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Abstract. Electroencephalogram (EEG) provides a non-invasive way
to analyze brain activity. Blinking and movement of the eyes causes a
strong electrical activity that can contaminate EEG recordings, partic-
ularly around the forehead but also as far as in occipital areas. Removal
of such ocular artifacts is a considerable signal processing problem, since
those artifacts overlap in frequency domain with EEG. In this paper we
propose a signal reconstruction method based on a time frequency anal-
ysis tool known as the Hilbert-Huang spectrum. We demonstrate how
our reconstruction scheme can be successfully applied to contaminated
EEG data for the purposes of removing unwanted ocular artefacts.

1 Introduction

EEG is becoming a very popular brain activity analysis tool due to the low cost
and easy application. Longer EEG recording experiments usually suffer from
strong artifacts coming from muscle activity of which ocular artifacts, often
recorded as reference in from of electro–oculorgrams (EOG), are the most com-
mon. The problem of EOG interference removal cannot be simply filtered out
with conventional methods due frequency overlapping between EOG and EEG.
We propose an adaptive approach based on the empirical mode decomposition
(EMD), first introduced in [1], which is a fully data driven method for decom-
posing mutilticomponent signals into a set of amplitude & frequency modulated
(AM/FM) components known as intrinsic mode functions (IMFs). The IMFs
act as locally orthogonal “basis functions” for the data, unlike other signal de-
composition techniques that map the signal space onto a space spanned by a
predefined basis. EMD has become an established tool in analysing real world
data such as nonlinear and non-stationary signals with a number of important
applications in signal processing. By definition, the IMF is a function for which
the number of extrema and the number of zero crossings differ by at most one,
and the mean of the two envelopes associated with the local maxima and local



minima is approximately zero. The decomposition of a signal x(k) is given by

x(k) =

N
∑

i=1

ci(k) + r(k) (1)

where ci(k)N

i=1
is the set of IMFs and r(k) is the residual. The first IMF is

obtained as follows [1]: (i) Let x̃(k) = x(k); (ii) Identify all local maxima and
minima of x̃(k); (iii) Find an “envelope,” emin(k) that interpolates all local
minima (emax(k) maxima respectively); (iv) Extract the “detail,” c(k) = x(k)−
(1/2)(emin(k) + emax(k)); (v) Let x̃(k) = c(k) and go to step 2); repeat until
c(k) becomes an IMF. Once the first IMF is obtained, the procedure is applied
to the residual r(k) = x(k) − c(k) to obtain the second IMF. In this way, the
procedure is applied recursively to obtain all the IMFs. By definition, the IMFs
are monocomponent signals and their instantaneous frequency can therefore be
determined as defined by the Hilbert spectrum. Combining the instantaneous
frequencies and corresponding instantaneous amplitudes of the IMFs, a time-
frequency distribution known as the Hilbert-Huang spectrum can be constructed.

2 Hilbert-Huang Reconstruction

We now consider a unique reconstruction method based on the Hilbert-Huang
spectrum which we refer to as Hilbert-Huang (HH) reconstruction. Given a signal
d(k), we propose to remove any unwanted frequency information and construct a

signal, d̂(k), that retains only desired frequency characteristics from d(k). This is
achieved by first decomposing d(k) into a set of N IMFs, ci(k), and determining
the instantaneous frequencies. fi(k) denotes the instantaneous frequency of the
ith IMF at time instant k. Given the scenario where it is required to retain
frequencies greater that flow and lower than fhigh, we have the following

c̃i(k) =

{

ci(k) if flow < fi(k) < fhigh

0 otherwise
(2)

Essentially all values of ci(k) that do not fall within the desired frequency range
are set to zero. We can construct d̃(k) by summation of the IMF values that fall
within the desired frequency range.

d̃(k) =

N
∑

i=1

c̃i(k) (3)

However, d̃(k) is not a suitable solution on its own. Often it is the case that the
instantaneous frequency of a particular IMF may intermittently become located
within the desired frequency range. This has the effect of introducing unwanted
discontinuities in d̃(k) as certain IMFs are sparsely included in the summation
process described above (4). These discontinuities have the potential to undo
the goal of this report as their existence can reintroduce spurious frequency



components in the data. To cater for this problem, we propose to determine the
best approximation to d̃(k) using the block based solution presented in [2]. The

approximation, d̂(k), is achieved by linear summation of the original set of IMFs
and residue using an optimally defined (N + 1) × 1 weight vector, w.

d̂ = w
T
I (4)

where {·}T denotes the transpose of a vector and I is a matrix containing the
original IMFs and the residue (5).

I =















c1(1) c1(2) . . . c1(M)
c2(1) c2(2) . . . c2(M)

...
...

...
cN (1) CN (2) . . . cN (M)
r(1) r(2) . . . r(M)















(5)

Letting D = II
T , we can determine the optimal weight vector by the following

w = D
−1

Id̃. (6)

3 Results and Conclusions

We applied the HH reconstruction algorithm described above to several sets of
EEG data contaminated by ocular artefacts. Since ocular artefacts occupy the
critical low frequency band of EEG in a range 0 − 13Hz [3] we proposed the
carefully designed algorithm to retain the EEG important information within
the above mentioned range while removing the ocular artifacts. The EEG data
used was sampled at a rate of 512Hz and recorded from electrodes Fp1, Fp2, C6,
C5, O1, O2 with ground placed over Cz and additional bipolar channels vEOG,
hEOG as in standard extended 10/20 EEG system. The results are displayed in
Fig. 1, and Fig. 2 respectively. To demonstrate how the algorihtm retains EEG
information within frequency range originally contaminated by EOG we present
time-frequency representations in forms of Morlet spectrograms in Fig. 2.
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Fig. 1. The results of the proposed approach to remove EOG artifacts. The top panel
presents the recorded EEG at Fp1 electrode with very strong EOG artifact which is
also presented as vEOG channel in second from the top panel. The third from the top
panel presents estimated EOG interference. The resulting and cleaned EEG is depicted
in bottom panel, where no remains of EOG artifacts can be spotted.

Morlet scalogram of recorded Fp1 EEG with strong EOG component
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Morlet scalogram of Fp1 EEG after EOG artifact removal
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Fig. 2. Morlet spectrogram of the EOG contaminated EEG from the electrode Fp1

is shown in top panel. The very strong low frequency artifact from EOG is visible
only around 0Hz and the rest of the spectrum is useless for analysis. The bottom panel
presents the EOG removed EEG showing a very rich activity across the whole frequency
range. It is important to note, that the proposed adaptive EOG removal approach
does not damage low frequencies content, what usually happens with application of
conventional filtering techniques.


