facilitate the locality and
simplify the intra-domain storage management. Dynamic GOS agents selected from the domains are organized as a virtual
agent domain in a Peer-to-Peer (P2P) manner to coordinate multiple domains. As only the domain agents participate in
the inter-domain communication, system wide information dissemination can be done far more efficiently than flat flooding.
Grid service based storage resources are adopted to stack simple modular service piece by piece as demand grows. The decen-
tralized architecture of DSSM avoids the hierarchical or centralized approaches of traditional Grid architectures, eliminates
large-scale flat flooding of unstructured P2P systems, and provides an interoperable, seamless, and infinite storage pool in a
Grid environment. The DSSM architecture is validated by a proof-of-concept prototype system.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The explosive growth of data generated by information digitization has been identified as the key driver to
escalate storage requirements (e.g. the data produced by protein folding, global earth system model and high
energy physics is often measured in petabytes and even in exabyte). Network based storage systems such as
Network Attached Storage (NAS) and Storage Area Network (SAN) offer a robust and easy method to
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control and access large amounts of storage. However, with the steady growth of client access demands and
the required data sizes, it is a challenge to design an autonomous, dynamic, large-scale and scalable storage
system which can consolidate distributed storage resources to satisfy both the bandwidth and storage capacity
requirements [1].

Grid is a flexible, secure, coordinated resource sharing among dynamic collections of individuals, institu-
tions, and resources [2]. The objective is to virtualize resources and allow users and applications to access
resources in a transparent manner. Storage Grid is a new model for deploying and managing storage resources
geographically distributed across multiple systems and networks, making efficient use of available storage
capacity. The research community has been very active in the area of designing storage systems in the Grid
environment. Storage Resource Broker (SRB) [3] supports shared collections that can be distributed across
multiple organizations and heterogeneous storage systems. The SRB offers some Grid functionalities including
a Virtual Organization (VO) structure for data and information, handling a multiplicity of platforms, resource
and data types, and seamless authorization and authentication to data and information which are stored in
distributed sites, etc. [4,5]. Distributed Parallel Storage System (DPSS) [6] provides high speed parallel access
to remote data and the DPSS servers are transparent to applications. It is currently being integrated into Glo-
bus and the SRB. High Performance Storage System (HPSS) [7] provides hierarchical storage management
and services for very large storage environments. Manabe et al. [8] discussed how to integrate the HPSS into
a Grid architecture to handle petabytes of data produced by the Atlas experiment and to share such data
among the regional collaborators. DataCutter is a middleware infrastructure that enables processing of
large-scale scientific datasets stored in archival storage systems in a Grid environment [9,10]. However, many
aspects of the deployed storage Grid systems are based on hierarchical or centralized approaches (e.g. the
metadata organization of SRB and the storage management of HPSS) which may result in system bottlenecks.

A typical Grid environment (GT4) which is a VO consists of a Monitoring and Discovery System (MDS)
[11], a Certificate Authentication (CA) centre and Grid service providers. All Grid services are registered in the
MDS. The interaction between the Grid services and Grid users is mediated through the MDS. There is typ-
ically one MDS per VO, but in a large VO, several MDSs are normally organized in a hierarchy.

Grid Oriented Storage (GOS) is proposed to build a distributed and large-scale storage system to keep up
with the ever increasing demands of bandwidth and capacity. GOS device is a thin server which can be directly
connected to an existing Grid environment using a Globus XIO interface [12]. The server integrates Redun-
dant Array of Independent Disks (RAID) subsystem to aggregate storage capacity, I/O performance and reli-
ability based on data striping and distribution. A lot of applications can benefit from the GOS project, such as
large-scale streaming media system, remote education, digital library and Internet Service Providers (ISPs),
etc. Due to the increasing storage demands and system scale, hundreds of thousands of GOS devices may
be involved to match the requirements imposed by all kinds of Grid applications. Because the GOS is based
on an existing Grid environment, it is a challenge for the hierarchical architecture to manage the GOS devices
involved in a large-scale and complex Grid application. It is important to decentralize their functionalities to
avoid the bottlenecks of hierarchical or centralized approaches [13].

Peer-to-Peer (P2P) model offers a prospect of robustness, scalability and availability of a large pool of stor-
age and computational resources. Recently, there have been some research efforts invested in designing P2P
based large-scale and geographically distributed storage systems. PAST [14] is a large-scale P2P persistent
storage utility. PAST is based on a self-organizing, Internet based overlay network of storage nodes that coop-
eratively route file queries, store multiple replicas of files, and cache additional copies of popular files. Ocean-
Store [15] is a utility infrastructure designed to span the globe and provide continuous access to persistent
information. The OceanStore is comprised of untrusted servers. Data is protected through redundancy and
cryptographic techniques. Free Heaven [16] mainly focuses on distributed, reliable, and anonymous storage
over efficient retrieval. The above efforts have made important strides in designing P2P based storage systems.
However, the security, storage management, data consistency, etc. are all challenging problems to be solved.
Fortunately, the P2P philosophy and techniques could be used to implement nonhierarchical and decentral-
ized Grid systems. More recently, several research projects have investigated techniques for P2P Grid, which
let us share resources (computers, databases, instruments, and so forth) distributed across multiple organiza-
tions. The P2P Grid is emerging as a promising platform for executing large-scale, resource intensive applica-
tions [17,18].
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Based on our earlier research [12], this paper proposes a Dynamic and Scalable Storage Management
(DSSM) architecture to organize GOS devices into a large-scale and geographically distributed storage system
to meet the requirements imposed by all kinds of Grid applications. The DSSM divides GOS devices into mul-
tiple geographically distributed domains to facilitate the data access locality. The architecture consists of two
levels. The bottom level adopts multicast to achieve dynamic, scalable, and self-organized physical domains.
The method significantly simplifies the intra-domain storage resource management. The upper level is a virtual
domain that consists of geographically distributed and dynamic GOS agents selected from each physical
domain. P2P model is employed to discover the required storage resources. Due to the virtual two-tiered archi-
tecture, two-tiered parallelism and scalability of intra-domain and inter-domain are achieved. The DSSM
removes the traditional hierarchy or centralized approaches of conventional Grid architecture, avoids
large-scale flat flooding of unstructured P2P systems, and inherits the dynamic scalability of P2P naturally.
Storage resources of GOS devices are wrapped into Grid services which are adopted as basic building blocks
to stack an infinite storage pool.

The remainder of the paper is organized as follows. The DSSM architecture is introduced in Section 2. Sec-
tion 3 describes the domain formation algorithm since the DSSM is based on physical GOS domains and a
virtual GOS agent domain. Section 4 illustrates how to wrap storage resources into Grid services. The Grid
service based storage resource discovery mechanism is depicted in Section 5. Section 6 illustrates the prototype
system and measures the system performance. Section 7 concludes the paper with remarks on main contribu-
tions of the paper and indications of future research.

2. The DSSM architecture description

A large-scale and geographically distributed storage system may involve hundreds or even thousands of
storage nodes to match the requirements imposed by all kinds of applications, which is challenging the storage
resource management with the increasing of the system scale.

2.1. Data locality and domain of DSSM

Data locality is a measure of how well data can be selected, retrieved, compactly stored, and reused for
subsequent accesses [19]. In general, there are two basic types of data locality: temporal and spatial. Temporal
locality denotes that the data accessed at one point in time will be accessed in the near future. Temporal local-
ity relies on the access pattern of different applications and can therefore change dynamically. Spatial locality
defines that the probability of accessing data is higher if the data near it was just accessed (e.g. prefetch).
Unlike the temporal locality, spatial locality is inherent in the data managed by a storage system, and is rel-
atively more stable and does not depend on applications, but rather on data organizations which is closely
related to the system architecture. Data locality is a property of both the access pattern of applications and
data organization or system architectures. Reshaping access patterns can be employed to improve temporal
locality [20]. Data reorganization is normally adopted to improve spatial locality.

Large-scale data intensive applications frequently involve a high degree of data access locality [19,21,22].
For example, the simulation data of earth’s climate system is growing rapidly and going beyond 100 TB.
The data has to be spread over several sites [21]. The data of Large Hadron Collider (LHC) is generated at
one place (CERN), but the computational capacity required to analyze the data implies that the analysis must
be performed at geographically distributed centres. It requires 10 petabytes of disk storage which has to be
distributed across Europe, America and Asia [22]. Many research efforts have been invested in exploiting
the impact of access pattern and data organization of applications on the data locality to achieve performance
gains [19,23]. DSSM divides GOS devices into multiple domains to facilitate the locality and reduce unneces-
sary network traffic. Fig. 1 illustrates the DSSM architecture.

2.2. Criterion of domain division

Choosing a suitable criterion to form GOS nodes into domains is an important factor of the DSSM archi-
tecture. Jean-Baptiste Ernst-Desmulie et al. [24] proposed three criteria used for forming nodes into domains,
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namely distance, qualitative and quantitative. DSSM employs the distance criterion in a geographical way to
divide GOS nodes into multiple domains to facilitate the data access locality and limit the amount of commu-
nication traffic seen by each node with performance guarantee. GOS devices belonging to the same geograph-
ical area (e.g. the same enterprise or the same LAN) are formed into a domain, because the GOS devices in the
area are normally placed geographically close.

With a domain based GOS network, the scalability is achieved from a two-tiered architecture, namely,
intra-domain and inter-domain, as shown in Fig. 1. Within a domain, each GOS device is equal in functions
and capabilities, and can leave or join the domain dynamically. Any node can communicate with anyone else
directly. Multicast is employed to achieve self-organizing and self-discovery features when the GOS devices
leave or join the domains. Since DSSM is based on stable and trusted GOS devices that are less dynamic than
pure P2P nodes, multicast does not result in much communication traffic. All GOS devices in a domain work
collaboratively to construct a scalable storage system. Hence, the domain based DSSM architecture inherently
facilitates data access locality. In addition, each domain selects a domain agent from the domain members to
cooperate with other domains according to a domain formation algorithm. As only the domain agents who
form a virtual agent domain participate in the inter-domain communication, system wide information dissem-
ination can be done far more efficiently than flat flooding [25].

The DSSM can be regarded as a virtual two-tiered hierarchy, but it is different to the traditional hierarchi-
cal architecture. It replaces a few root nodes of the traditional hierarchy with many GOS agents which can be
expanded to a large-scale, thus avoiding the single point of failure and the potential performance bottleneck.
The DSSM can achieve near-infinite dynamic scalability due to the two-tiered architecture. The intra-domain
scalability is obtained by expanding the system storage capacity incrementally with additional GOS devices
along with associated network interfaces that expand the data transmission rate proportionally. Additional
domain can join the DSSM to achieve the inter-domain scalability.

2.3. Survivability and security of DSSM

Survivability denotes the ability of a system to maintain or restore an acceptable level of performance dur-
ing system component failures by applying various restoration techniques. Survivability is very important for
the DSSM since the data in GOS device is invaluable. P2P architecture has strong survivability because it is a
fully distributed system with no central coordination, and peers are autonomous, unreliable, and not trustwor-
thy. The DSSM adopts a P2P manner to organize the stable and trusted GOS devices into a two-tiered domain
architecture, it naturally inherits the strong survivability of P2P.
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Many data redundancy mechanisms have been devised to protect the data loss in cluster storage systems
[26]. Because the failure of GOS devices can directly incur data loss, we employ data redundancy to guarantee
the survivability. In the event of one GOS device in a physical domain failing or leaving the domain, the infor-
mation will be updated automatically and the workload will be redirected to other GOS nodes where the
redundant data resides. If a domain agent fails, another agent candidate in the same domain will take over
the role automatically. The DSSM achieves high survivability due to the virtual two-tiered domain
architecture.

The DSSM is based on the existing Grid environment (GT4) which consists of Grid service providers,
MDSs and a CA centre. The security of DSSM is within the Grid Security Infrastructure (GSI) [27] frame-
work of GT4. Each GOS device has to request and receive a host certificate from the CA, thus allowing joining
the DSSM. Non-trusted nodes are not permitted to join the DSSM. In order to access the storage resources of
DSSM, a user has to request and receive a user certificate from the CA as well.

3. Domain formation algorithm of DSSM

The DSSM architecture consists of two levels. The bottom level adopts multicast to achieve dynamic, scal-
able, and self-organized physical domains. The upper level is a virtual domain that consists of geographically
distributed and dynamic GOS agents selected from all domains.

The objective of the domain formation algorithm is to manage the geographically distributed GOS devices
across the Internet effectively. A good domain formation algorithm should not change the domain configura-
tion too drastically when a few nodes are leaving or joining. Otherwise, the domain agents cannot control their
domains efficiently and thus lose their roles as local coordinators. The algorithm consists of knowledge of the
neighbors of each node in a domain to organize the domain members and select a domain agent from all can-
didate members. Several distributed domain formation algorithms have been devised over the years. One is the
lowest-ID algorithm [28]. The other is the highest-connectivity (degree) algorithm [29]. Gerla and Tsai [30]
simulated the two algorithms. In this section, we will detail the domain formation algorithm of the DSSM
at two levels, respectively.

3.1. The formation algorithm of physical domain at bottom level

All GOS devices in the physical domain at the bottom level are organized as a scalable storage system and
assigned with a multicast IP address to provide a single entry point to the storage space. In order to avoid
unnecessary network traffic to those GOS devices and switches where the request is not intended due to the
multicast, any two GOS devices are at most one hop away. The formation algorithm of physical domain
allows GOS devices to join or leave the running GOS network automatically. All GOS devices in the domain
are self-discovery and self-organizing as an autonomy system.

Each GOS device maintains a Neighbor Information Table (NIT) which keeps a list of all active GOS
devices with their related resource information. Each entry of the NIT represents the information of one
GOS device. The entry consists of IP address, remainder storage capacity, and processing power. A data struc-
ture is adopted to describe the entry of NIT. The data structures should be maintained in memory so that they
can be accessed with little overhead. Therefore the storage capacity occupied by the data structures is impor-
tant and should be kept as small as possible. The data structure takes 24 bytes per entry. For a physical
domain which has 500 GOS devices, it takes only 500 * 24 = 12,000 bytes to track the whole physical domain.
Today’s servers are normally equipped with more than 1 GB main memory. Compared with the size of main
memory, the storage capacity of NIT is negligible. For the common workloads, searching a link list consisting
of 500 nodes is unlikely to result in a system bottleneck due to the involved processing power. All GOS devices
are equal in functions except the GOS agents. Each GOS device has a coarse grain metadata description of the
overall resource information of the physical domain in terms of NIT, which is very helpful for a candidate
GOS device to take over the role of the GOS agent when the agent leaves its domain.

The NIT is updated when it is necessary. Each device can discover its neighbors by a process of probing.
When a new GOS device wants to join the domain, the device sends a one hop probing multicast ‘‘JOIN’’
request of its coming and the corresponding local resource information such as the processing power and
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the storage capacity, and waits for the response of other online GOS devices. The online GOS devices which
receive the ‘‘JOIN’’ request add the oncoming device’s information to their NITs and send an ‘‘ACCEPT’’
acknowledgment back to the probing GOS device using unicast. The oncoming device constructs its own
NIT in terms of the acknowledgment messages. All GOS devices in the domain are self-organized into an over-
lay GOS network according to the NITs.

Since the DSSM is based on stable and trusted GOS devices, the leaving of a GOS device is normally caused
by maintenance, upgrade and other reasons. The GOS device which wants to leave a domain sends a multicast
‘‘LEAVE’’ message in the domain. Once the online GOS devices receive the message, the devices delete the
leaving device’s information and update their NITs immediately. Because short messages are sent at regular
intervals between GOS devices, if a message is not received from a particular device, then the device is assumed
to have failed and other remainder GOS devices delete the device from their NITs. The periodic intra-domain
heartbeat diffusion with a reasonable low frequency is feasible due to the stable and trusted GOS devices. On
the other hand, excessive false detections will increase maintenance cost significantly and unnecessarily. By
tuning the diffusion period, the time to recover from a failure can be balanced against the bandwidth overhead
of repeated transmissions.
3.2. The formation algorithm of virtual agent domain at upper level

Multiple physical domains can be formed simultaneously, and the domain formation procedure may con-
tinue iteratively. Eventually, all GOS devices will become affiliated with domains. Although the domains can
be self-organized and self-administered independently, multiple domains may choose to operate cooperatively.
The domain agents are selected to play this role.

As discussed in Section 3.1, during the process of the physical domain formation at bottom level, a pro-
cessing power list of all GOS devices in the domain is formed and recorded on the NIT. Because a domain
agent has to communicate with other domain agents to coordinate and manage all GOS devices within the
domain, it consumes more computing resources than the ordinary domain members. The GOS device which
has the highest processing power within a domain is selected as a domain agent. If the GOS agent fails or
leaves the domain, the second GOS device on the processing power list automatically takes over the role.
The isolated GOS devices are identified as default domain agents even if there is only one device in a
domain.

The selection procedure of a GOS agent is straightforward. The first GOS device of a domain is regarded as
an agent by default. The second GOS device which wants to join the domain compares its processing power
against the first one. The GOS device which has higher processing power will be reselected as an agent. If the
second GOS device has the same processing power as that of the first one, the agent will be kept unchanged.
By analogy, we can have a unique GOS agent in a physical domain eventually. Once the domain agents are
determined, now the problem is how to take advantage of the agents to coordinate multiple physical domains
through GOS network efficiently.

The domain agents do not use flat flooding or multicast to probe other agents due to the communication
traffic and security reasons. A GOS service which maintains a list of all domain agents within the DSSM is
running on the Internet (see Fig. 1). If a new domain agent wants to join the DSSM, firstly, the agent sends
a request to contact the running GOS service which has a public address. Secondly, according to the agent list,
the GOS service redirects the request to the running domain agents which are close to the requester. Thirdly,
the running GOS agents who received the request update their Agent Neighbor Tables (ANTs) and send an
acknowledgement to the new comer. Finally, the new comer constructs its ANT in terms of the acknowledg-
ment messages from the online neighbor domain agents.

The ANT is similar to the NIT, but much simpler. Each entry of the ANT is an IP address which represents
a neighbor domain agent. According to the ANT, periodic heartbeat messages are used to confirm the abnor-
mal leaving of the domain agents. All domain agents who are equal in functions communicate with each other
to construct a virtual agent domain in terms of the ANT.

Following the domain formation algorithm, all GOS devices are organized and coordinated by the physical
domains at bottom level and the virtual agent domain at upper level.
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4. Wrapping storage resources into Grid service

Building a large-scale system by composing of hundreds or even thousands of geographically distributed
resources poses challenges to manage the resources efficiently. Service is becoming a basic application pattern
of Grid because the service can be considered as a basic building block of an infinite resource pool which pro-
vides good scalability through its inherent parallelism, and facilitates simple incremental resource expansion
(to add resources, one just adds services). Grid users can stack simple modular service piece by piece as
demand grows.

A Grid service is a stateful Web Service with an associated lifetime which provides a set of interfaces
through which Grid users may interact. The latest Open Grid Service Architecture (OGSA) [31] defines a
set of protocols and standards for creating, naming, and discovering persistent and transient Grid service
instances. Grid service must provide their users with the ability to access and manipulate state. As the basis
of OGSA, Web Services Resource Framework (WSRF) [32] is a family of six Web Services specifications that
build on SOAP [33], WSDL [34], and WS-Addressing [35] to define the WS-Resource approach for modelling
and managing state in a Web service context. The WS-Resource consisted of a resource document and a cor-
responding Web service to implement a stateful service. Because Web service is stateless, the resource docu-
ment employs XML [36] schema to capture state information for a WS-Resource due to the portability
and ease in machine processing. The Web service can check and alter states contained in the resource
document.

The DSSM divides GOS devices into multiple domains which are self-organized in a P2P manner according
to the geographical location. All domains cooperate with each other through their domain agents. Based on
the WSRF, each domain agent in the DSSM calculates the available storage resources in the domain in terms
of its NIT, and wraps the storage resources as a Grid service. If one domain agent cannot provide satisfied
resources, multiple domain agents can cooperate to provide storage resources (e.g. one domain can borrow
storage resources from another domain through the communication of the domain agents). This approach
introduces another level of flexibility on the resource utilization while taking into account of the overall
efficiency.

The storage resource oriented Grid service consists of four parts that are implemented by four classes: A
storage service factory, a storage service instance, a storage resource home, and the storage resources (see
Fig. 2). When dealing with multiple resources, the WSRF specifications recommend employing the factory/
instance pattern that is a well-known design pattern in software design, and especially in object oriented lan-
guages. The factory/instance pattern adopts one service in charge of creating the resources (the service factory)
and another one to actually access the information contained in the resources (the service instance). Because
the GOS devices offer resources for hundreds of thousands of Grid users with different requirements, the fac-
tory/instance pattern is employed in the storage service. The storage resource home is responsible for register-
ing and updating the MDS when it is necessary (e.g. when a user subscribes to some storage resources, the
information of the remained storage resources in the SSP has to be updated in MDS.). The reader is referred
to [37] for a comprehensive understanding of the storage resource oriented Grid service.
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Fig. 2. Components of a storage resource oriented Grid service.
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The WS-Resource is adopted in the storage oriented Grid service to describe and access any state of the
storage resources. This method can solve the multi attribute range queries. The WSRF lifetime management
is employed to describe the resources that are destroyable via web services interfaces. Each time a new storage
service instance is created, two properties are assigned, namely storage capacity and lifecycle. The users set the
initial values when they submit a request for storage resources with their requirements. The states of these two
properties are changed frequently due to the user’s operation on the storage resource (e.g. when a user trans-
fers some data to the subscribed storage resource, the state of the storage capacity has to be changed
correspondingly).

A newly created WS-Resource is uniquely identified by a WS-Addressing EPR [38] that is used to interact
with the resource and distinguish between different storage service instances for different users. The storage
users can employ the EPR to identify the corresponding storage resources and perform methods to change
the state of the properties.

5. Grid service based storage resource discovery

With an understanding of GOS domain and storage oriented Grid service, we now illustrate how multiple
domains might be used in a global Grid environment.

The resources in Grid are often characterized by the dynamic, heterogeneous and distributed features,
therefore the description, discovery, and monitoring of resources are challenging problems. Efficient resource
discovery is a crucial problem in the large-scale and geographically distributed Grid systems. The main
requirements include: (1) low performance overhead; (2) fast response to query; (3) ability to locate the service
provider with good Quality of Service (QoS); (4) self-organizing capability to deal with dynamic joining and
leaving of resources without centralized control [18].

MDS is a key component to provide basic mechanisms for resource discovery and monitoring in a typical
Grid environment. Traditional approaches maintain a centralized MDS or a set of hierarchically organized
MDSs to index resource information in Grid. However, three reasons limit the efficiency of the traditional
approach. The first, the centralized approach and the root node of the hierarchical method have the inherent
drawback of a single point of failure. The second, the approaches may result in system bottlenecks in a highly
dynamic environment where many resources join, leave, and can change characteristics at any time. The third,
the approaches cannot scale well to a large-scale and geographically distributed system across the Internet.

Many research efforts have investigated technologies for a P2P model based MDS to overcome the above
shortcomings [17,39]. The unstructured approaches (e.g. Gnutella-style flooding) propagate the query mes-
sages to all devices with a Time-To-Live (TTL) value to control the scale of search. But the approach wastes
network bandwidth and does not scale well because of the large volume of query messages generated by flood-
ing [39,40]. In structured P2P systems, Distributed Hash Tables (DHT) are used to map contents into network
addresses which can be located easily [41]. This method is very efficient in locating contents by one specific
name or attribute, but not supporting multi attribute range queries [42].

The resource discovery in DSSM is based on the unstructured approach but different with that. Fig. 3
depicts the resource discovery process in DSSM. The whole system consists of three GOS domains, three
Agent 1 Agent 2 Agent 3
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Domain 2 

Virtual Organization
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Fig. 3. Resource discovery of DSSM in GT4 environment.
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domain agents are cooperating with each other to provide index service (in the dashed rectangle). We only
focus on the location phase after we gain an entry point into the GOS service community. The entry point
can be obtained by out-of-band method or other approaches.

The major steps of resource discovery are labelled with the sequence number as defined in the following
descriptions. (1) A request initiated by a user is redirected from the GOS service published on the Internet
to the domain agent 2. (2) Once the request is received, the domain agent 2 searches its NIT since the NIT
has the resources information of the whole physical GOS domain 2. (3) If satisfied resources are found in
the domain, the domain agent 2 will notify the corresponding GOS devices which have the required resources
to communicate with the user directly (e.g. call GridFTP to transfer data) (The domain agent has the ability to
pool resources in the domain to match the user’s resource requirements). (4) Otherwise, the agent 2 forwards
the request to its neighbor agent 1 and agent 3 using unicast according to its ANT. (5) The agent 1 and agent 3
will simultaneously repeat the operations as agent 2 did in step (2) and step (3) to achieve inter-domain
parallelism.

For the traditional unstructured P2P searching method, the corresponding device sends a query message to
its neighbors, which in turn forward it to their own neighbors. If a device possesses the requested resource, it
sends a query hit message that will follow the same path back to the requesting device [43]. The method used in
DSSM is more efficient and scalable than the traditional one, because it avoids flooding, eliminates centralized
or hierarchically architecture, and the GOS device which has satisfied resources can communicate with users
directly to avoid expensive store-and-forward data copying between GOS devices, GOS agents and users.

6. Prototype system and experimental evaluation

We constructed a proof-of-concept prototype with three GOS devices, one Wide Area Network (WAN)
emulator [44], and several client machines. All components were connected through a 1000/100M adaptive
switch. Table 1 shows the system configurations of the prototype. The WAN emulator forwards packet at line
rate and has user-settable delay and drop probability. In order to simulate a distributed WAN environment,
all traffic among domains passed through the WAN emulator.

6.1. Dynamicity and reliability evaluation

The dynamicity and reliability of the DSSM architecture were measured at two stages. At the first stage, we
set the IP address of three GOS devices within one network segment to denote a single physical domain. To
illustrate the dynamic scalability and reliability of the architecture, we first configured one GOS device in one
domain, and then the other two GOS devices joined the domain respectively, finally, the three GOS devices
continuously left and joined the domain. We repeated the above process for more than 50 times, it did not
cause any problems in our experiment. Because all GOS devices in the domain have the same processing
power, the first GOS device of the domain is selected as an agent by default even it has no other GOS agents
to cooperate with.

At the second stage, to simulate two physical domains, we configured two network segments by setting the
IP address of the three GOS devices. The first domain consisted of two GOS devices, and the second domain
had only one GOS device. The communication traffic between two domains passed through a WAN emulator.
The DSSM architecture was formed successfully by the following steps: (1) The first GOS device in domain 1
Table 1
System configurations of the prototype

GOS Device WAN Emulator and Clients

CPU Intel Xeon 2.8GHZ Intel Pentium 2.66 GHZ
Memory 2G 512M
NIC Two Broadcom 100/1000M Intel(R) PRO/100M
Disks Six IBM FRU 32P0730 Seagate ST340014A
OS Red Hat(Kernel 2.4.21) Red Hat (Kernel 2.4.21)
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was started and regarded as an agent by default. (2) The second GOS device joined the domain 1. The GOS
device which has higher processing power should be selected as an agent. In our test, the GOS devices had the
same processing power. Therefore, the first GOS device played the role of an agent as discussed in Section 3.2.
(3) Two GOS devices in the domain 1 created their NITs in terms of multicast communications in the domain.
(4) The GOS agent of domain 1 wrapped the storage resources of the two GOS devices into Grid services, and
then put its address information on the list of the GOS service which has a public address. (5) The single GOS
device in domain 2 acted as a domain agent, wrapped its local storage resources into Grid service, and regis-
tered its address in the public GOS service. (6) The agents of domain 1 and domain 2 constructed their ANTs
in terms of the request and acknowledgement, respectively. According to the ANT, a virtual agent domain
consisting of two agents will be constructed by the communication among the domain agents. The formation
and decomposition of DSSM were repeated more than 50 times continuously without incurring any problems.

As discussed in Section 3.1, the DSSM is based on stable and trusted GOS devices that are less dynamic
than pure P2P nodes. The leaving or joining of GOS devices or GOS agents are normally caused by mainte-
nance, upgrade and other reasons. It is unlikely to happen frequently. We do believe the above test can val-
idate the dynamicity and reliability.

6.2. Resource discovery evaluation

The interaction between users and the DSSM is mediated through a GOS service published on the Internet.
When a user wants to access the storage resources of DSSM, firstly, it sends a request to the GOS service with
its requirements. Secondly, the GOS service redirects the request to a domain agent which is close to the user.
Thirdly, a P2P model is employed by the agent to locate the storage resources which are wrapped into Grid
services. Fourthly, the user chooses a suitable Grid service from a list of available Grid services located by the
request. The storage resources behind the Grid service can be distributed, and is transparent to the user
through the user interface. Finally, the user can access the storage resources by creating file folder, uploading,
downloading and deleting files.

Response time seen by the Grid users is an important metric in evaluating the performance of resource dis-
covery of the DSSM. The measured response time is the time between when a user submits a request to the
DSSM and when the last byte of the response is delivered to the user. In our experiment, each client machine
can simulate many different users with different connections to the DSSM. Each user submitted a query
request to the DSSM and waited for the response. After receiving the response, it immediately submitted
another request. We employed average response time to measure the performance. The data traffic between
the client machines and DSSM passed through the WAN emulator. The Round Trip Time (RTT) of the emu-
lator in our experiment was set to 20 ms, 40 ms and 60 ms, respectively. Because the speed of light in fibre is
roughly 66% of the speed of light in vacuum, the transfer distance simulated by the WAN emulator were
300 · 106 · 0.66 · 10 · 10�3 � 2000 km, 4000 km and 6000 km, respectively.

Fig. 4 illustrates the average response time of the resource discovery of DSSM. The X axis is linear, whereas
the Y axis is in logarithmic scale. It shows that the average response time increases linearly with the growth of
the number of users. The reason is that the average response time is limited by the processing time of the
domain agents. With the increase in number of users, the longer queue time results in high response time.
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Before we started our experiment, we expected to see a significant impact of the RTT on the average response
time. For three users, we did observe a growth of the average response time when the RTT was increased.
However, Fig. 4 shows a negligible performance impact of RTT on the average response time, especially when
a large number of users access the DSSM simultaneously. We do believe that the introduced delay by RTT has
an impact on slowing down the request rate which goes to the DSSM. But the RTT is relatively small to the
query time. The reason is that the query uses SOAP messages which involve a lot of overhead incurred by
XML. Mani and Nagarajan [45] reported that XML’s way of representing data takes more than 400% over-
head compared with the way adopted by binary. This is a hot topic in the Web service community. A lot of
methods have been devised to solve the problem (e.g. compressing XML or a suitable cache mechanism). We
just focus on the performance evaluation of the resource discovery of DSSM.

6.3. The impact of dynamicity on the resource discovery

In this measurement, we investigate the impact of dynamicity on the resource discovery of DSSM. The
RTT of the WAN emulator was set to 20 ms. The basic test environment and conditions were the same as that
of Section 6.2, but we configured the GOS devices and GOS agents to leave and join the DSSM every 60 s to
simulate a dynamic environment as discussed in Section 6.1.

We expect that the dynamicity of DSSM has a negligible performance impact on the resource discovery,
because when a GOS agent leaves a domain, another candidate GOS device should immediately take over
the role. Fig. 5 shows the average response time of a static and a dynamic DSSM, respectively. It illustrates
that the dynamicity of DSSM does have performance impact on the resource discovery. The reason is that
there is only one GOS device which plays the role of a GOS agent in the domain 2. If this GOS agent leaves
DSSM, no candidate in the domain can take over the query traffic which goes to the agent, which results in a
heavy traffic to the GOS agent of domain 1. With the increase in number of users, the situation becomes
worse, which incurs a long queue time and leads to a high response time. It validates that the query traffic
can be shared by multiple GOS agents, and the traffic which goes to each GOS agent decreases with the growth
in number of GOS agents.

6.4. Bandwidth evaluation

Please note that this paper focuses on a dynamic and scalable storage management architecture which may
involve hundreds or even thousands of distributed GOS devices. The goal of this work is to support long-dis-
tance and bulk data access of large-scale and complex Grid applications. Grid service combines the Web ser-
vice and WSRF to provide a service based Grid environment that enables heterogeneous environments to be
integrated and reconciled to accomplish complex tasks. The core of Web service is XML which offers porta-
bility and ease of machine processing. However, the XML’s way of representing data takes more than 400%
overhead compared with the way adopted by binary [45]. It is not a good idea to transfer all data in XML
especially for the critical real-time applications. We take advantage of the Grid service to discover and locate
the resources. Whereas the data transfer is still using binary code rather than XML to maintain the perfor-
mance [46]. Because GridFTP [47] provides a secure, robust, fast and efficient transfer of (especially bulk)
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data, it was adopted by the DSSM to transfer data between the GOS devices and Grid users. A Grid user
contacts the public GOS service to find the available storage services and chooses one service with 10GB
capacity, and then employs GridFTP to transfer data between the storage service and its local storage space.

The performance of the implemented prototype was measured by system bandwidth that is the amount of
data divided by the data transfer time. The data transfer time was defined as the difference between the end
time and start time of a data transfer excluding the process of resource discovery. A set of files ranging from
32 MB to 512 MB were transferred over the emulated WAN to measure the bandwidth. The RTT of the emu-
lator in our experiment was set to 120 ms which denotes 12,000 km. The file with specified size is called work-
load in the following discussion. All the performances reported in this paper are based on the average of 300
measurements. The parallel transfer of multiple streams of the prototype was investigated since this is a key
feature of GridFTP.

Fig. 6 shows that as the size of the workloads increases, the bandwidth grows at the same time. The system
bandwidth can be improved by increasing the number of parallel streams of GridFTP. In our experiment, for
the workload of 512 MB, the bandwidth boosted from 3.6 Mbits/s to 26 Mbits/s when the stream number
reached 80. In general, the performance curves with different workloads are very similar. The bandwidth
increases with the growth of parallel stream number, but there are some exceptions. It is interesting to observe
that when the stream number reaches 5, the bandwidth of 32 MB workload reaches the maximal value and
then starts to decrease slowly, and the bandwidth of 64 MB workload reaches the point of saturation. The
reason will be explained in the following paragraph.

Parallel data transfer requires that the data is partitioned across multiple parallel streams at sender side
(scatter) and the striped data is combined at receiver side (gather). The data scatter/gather incurs some over-
head penalty. To justify the penalty, the performance gain achieved by parallel transfer has to be greater than
the overhead involved in data scatter/gather. For a certain size of workloads, with the increase of the parallel
stream number, the overhead produced by scatter/gather grows. There are a fixed number of parallel streams
which can strike a balance between the overhead involved in data scatter/gather and the benefit gained by par-
allel transfer. For example, the number is 5 for the 32 MB workload. For a fixed parallel stream number, with
the growth of workload size, compared with the performance gain obtained by parallel transfer, the overhead
of scatter/gather is relatively reduced. We conclude that parallel stream data transfer works better on large
files than small files.

In order to investigate the impact of the background query requests on the system bandwidth, we adopted
two client machines to submit query requests continuously to simulate a real working environment, while
another client machine employed GridFTP to transfer data. We observed negligible bandwidth variation.
The reason is that the query requests are processed by the GOS agents, while the data is transferred between
the GOS device and the user directly. The traffic does not interfere with each other if the network is not a
bottleneck.

In summary, the prototype and experimental evaluation demonstrate that the DSSM architecture proposed
in this paper can organize the distributed GOS devices into a dynamic, scalable, and reliable storage pool to
satisfy the storage capacity and bandwidth requirements posed by complex Grid applications. The system
could be expanded to a large-scale with an evaluation of a large-scale experiment.
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7. Conclusions and discussion

In this paper, based on an existing Grid environment, we proposed and designed a DSSM architecture
which organizes GOS devices into different domains to enhance the data access locality in terms of geograph-
ical area. P2P model is employed to endow the architecture with dynamic scalability and reliability. Storage
resources are wrapped into Grid services which are employed as basic building blocks of an infinite storage
pool. Storage expansion is achieved by simply adding services. The DSSM architecture avoids the hierarchical
or centralized approaches of traditional Grid architecture, eliminates the flat flooding of unstructured P2P sys-
tem, and provides a dynamic storage pool in Grid environment. The proof-of-concept prototype gives useful
insights into the architecture behavior of DSSM architecture.

The DSSM can be regarded as a virtual two-tiered hierarchy, but it replaces a few root nodes of the tra-
ditional hierarchy with many GOS agents which can be expanded to a large-scale, thus avoiding the single
point of failure and the potential performance bottleneck. The architecture does incur some additional over-
head which results in performance penalty on the GOS agents in three scenarios. The first, if hundreds of thou-
sands query requests go to a particular domain agent simultaneously, the agent could become a potential
system bottleneck. The reason is that all query traffic going to a domain has to pass through the domain
agent. The second, an intelligent domain agent is able to pool the storage resources and keep the load balance
among the GOS devices in the domain. It takes some additional computing overhead to do this job. The third
one is the worst scenario. When a GOS agent is serving data access to users, a large number of query requests
going to the agent will heavily overload the agent. This scenario should be avoided or alleviated. However, the
I/O traffic taken over by each agent will be decreased with the increase in number of domain agents. The prob-
ability that most of the I/O traffic goes to a particular domain can be decreased, if the hot data is arranged
properly. A dynamic and transparent data replication mechanism which automatically places the data replicas
across domains where they are needed is able to alleviate the performance impact on the GOS agents, it is also
crucial to the overall performance. The first, it improves the aggregate bandwidth by providing simultaneous
data access to multiple data copies. The second, it reduces the latency between the data provider and data con-
sumer by copying the data near the data consumer, because the latency is incurred not only by the protocol
stack of Grid service, but also by the distance of the communication [46]. We are currently working on the
intelligent data replication mechanism of DSSM. The reader is referred to [46] for a more comprehensive dis-
cussion of the service based storage Grid.

Grid Oriented Storage is an ongoing project supported by EPSRC/DTI of United Kingdom, which focuses
on the next generation data storage system architecture for the Grid computing era. We are implementing the
DSSM in an existing Grid environment and may work together with a particular Grid application.
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