
Rchive: Towards
Provenance Tracking in R

Andrew Runnalls
Computing Laboratory, University of Kent, UK



What is Provenance?

From the Oxford English Dictionary:
provenance, n.

1 The proceeds from a business. Obs. rare.
2 The fact of coming from some particular source or quarter; origin,

derivation.
3 The history of the ownership of a work of art or an antique, used

as a guide to authenticity or quality; a documented record of this.
4 Forestry. The geographic source of tree seed; the place of origin

of a tree. Also: seed from a specific location.



What is Provenance?

From the Oxford English Dictionary:
provenance, n.

1 The proceeds from a business. Obs. rare.
2 The fact of coming from some particular source or quarter; origin,

derivation.
3 The history of the ownership of a work of art or an antique, used

as a guide to authenticity or quality; a documented record of this.
4 Forestry. The geographic source of tree seed; the place of origin

of a tree. Also: seed from a specific location.

In information systems, ‘provenance’ is used following the third sense
above: In producing a given data object, what primary sources of data
were drawn upon, and what sequence of operations was applied to
those primary data sources?



Provenance-Aware Computing

There is increasing interest in keeping track of the provenance of data
within information systems. The second International Provenance and
Annotation Workshop (IPAW 2008), held at Salt Lake City in June this
year, attracted 55 delegates, and the presented papers included
applications to the following fields:

proteomics;

disease diagnosis using
information retrieval systems;

handling of data from biological
imaging (e.g. MRI, fMRI, CT, DTI,
PET);

pulmonary immunity modelling;

gene sequencing and
phylogenetic analysis;

computer systems, including
network routing, grid computing,
and intrusion detection;

earth sciences, particularly
handling remote sensing data
and other images;

remote health monitoring;

hydrology and oceanography;

weather monitoring;

atmospheric chemistry.



The First Provenance Challenge

The First Provenance Challenge1 emerged from IPAW2006 (Chicago),
and was intended to explore and compare the provenance-tracking
capabilities of various systems for managing scientific workflows.
(Examples of such systems are ES3, Kepler, Taverna and VisTrails.)

The challenge posed a problem of aggregating images obtained by
function Magnetic Resonance Imaging (fMRI) into a
population-averaged ‘brain atlas’.

1http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge



The First Provenance Challenge

1 Compare a new 3D brain image
to a reference image to decide
how the new image should be
‘warped’ (spatially transformed)
to match the reference.
(align_warp)

2 Carry out the image warping.
(reslice)

3 Average all the images into a
single 3D image. (softmean)

4 Extract 2D slices from the 3D
image perpendicular to each of
the x , y and z axes. (slicer)

5 Convert the 2D slices into a
standard computer-graphics
image format. (convert)



The First Provenance Challenge
Example queries

Find the process that led to a particular output 2D image, i.e.
everything that caused image to be as it is. This should tell us the
new brain images from which the averaged atlas was generated,
the warping performed etc.
Find all invocations of the warping procedure that used a
particular model (a twelfth-order nonlinear model with 1365
parameters) that ran on a Monday.
A user has annotated some input images with a key-value pair
center=UChicago. Find the outputs of align_warp where the
inputs are annotated with center=UChicago.
A user has annotated some atlas graphics with a key-value pair
where the key is studyModality. Find all the graphical atlas
sets that have metadata annotation studyModality with values
speech, visual or audio, and return all other annotations to these
files.



The First Provenance Challenge
Example queries

Find the process that led to a particular output 2D image, i.e.
everything that caused image to be as it is. This should tell us the
new brain images from which the averaged atlas was generated,
the warping performed etc.
Find all invocations of the warping procedure that used a
particular model (a twelfth-order nonlinear model with 1365
parameters) that ran on a Monday.
A user has annotated some input images with a key-value pair
center=UChicago. Find the outputs of align_warp where the
inputs are annotated with center=UChicago.
A user has annotated some atlas graphics with a key-value pair
where the key is studyModality. Find all the graphical atlas
sets that have metadata annotation studyModality with values
speech, visual or audio, and return all other annotations to these
files.



The First Provenance Challenge
Example queries

Find the process that led to a particular output 2D image, i.e.
everything that caused image to be as it is. This should tell us the
new brain images from which the averaged atlas was generated,
the warping performed etc.
Find all invocations of the warping procedure that used a
particular model (a twelfth-order nonlinear model with 1365
parameters) that ran on a Monday.
A user has annotated some input images with a key-value pair
center=UChicago. Find the outputs of align_warp where the
inputs are annotated with center=UChicago.
A user has annotated some atlas graphics with a key-value pair
where the key is studyModality. Find all the graphical atlas
sets that have metadata annotation studyModality with values
speech, visual or audio, and return all other annotations to these
files.



The Second Provenance Challenge and the OPM

The Second Provenance Challenge took place over the period
November 2006 to June 2007, and explored the extent to which the
provenance information generated by various systems was
intertranslatable.

A workshop at Salt Lake City in August 2007 discussed the results of
the second challenge, and led to the drafting of the Open Provenance
Model (OPM), as a means “to allow provenance information to be
exchanged between systems, by means of a compatibility layer based
on a shared provenance model”. Version 1.01 of the OPM was
released in July 2008.

A third challenge is currently being formulated, to explore the strengths
and weaknesses of the OPM.



The Second Provenance Challenge and the OPM

The Second Provenance Challenge took place over the period
November 2006 to June 2007, and explored the extent to which the
provenance information generated by various systems was
intertranslatable.

A workshop at Salt Lake City in August 2007 discussed the results of
the second challenge, and led to the drafting of the Open Provenance
Model (OPM), as a means “to allow provenance information to be
exchanged between systems, by means of a compatibility layer based
on a shared provenance model”. Version 1.01 of the OPM was
released in July 2008.

A third challenge is currently being formulated, to explore the strengths
and weaknesses of the OPM.



The Second Provenance Challenge and the OPM

The Second Provenance Challenge took place over the period
November 2006 to June 2007, and explored the extent to which the
provenance information generated by various systems was
intertranslatable.

A workshop at Salt Lake City in August 2007 discussed the results of
the second challenge, and led to the drafting of the Open Provenance
Model (OPM), as a means “to allow provenance information to be
exchanged between systems, by means of a compatibility layer based
on a shared provenance model”. Version 1.01 of the OPM was
released in July 2008.

A third challenge is currently being formulated, to explore the strengths
and weaknesses of the OPM.



S AUDIT

One of the pioneer provenance-aware applications was S, with its
AUDIT facility: the classic paper Auditing of Data Analyses2 by Becker
and Chambers is widely cited in the P-A literature.

An S session would maintain an audit file, recording all the top-level
commands issued in this and previous sessions within the workspace,
and identifying the data objects read and modified by the commands.

2SIAM J. Sci. Stat. Comput. 9 [1988] pp. 747–60



An S Audit File

#~New session: Time: 542034997; Version: "S Tue Mar 3 10:14:20 EST 1987"

m<−matrix(read("brain.body"),byrow=T,ncol=2)

#~put "/usr/rab/.Data/m" 542035057 "structure"

brain<−m[,1]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/brain" 542035066 "real"

body<−m[,2]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/body" 542035072 "real"

plot(body,brain)

#~get "/usr/rab/.Data/body" 542035072 "any"

#~get "/usr/rab/.Data/brain" 542035066 "any"

(from Becker and Chambers [1988] p. 754, slightly edited)



An S Audit File

#~New session: Time: 542034997; Version: "S Tue Mar 3 10:14:20 EST 1987"

m<−matrix(read("brain.body"),byrow=T,ncol=2)

#~put "/usr/rab/.Data/m" 542035057 "structure"

brain<−m[,1]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/brain" 542035066 "real"

body<−m[,2]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/body" 542035072 "real"

plot(body,brain)

#~get "/usr/rab/.Data/body" 542035072 "any"

#~get "/usr/rab/.Data/brain" 542035066 "any"

Recorded S command

(from Becker and Chambers [1988] p. 754, slightly edited)



An S Audit File

#~New session: Time: 542034997; Version: "S Tue Mar 3 10:14:20 EST 1987"

m<−matrix(read("brain.body"),byrow=T,ncol=2)

#~put "/usr/rab/.Data/m" 542035057 "structure"

brain<−m[,1]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/brain" 542035066 "real"

body<−m[,2]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/body" 542035072 "real"

plot(body,brain)

#~get "/usr/rab/.Data/body" 542035072 "any"

#~get "/usr/rab/.Data/brain" 542035066 "any"

Object read by command Time of object creation

(from Becker and Chambers [1988] p. 754, slightly edited)



An S Audit File

#~New session: Time: 542034997; Version: "S Tue Mar 3 10:14:20 EST 1987"

m<−matrix(read("brain.body"),byrow=T,ncol=2)

#~put "/usr/rab/.Data/m" 542035057 "structure"

brain<−m[,1]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/brain" 542035066 "real"

body<−m[,2]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/body" 542035072 "real"

plot(body,brain)

#~get "/usr/rab/.Data/body" 542035072 "any"

#~get "/usr/rab/.Data/brain" 542035066 "any"

Object created by command Time of object creation

(from Becker and Chambers [1988] p. 754, slightly edited)



An S Audit File

#~New session: Time: 542034997; Version: "S Tue Mar 3 10:14:20 EST 1987"

m<−matrix(read("brain.body"),byrow=T,ncol=2)

#~put "/usr/rab/.Data/m" 542035057 "structure"

brain<−m[,1]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/brain" 542035066 "real"

body<−m[,2]

#~get "/usr/rab/.Data/m" 542035057 "any"

#~put "/usr/rab/.Data/body" 542035072 "real"

plot(body,brain)

#~get "/usr/rab/.Data/body" 542035072 "any"

#~get "/usr/rab/.Data/brain" 542035066 "any"

(from Becker and Chambers [1988] p. 754, slightly edited)

S was provided with a tool S AUDIT which examined an audit file, and
could be used to interrogate the provenance of particular data objects,
show which statements used particular objects, or generate a script to
recreate a particular object.



The CXXR Project

The aim of the CXXR project3 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
The primary interfaces between the interpreter and C and Fortran
code are as far as possible unaffected.

Work started in May 2007, shadowing R-2.5.1; the current release
(tested on Linux and Mac OS X) shadows R-2.7.1.

CXXR is intended to make it easier to produce experimental versions
of the R interpreter.

3www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr


The CXXR Project

The aim of the CXXR project3 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
The primary interfaces between the interpreter and C and Fortran
code are as far as possible unaffected.

Work started in May 2007, shadowing R-2.5.1; the current release
(tested on Linux and Mac OS X) shadows R-2.7.1.

CXXR is intended to make it easier to produce experimental versions
of the R interpreter.

3www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr


The CXXR Project

The aim of the CXXR project3 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
The primary interfaces between the interpreter and C and Fortran
code are as far as possible unaffected.

Work started in May 2007, shadowing R-2.5.1; the current release
(tested on Linux and Mac OS X) shadows R-2.7.1.

CXXR is intended to make it easier to produce experimental versions
of the R interpreter.

3www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr


Rchive

The primary motivation behind CXXR is to produce a variant of the
R interpreter—designated Rchive—which tracks the provenance of
the objects it manipulates.

Rchive doesn’t exist yet: we’re at the requirements-gathering
stage. . . and that’s the purpose of this talk.



Provenance Priorities for Rchive

In decreasing order of priority:

1 Preserve all primary data . . . and the associated metadata.
2 Be able to identify all R objects derived in some way from a given

object. (Remember that R objects include functions as well as
data.)

3 Be able to reproduce a derived object from its precursors (possibly
having corrected or adjusted these precursors).



Provenance Priorities for Rchive

In decreasing order of priority:

1 Preserve all primary data . . . and the associated metadata.
2 Be able to identify all R objects derived in some way from a given

object. (Remember that R objects include functions as well as
data.)

3 Be able to reproduce a derived object from its precursors (possibly
having corrected or adjusted these precursors).



Provenance Priorities for Rchive

In decreasing order of priority:

1 Preserve all primary data . . . and the associated metadata.
2 Be able to identify all R objects derived in some way from a given

object. (Remember that R objects include functions as well as
data.)

3 Be able to reproduce a derived object from its precursors (possibly
having corrected or adjusted these precursors).



A Changed Scene

Things have moved on since the early days of S. In making R
provenance-aware, we need to take account of the following:

The vast number of add-on packages and libraries now available
for R (including packages originally designed for S/S-plus);
Source data are increasingly derived from databases and online
resources rather than local files;
It is desirable to be interoperable with other provenance-aware
applications.



A Changed Scene

Things have moved on since the early days of S. In making R
provenance-aware, we need to take account of the following:

The vast number of add-on packages and libraries now available
for R (including packages originally designed for S/S-plus);
Source data are increasingly derived from databases and online
resources rather than local files;
It is desirable to be interoperable with other provenance-aware
applications.



A Changed Scene

Things have moved on since the early days of S. In making R
provenance-aware, we need to take account of the following:

The vast number of add-on packages and libraries now available
for R (including packages originally designed for S/S-plus);
Source data are increasingly derived from databases and online
resources rather than local files;
It is desirable to be interoperable with other provenance-aware
applications.



The Open Provenance Model
Entities

The OPM represents provenance as a directed acyclic graph, with the
following node types:

Artifact Immutable piece of state, which may have a physical
embodiment in a physical object, or a digital
representation in a computer system.

Process Action or series of actions performed on or caused by
artifacts, and resulting in new artifacts.

Agent Contextual entity acting as a catalyst of a process,
enabling, facilitating, controlling, affecting its execution.

(OPM v1.01)



The Open Provenance Model
Example

(from OPM v1.01)

Note that the ‘100g
butter’ node refers to
a particular 100
grams of butter, and
so on: we want, for
example, to be able
to trace the cakes
made from a rancid
pack of butter.



OPM Entities in Rchive

Artifact In Rchive, all R objects (as listed by ls() or objects())
will be considered to be artifacts. NB: This includes
functions.

Process In Rchive, a top-level R command invocation will be
considered to be a process.

Agent In Rchive, each process will be associated with a user
name.



OPM Entities in Rchive

Artifact In Rchive, all R objects (as listed by ls() or objects())
will be considered to be artifacts. NB: This includes
functions.

Process In Rchive, a top-level R command invocation will be
considered to be a process.

Agent In Rchive, each process will be associated with a user
name.



OPM Entities in Rchive

Artifact In Rchive, all R objects (as listed by ls() or objects())
will be considered to be artifacts. NB: This includes
functions.

Process In Rchive, a top-level R command invocation will be
considered to be a process.

Agent In Rchive, each process will be associated with a user
name.



The Open Provenance Model
Annotated edges

(from OPM v1.01)



The Open Provenance Model
Annotated edges

(from OPM v1.01)



The Open Provenance Model
Annotated edges

(from OPM v1.01)

OPM recommends that the edges associated with a particular process be
labelled with distinct roles: R in the edge annotations. But it’s doubtful
whether Rchive will be able to make meaningful use of roles.



Architecture of Rchive

R Interpreter

Normal

operation

R objects

in memory

Whereas S (and S-plus)
store data objects in
individual files, R
normally stores data
objects in memory:
typically a workspace file
(.RData) containing all
the data objects is loaded
at the start of a session
and saved at the end.



Architecture of Rchive

R Interpreter

Normal

operation

R objects

in memory

Versioned

Object

Repository

(CXXR)

save

load

Control

In Rchive, the .RData
file will be replaced by a
versioned object
repository.



Save Logic

When Rchive is requested to save an object, x say, it saves the
following to the versioned object repository:

x itself, along with a ‘universally unique identifier’ (UUID)
identifying this particular version of x.
An audit trail (à la S AUDIT) tracing the R commands used to
derive x from versioned objects already in the repository.
Any tainted objects encountered on that audit trail.



Save Logic

When Rchive is requested to save an object, x say, it saves the
following to the versioned object repository:

x itself, along with a ‘universally unique identifier’ (UUID)
identifying this particular version of x.
An audit trail (à la S AUDIT) tracing the R commands used to
derive x from versioned objects already in the repository.
Any tainted objects encountered on that audit trail.



Save Logic

When Rchive is requested to save an object, x say, it saves the
following to the versioned object repository:

x itself, along with a ‘universally unique identifier’ (UUID)
identifying this particular version of x.
An audit trail (à la S AUDIT) tracing the R commands used to
derive x from versioned objects already in the repository.
Any tainted objects encountered on that audit trail.



Tainted Objects

An object created or modified by a top-level R command is considered
tainted if it cannot be reliably reproduced from its precursors simply by
rerunning the command.

This may be because:

The command invokes non-R code (e.g. C or FORTRAN) whose
provenance cannot be accredited;
The command involves user interaction (e.g. edit() or
identify()), or accesses some external resource which does
not perform provenance-tracking in an accredited way.
The command explicitly marks its output as tainted.

(This approach reflects the handling of ‘external services’ within the
NRC dataflow model of Hidders et al. [2007].)



Tainted Objects

An object created or modified by a top-level R command is considered
tainted if it cannot be reliably reproduced from its precursors simply by
rerunning the command.

This may be because:

The command invokes non-R code (e.g. C or FORTRAN) whose
provenance cannot be accredited;
The command involves user interaction (e.g. edit() or
identify()), or accesses some external resource which does
not perform provenance-tracking in an accredited way.
The command explicitly marks its output as tainted.

(This approach reflects the handling of ‘external services’ within the
NRC dataflow model of Hidders et al. [2007].)



R Packages

By default, any data objects that result from executing non-R code
within loaded packages will be regarded as tainted.

(Possibly this will apply even for data objects generated by R code
within packages.)

A priority is to devise a mechanism whereby a package can present
credentials to Rchive, in the light of which Rchive may decide to a treat
the package (or some of its components) as providing a durable
resource, i.e. a resource whose behaviour can be reliably reproduced
in the future.

If a package component is considered to be a durable resource, then
data objects generated using it need not be marked as tainted.



R Packages

By default, any data objects that result from executing non-R code
within loaded packages will be regarded as tainted.

(Possibly this will apply even for data objects generated by R code
within packages.)

A priority is to devise a mechanism whereby a package can present
credentials to Rchive, in the light of which Rchive may decide to a treat
the package (or some of its components) as providing a durable
resource, i.e. a resource whose behaviour can be reliably reproduced
in the future.

If a package component is considered to be a durable resource, then
data objects generated using it need not be marked as tainted.



Data from External Sources

By default, any data obtained from a source outside R (e.g. a local file
or an online database) will be regarded as tainted, and will be
preserved as part of the audit trail of any saved object that depends on
it.

However, it is not the raw data that is preserved, but only the output of
the top-level R command that accesses the resource. This allows
some preliminary data condensation to take place.

As with packages, it would be helpful to have a mechanism to
designate an external data source (e.g. the Dataverse Network
Project4) as a durable resource.

4http://thedata.org



Data from External Sources

By default, any data obtained from a source outside R (e.g. a local file
or an online database) will be regarded as tainted, and will be
preserved as part of the audit trail of any saved object that depends on
it.

However, it is not the raw data that is preserved, but only the output of
the top-level R command that accesses the resource. This allows
some preliminary data condensation to take place.

As with packages, it would be helpful to have a mechanism to
designate an external data source (e.g. the Dataverse Network
Project4) as a durable resource.

4http://thedata.org



Data from External Sources

By default, any data obtained from a source outside R (e.g. a local file
or an online database) will be regarded as tainted, and will be
preserved as part of the audit trail of any saved object that depends on
it.

However, it is not the raw data that is preserved, but only the output of
the top-level R command that accesses the resource. This allows
some preliminary data condensation to take place.

As with packages, it would be helpful to have a mechanism to
designate an external data source (e.g. the Dataverse Network
Project4) as a durable resource.

4http://thedata.org



Capturing Provenance Data
Possible approaches

How can we retrofit a provenance-tracking capability to the
R interpreter?



Capturing Provenance Data
Possible approaches

If we pursue the cake-making analogy, there are (at least) two possible
approaches to keeping track of provenance:

Instrument the recipes:
i.e. modify the recipes:

to ensure that notes are kept
of exactly which ingredients
were used,
to provide the resulting cake
with a unique identifier, and
to record that identifier.

Instrument the larder:
While a recipe is under
preparation:

take a note of exactly which
ingredients are removed from
the larder (or fridge, etc.),
ensure that any cakes etc.
newly inserted into the larder
have a unique identifier, and
associate that identifier with
the current recipe invocation.



Capturing Provenance Data
Possible approaches

If we pursue the cake-making analogy, there are (at least) two possible
approaches to keeping track of provenance:

Instrument the recipes:
i.e. modify the recipes:

to ensure that notes are kept
of exactly which ingredients
were used,
to provide the resulting cake
with a unique identifier, and
to record that identifier.

Instrument the larder:
While a recipe is under
preparation:

take a note of exactly which
ingredients are removed from
the larder (or fridge, etc.),
ensure that any cakes etc.
newly inserted into the larder
have a unique identifier, and
associate that identifier with
the current recipe invocation.



Approaches to Capturing Provenance Data
Pros and cons

Instrument the recipes:
+ Instrumentation can record exactly

the information of practical
importance;

+ OPM roles can be clearly
distinguished, and labelled in a
meaningful way.

− There are an awful lot of recipes (i.e.
R functions) to instrument!

Instrument the larder:

− Possibility of overwhelming the
provenance record with dependency
data of little practical significance;

− Difficult to identify OPM roles
unambiguously, and to label them
meaningfully.

+ Instrumentation needs to be applied
only in a few places. (In R, certain
environments, including the global
environment.)

− Recipes may be able to modify the
contents of the larder without
‘opening the door’ (i.e. in a way that
isn’t evident to the instrumentation).



Approaches to Capturing Provenance Data
Pros and cons

Instrument the recipes:
+ Instrumentation can record exactly

the information of practical
importance;

+ OPM roles can be clearly
distinguished, and labelled in a
meaningful way.

− There are an awful lot of recipes (i.e.
R functions) to instrument!

Instrument the larder:

− Possibility of overwhelming the
provenance record with dependency
data of little practical significance;

− Difficult to identify OPM roles
unambiguously, and to label them
meaningfully.

+ Instrumentation needs to be applied
only in a few places. (In R, certain
environments, including the global
environment.)

− Recipes may be able to modify the
contents of the larder without
‘opening the door’ (i.e. in a way that
isn’t evident to the instrumentation).



Proposed Approach

Instrument R functions that directly modify the contents of an R
environment. This includes assignment and related functions, and
functions with side effects. In other words, the OPM
wasGeneratedBy relation is captured by ‘instrumenting the
recipe’.
Detect which objects are read by a top-level R command by
instrumenting the global environment (and some others). In other
words, the OPM used relation is captured by ‘instrumenting the
larder’.



Proposed Approach

Instrument R functions that directly modify the contents of an R
environment. This includes assignment and related functions, and
functions with side effects. In other words, the OPM
wasGeneratedBy relation is captured by ‘instrumenting the
recipe’.
Detect which objects are read by a top-level R command by
instrumenting the global environment (and some others). In other
words, the OPM used relation is captured by ‘instrumenting the
larder’.



Unresolved Issues and Wishlist

How to identify and handle provenance-trusted packages.
How to identify and handle other external resources which are
trusted to be durable and maintain provenance information.
Provision and handling of annotations.
Handling of search-list effects in generating replay scripts.
The interface to provenance information from within R itself.
Tracking the provenance of graphical objects (plots, etc.).
Shared access to the object repository?


