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Energy efficiency has become one of the most important challenges in designing future
computing systems, and the storage system is one of the largest energy consumers within
them. This paper proposes an Energy Efficient Disk (EED) drive architecture which inte-
grates a relatively small-sized NAND flash memory into a traditional disk drive to explore
the impact of the flash memory on the performance and energy consumption of the disk.
The EED monitors data access patterns and moves the frequently accessed data from the
magnetic disk to the flash memory. Due to the data migration, most of the data accesses
can be satisfied with the flash memory, which extends the idle period of the disk drive
and enables the disk drive to stay in a low power state for an extended period of time.
Because flash memory consumes considerably less energy and the read access is much fas-
ter than a magnetic disk, the EED can save significant amounts of energy while reducing
the average response time. Real trace driven simulations are employed to validate the pro-
posed disk drive architecture. An energy coefficient, which is the product of the average
response time and the average energy consumption, is proposed as a performance metric
to measure the EED. The simulation results, along with the energy coefficient, show that
the EED can achieve an 89.11% energy consumption reduction and a 2.04% average
response time reduction with cello99 trace, a 7.5% energy consumption reduction and a
45.15% average response time reduction with cello96 trace, and a 20.06% energy consump-
tion reduction and a 6.02% average response time reduction with TPC-D trace, respectively.
Traditionally, energy conservation and performance improvement are contradictory. The
EED strikes a good balance between conserving energy and improving performance.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Energy saving has become one of the most important challenges in designing future computing systems. The increasing
demands for higher performance, versatile functionality, and a better user interfaces have been escalating energy consump-
tion at an unprecedented rate [12].

Over the last decade, many research efforts have been invested in energy conservation of disk drives for mobile systems,
because the energy consumed by these disk drives determines the battery life of the system. Douglis et al. [8] employed a
trace driven simulation to evaluate different energy saving policies. They found that threshold policies which spin down the
disk drive after 1–10 s come close to the energy consumption of the optimal off-line algorithm. Their results also indicated
that in some cases the threshold algorithms cause increased system delay. Lu and Micheli [26] proposed an adaptive algo-
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rithm for dynamic power management. By adaptively adjusting the prediction of future requests, the algorithm can predict
session length and spin down components between sessions to save energy. Compared with other approaches, the algorithm
can reduce energy consumption with less impact on performance and reliability. Li et al. [24] performed a quantitative anal-
ysis of the potential costs and benefits of spinning down disk drives. They concluded that almost all the energy consumed by
a disk drive can be conserved with little affect on performance. Helmbold et al. [16] used a simple machine learning algo-
rithm which adapts to the pattern of recent disk activity to exploit the burst nature of user activity. The algorithm performs
better than all other known algorithms, even outperforming the best fixed time-out mechanism. Dempsey [46] is a disk sim-
ulation environment which includes accurate modeling of disk energy consumption. Dempsey attempts to accurately esti-
mate the energy consumption of specific disk stages including seeking, rotation, reading, writing, and idle periods. The
results show that accurate modeling of disk behaviours during idle periods is critical to the accuracy of any energy model.

Recently, the research community has been very active in the area of energy conservation for high-end storage systems.
Fan et al. [10] investigated the power consumption of the major components within a typical server. They reported that the
peak power of one X86 CPU, one Motherboard, one PCI expansion slot, one IDE disk drive, one fan, and one DDR memory are
40 W, 25 W, 25 W, 12 W, 10 W, 9 W, respectively. From a power standpoint, it seems one disk drive is not a problem. Even
the addition of several dozen disk drives would hardly be a concern. However, if hundreds or thousands of disk drives are put
together, it will quickly become a big headache. One example shows the storage subsystem accounting for 27% of the energy
consumed in a data centre [33]. To worsen the situation, this fraction is swiftly increasing as storage requirements are rising
by 60% annually [29]. New data centres in the US were projected to demand 5GW of power (which is about 10% of the cur-
rent generating capacity of California) and cost $4 billion/year to power in 2005 [4]. Popular Data Concentration (PDC) [32]
migrates frequently accessed data to a subset of the disk drives. The goal is to skew the load towards a few of the disks, so
that others can be transitioned to low power states. This policy can save energy only when the workload on the server is
extremely low, but real-world workloads exhibit complex behaviour which is difficult to predict. Massive Array of Idle Disks
(MAID) [7] uses a few additional cache disks running in the active state to hold recently accessed data blocks. Other disks can
be put in low power state due to their extended idle periods. MAID is ideally suited for the storage of data with write-once/
read-occasionally access patterns such as remote backup. However, RAID architectures are aimed primarily at achieving high
performance by using multiple disk drives in parallel. MAID trades parallelism for energy conservation by using a few cache
disk drives. Li and Wang [25] studied several redundancy based dynamic I/O request scheduling and cache management pol-
icies at the RAID controller level. The policies power down the redundant disks in RAID 1 and RAID 5 to save energy. Son et al.
[42] proposed and evaluated a profile driven disk layout scheme which determines the disk number, strip unit, etc. to reduce
energy consumption. Hibernator [47] is a disk array energy management system which combines several techniques (e.g.
disks that can spin at different speeds, an approach for dynamically deciding which disk drive should spin at which speed,
efficient ways to migrate the right data to an appropriate speed disk drive automatically, and automatic performance boosts
if there is a risk that performance goals might not be met due to disk power management) to save energy while meeting
performance goals.

There are a few isolated contributions which focus on the energy conservation of disk drive architecture in the commu-
nity. Dynamic Rotations Per Minute (DRPM) [14] is a dynamic multi-speed disk model which spins server disks at different
speeds in correlation with workloads to save energy without reducing performance. Carrera et al. [2] compared several tech-
niques used for energy conservation. They discovered that only the multi-speed disk approach can really conserve energy on
network servers. Active Disk [34] was first proposed to take advantage of the processing power of individual disk drives to
run application level code. Having moving portions of an application’s process execute directly on the disk drives can dra-
matically reduce data traffic. Due to the heat dissipation and thermal constraints, it is very difficult to further improve the
data rate of disk drives. Like the Active Disk, Gurumurthi [15] suggested providing more powerful processors inside disk
drives to expand computational capabilities, thus reducing the requirement of data rate to overcome the thermal constraints
and boost performance.

Recently, a number of non-volatile storage technologies are emerging and bring opportunities to the architecture design
of disk drives. Flash memory is a non-volatile memory which can be electrically erased and reprogrammed. Its major advan-
tages including low energy consumption, non-volatility, and high performance have made it likely to replace disk drives in
more and more systems, where size, energy, or performance are important [21]. Magnetic Random Access Memory (MRAM)
combines a magnetic device with standard silicon based microelectronics to obtain the combined attributes of non-volatility,
high performance, fast programming and unlimited program endurance. It provides random access with no refresh. MRAM is
supposed to achieve the density of flash memory but at significantly faster write speeds and with unlimited endurance [45].
MicroElectroMechanical System (MEMS) is a very small-scale mechanical device which slides, bends, and deflects in re-
sponse to electrostatic, electromagnetic, and external environmental forces. MEMS based storage is a non-volatile storage
technology that merges magnetic recording material with thousands of probe based recording heads to provide online stor-
age [40].

In this paper, we propose an Energy Efficient Disk (EED) drive architecture which can reduce energy consumption signif-
icantly, while also improving performance. The architecture integrates a relatively small flash memory into a traditional disk
drive and periodically moves the frequently accessed data from the slow magnetic disk to the fast flash memory when the
disk is idle. Because most of the data accesses can be satisfied with the flash memory and the flash memory uses consider-
ably less energy than the traditional disk drive, the disk drive can remain in the low power state much longer than
the traditional disk drive, thus conserving significant amounts of energy. Due to the fast access of the flash memory, the
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architecture can also improve performance. Trace driven simulation validates that the architecture is effective in both energy
conservation and performance improvement.

The remainder of this paper is organized as follows. Section 2 introduces the background. The architecture of the EED is
illustrated in Section 3. The implementation of EED is depicted in Section 4. Section 5 evaluates the EED architecture through
real trace driven simulation. Section 6 concludes the paper with remarks on its contributions. There is also a brief discussion
of the work and indications of future research in Section 6.
2. Background

2.1. Energy conservation

Disk drives have two components that contribute to their overall energy demands. The first one is a 12 V spindle motor
used to spin the platters and drive the head motors. The second one is a 5 V supply used to power the analog-to-digital
converters, servo-control DSP’s and interface logic [7]. Due to the mechanical nature, the hardware support for disk energy
conservation has not been changed too much over the years. Most modern disk drives have four power states; namely
active, idle, standby, and sleep. Disk drives only work in active state. When a data access is completed and there is no
succeeding request, the disk drive is transferred to the idle state where the disk platters are still spinning, but the elec-
tronics may be partially un-powered, and the heads may be parked or unloaded. If the disk drive receives a request when
it is in an idle state, the drive will be transferred to the active state. If the disk drive remains in the idle state for a certain
amount of time, it transfers into the standby state where the disk platters are spun down and the head is moved off the
disk. The sleep state powers off all remaining electronics. The disk drive is transferred back to the active state when a new
request arrives [27,30].

Disk drives in standby state or sleep state use considerably less energy than disk drives in the active state. Many research
efforts have gone into investigating the energy consumption of disk drives by taking advantage of this feature [8,16,24,26].
Generally, the existing approaches employed to save energy of disk drives can be classified into four categories [8,12,26]. The
first one is a simple timeout strategy which has gained wide popularity and is currently implemented in many operating
systems. Once a disk drive is idle for a specific period of time, which is longer than some given timeout threshold, the disk
is spun down in an effort to save energy. Upon the arrival of a new request, the disk is spun up to serve the request. The
timeout strategy offers good accuracy, but it wastes energy when the disk is waiting for the timeout period to expire. The
second one is a dynamic prediction which is based on the behaviours of applications. For example, a series of events that
are likely to happen again in the future. The method shuts down the disk drive immediately to eliminate the waiting time
of the timeout strategy. However, so far it is less accurate than the simple timeout mechanism. The third one is a stochastic
mechanism. The problem is that the approach usually requires offline pre-processing and the prediction could be inaccurate
due to the fluctuant data access pattern. The last one is application aware power management. The mechanism can have very
accurate information of the data access pattern. Unfortunately, it requires modifying the existing applications, which makes
it impractical.

The above methods can incur a significant energy cost and time penalty as the disk platters have to be spun up to full
speed and the heads have to be moved back before a request can be served, which requires servo calibration to accurately
track the head as it moves over the drive. To justify this penalty, the energy saved by putting the disk in standby or sleep
state has to be greater than the energy needed to spin it up again, and the disk has to stay in the low power state for a suf-
ficiently long period of time to compensate for the energy overhead [47]. An important issue is that the methods cannot be
applied directly to server disk drives, since the spinning down and spinning up time of the server disk drives are much longer
than that of the desktop and laptop. Due to the intensive workload, it is also very difficult to find an idle interval which is
long enough to spin down the server disk drives. Another important concern is that frequently spinning up and spinning
down may reduce the effective life span of the drives. Therefore, a good energy conservation method should be able to strike
a balance between energy consumption, performance, and life span of the disk drive.

2.2. Data access pattern

Data access patterns are a measure of how well data can be selected, retrieved, compactly stored, and reused for subse-
quent accesses. Data access patterns such as temporal locality and spatial locality normally have a significant impact on the
storage system performance. Understanding the nature of data access patterns is crucial to properly optimizing and design-
ing storage systems.

Staelin and Garcia-Molina [43] observed that there was a very high locality of reference on extremely large file systems.
Some files in the file system have a much higher skew of accesses than others. Gomez and Santonja [13] found that some of
the data blocks are extremely hot and popular, but others are rarely or never accessed in terms of the investigation of several
real traces. Cherkasova and Gupta [5] reported that 14–30% of the media files accessed on the media server account for 90%
of the media sessions and 92–94% of the bytes transferred. The files are viewed by 96–97% of the unique clients. They also
reported that 16–19% of the media files are accessed only once. Cherkasova and Ciardo [6] addressed the characterization of
web workloads, which shows that web traffic exhibits a strong concentration of references: 10% of the files accessed on the
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server typically account for 90% of the server requests and 90% of the bytes transferred. The above works indicate that the
skew is a normal pattern of I/O workloads which cover diverse applications. The skew of accesses is often called the 90/10
rule, or the 80/10 rule. The 90/10 rule indicates that 90% I/O accesses accumulate in 10% storage capacity. The percentages
are applied recursively. For example, 10% of the 10% storage resources serve 90% of the 90% I/O accesses [11].

3. Architecture overview of the EED

According to the discussion in Section 2.1, the key principle of disk energy conservation is accurately predicting the idle
time which can be employed to transfer the disk to low power state, or extending the length of disk idle phases and forcing
transitions to standby state when this is likely to save significant amounts of energy. We employ the second method to de-
sign the EED drive architecture, which can conserve significant amounts of energy while improving performance.

The disk drive has long been a performance bottleneck of computer systems. Many research efforts have been devoted to
alleviating this bottleneck. One of the most effective approaches is employing disk cache to reduce the number of disk I/Os
[20,41]. Almost all modern disks employ a small amount of on-board disk cache (volatile SDRAM) to speed up data accesses
(e.g. high performance disks normally employs 16 MB of disk cache). Disk cache can dramatically improve the performance
of disk I/O by avoiding slow mechanical latencies if the data accesses are satisfied by the disk cache (cache hit), because
accessing a byte of data in cache can be thousands of times faster than accessing a byte on the magnetic disk media. Another
important effect is that the disk cache has an impact on slowing down the request rate which goes to the magnetic disk med-
ia. The effect can enlarge the interval between requests, thus extending the idle time. Due to the decreased miss ratio intro-
duced by disk cache, disk performance can be improved and the idle time can be lengthened by increasing the disk cache
size. However, while the miss ratio of disk cache decreases asymptotically with increased cache size, it begins to increase
again after a certain point [41]. Therefore, we cannot improve the disk performance and extend the idle time too much
by simply increasing the cache size. Furthermore, a big volatile disk cache could decrease the data reliability, especially dur-
ing a power loss or a system crash. In addition, the cost of the disk cache would become a problem with the increase of the
cache size.

The hierarchy of storage in current computer architectures is designed to take advantage of data access locality to im-
prove overall performance. Each level of the hierarchy has higher speed, lower latency, and smaller size than lower levels.
A traditional disk drive has two levels, including a disk cache level and a magnetic disk media level. Motivated by the emerg-
ing non-volatile storage technologies (e.g. flash memory, MRAM, and MEMS which offer low energy consumption and high
performance) and the highly skewed data access pattern, we propose to design an Energy Efficient Disk drive architecture
which integrates a relatively small non-volatile memory into a traditional disk drive.

A disk drive presents itself as a sequence of Logic Block Addresses (LBA) to the above disk file system. When a request
arrives, the LBA is converted to a physical block address Cylinder/Head/Sector (CHS) to locate the data. The storage space
of the proposed EED is divided into two areas in terms of the LBA: one is the magnetic disk media, the other is the non-vol-
atile memory. Both areas are in the same linear storage space, marked by LBA, and are exclusive (see Fig. 1). For example, if
the non-volatile memory is 10 GB, and the magnetic disk media is 100 GB, the overall storage capacity of the EED will be
110 GB. The I/O requests from disk cache can go to the non-volatile memory or the magnetic media, depending on the data
location. The non-volatile memory used in EED is different from a second level cache. For the system which employs
non-volatile memory as a second level cache, the data residing in the cache has a copy stored in the magnetic disk media.
Therefore, the storage space of the cache and the magnetic disk media is inclusive. It indicates that integrating a 10 GB flash
memory into a 100 GB disk drive can only obtain 100 GB storage capacity. Thus, with the decreasing price and the increasing
capacity of flash memory, the method is not cost-effective in comparison with the EED.
(a) Data layout of the EED before data migration (b) Data layout of the EED after data migration 
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Fig. 1. Data layout and data migration of the EED.
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The EED can automatically move the frequently accessed data from the magnetic disk media to the non-volatile memory,
or move the data from the non-volatile memory to the magnetic disk media when it gets cold. Fig. 1(a) illustrates the archi-
tecture and the data layout of EED before data migration. It shows that some hot data (frequently accessed data) and cold
data (rarely accessed data) are distributed across the magnetic disk media. Fig. 1(b) depicts that the hot data is migrated
from the magnetic disk media to the non-volatile memory, and the cold data is moved from the non-volatile memory to
the disk media. Because most of the frequently accessed data can be satisfied from the non-volatile memory, due to the data
migration, the disk can be spun down and remain in the low power state much longer than a traditional disk, thus saving
significant amounts of energy. Furthermore, because the read accesses of the non-volatile memory are much faster than that
of the magnetic disk media, the architecture can improve performance as well.

4. Implementation

According to the discussion in Section 3, the system design mainly consists of four components: non-volatile memory,
frequency monitoring, data migration, and energy calculation.

4.1. Non-volatile memory

EED is a general architecture which can integrate different non-volatile storage media. Flash memory is a non-volatile
memory which can be electrically erased and reprogrammed. There are two major types of flash memory which are available
on the market following different logic schemes, namely NOR and NAND. Compared with the NOR flash memory, NAND flash
memory has faster erasing and write times, along with higher data density, which makes NAND flash a better candidate for
data storage. A NAND flash memory is composed of a fixed number of blocks, where each block consists of a number of pages
and each page has a fixed-sized main data area and a spare data area. Data on NAND flash memory is read or written at the
page level, and the erasing is performed at the block level. Flash memory is also much cheaper than volatile memories such
as SDRAM. For example, 1 Gbit of NAND flash memory costs 3.75$, while the same size of low power SRAM and fast SRAM
cost 320$ and 614$, respectively [31,38]. We adopted NAND flash as the non-volatile memory in the proposed EED. In the
following discussion, the size of non-volatile memory is 10% of the overall storage space in terms of the 90/10 rule. Therefore,
if we can integrate a 32 GB flash memory into a disk drive, the overall storage capacity of EED can reach 352 GB.

4.2. Frequency monitoring

A key component of this work is frequency tracking and identification of the most frequently accessed data blocks. Data
blocks are normally correlated by semantics. For example, a file block is correlated to its inode block. A tree node in a data-
base is correlated to its parent node and its ancestor nodes. The correlations can be used to improve the effectiveness of stor-
age caching, prefetching, data layout and disk scheduling. Many algorithms can be used to extract the correlations [17,22,23].
C-Miner [23] employs a data mining technique called frequent sequence mining to discover the block correlations in storage
systems. C-Miner is an effective method to discover block correlations, especially when such correlations are complex in nat-
ure. However, storage systems normally show very simple block correlations. Spatial locality states that the probability of
accessing a piece of data is higher if the data near it was just accessed. The spatial locality is an example of simple block
correlation. This is why sequential prefetching is employed by most current storage systems. Ruemmler and Wilkes [35] con-
firmed that the simple locality is an inherent characteristic of disk drive workloads. To keep the block correlations, we cluster
the consecutive data blocks into objects and move the objects, as opposed to moving the data blocks individually. An object
is defined as a group of consecutive blocks in terms of LBA. Block rearrangement can incur significant overhead due to quan-
tity, while object reorganization is much faster in comparison. It is also much easier to track the frequency of object use.

A data structure including the fields of original object location, current object location, frequency, and object status is
used to describe each object. The system monitors each I/O request and checks the corresponding LBA. If the LBA falls into
the address range of an object, the frequency of that object will be increased by one.

There are several typical cache replacement algorithms including Random Replacement (RR), Least Frequently Used (LFU),
and Least Recently Used (LRU) [20]. RR replaces cache lines by randomly selecting a cache line to evict. The policy is very fast,
requires no extra storage, and is the easiest to implement. However, it performs poorly because it does not take advantage of
the spatial and temporal locality. LFU is based on the access counts of the cache lines. The cache lines which have been used
least frequently are evicted. Unfortunately, the recently active but currently cold cache lines tend to remain entrenched in
the cache. Therefore, the inactive data increases the miss ratio and reduces the cache performance. LRU evicts the cache lines
used least in the recent past on the assumption that it will not be used in the near future. LRU is the most frequently used
algorithm because it is simple and easy to implement, and offers very good performance. Therefore, we use two fixed length
LRU lists including a hot list and a recent list to identify the most frequently and recently accessed objects. When the system
receives a request, the corresponding object will be recorded on the recent list. If the object on the recent list is accessed
again in a short period of time, the object will be promoted to the hot list. If the promoted object is already on the hot list,
the object will be moved to the head of the hot list. If the hot list is full, the last object on the hot list will be degraded to the
recent list. If the recent list is full, the last object on the recent list will be discarded. This method is very effective in our
experiment.
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4.3. Data migration

One of the main design issues involves reorganizing data with minimal impact on the foreground workload. A fixed reor-
ganization interval presents a trade-off. If the interval is too short, frequent data reorganization may introduce too much
overhead, thus decreasing disk performance. If the interval is too long, performance degradation will be incurred as the data
layout becomes less well adapted to the current data access patterns. Because frequency distribution is relatively stable, it is
unnecessary to keep swapping the data between the non-volatile memory and the magnetic disk media. According to an
actual trace investigation, Ruemmler and Wilkes [35] reported that requests arrive at an idle disk over 70% of the time.
Therefore, the data reorganization can be done when the disk is idle. Other methods can also be applied to do the data migra-
tion. For example, Lumb et al. [28] proposed a free block scheduling to replace a disk drive’s rotational latency with useful
background media transfers, potentially allowing background disk I/O to occur with no impact on foreground service times.
For the EED, when the disk is idle, a process running in the background examines the hot list discussed in Section 4.2. If the
objects on the hot list are stored in magnetic disk media, the objects will be moved to the non-volatile memory. If the objects
have already existed in the non-volatile memory, the object locations will be kept unchanged. When the non-volatile mem-
ory runs out of its 90% capacity, the objects which are not on the hot list will be migrated to the magnetic disk media.

After reorganizing disk layouts, we need to redirect the requests to the new physical locations. A mapping list consisting
of the data structures which are described in Section 4.2 is maintained to achieve this goal. The fields (original location and
current location) of the data structure indicate the mapping information. When a read request or a rewrite request arrives,
the system will examine the corresponding object. If the original location and the current location are equal, the request will
go to the original location. Otherwise, the request will go to the current location. When a write request arrives, if the des-
tination address is occupied by the migrated objects, the data will be written to an available location which is close to the
original location, and the information will be recorded by the corresponding data structure.

4.4. Energy conservation

As discussed in Section 2.1, though the timeout strategy does not save energy when the disk is waiting for timeout to
expire, the policy is very straightforward and provides very good accuracy. We employed the simple timeout strategy to
compare the energy consumption of the proposed EED drive architecture and a traditional disk drive. To save energy, a disk
is spun down to the standby state if it is idle for a specified period of time. It can be spun up later to the active state for serv-
ing a request. Obviously, the longer the disk remains idle, the more energy can be conserved.

5. Experimental evaluation

Disksim [1], a trace driven simulator, is augmented to measure energy consumption and performance. We integrated four
modules including non-volatile memory, frequency monitor, data migration, and energy saving into the simulator to validate
the proposed EED architecture. The parameters and characteristics of the energy saving module are listed in Table 1, which
are extracted from [2]. The simulated disk specification is based on a Quantum Atlas 10k disk with 10,025 rpm, 10,042 cyl-
inders and 6 heads. We employed the parameters of Samsung NAND flash memory (K9F6408U0A) [36] to perform the sim-
ulation. The page size (main data area with 512 Bytes) of K9F6408U0A is equal to the sector size of the disk drives. The Block
size is (8k + 256) Bytes. We adopted the random page read of 10 ls and the page program time of 200 ls to perform the read
and write tests, respectively. For simplicity, we replaced the overhead of garbage collection with a penalty. The penalty is
calculated as: penalty = (page size/block size) � (page program time).

5.1. Data access pattern

Our experiment employed three real traces including Cello99, Cello96, and TPC-D [44] to explore the impact of the EED on
energy consumption and performance. Cello99 trace contains modern workloads which were collected in 1999. Cello96 trace
was collected in 1996. The traces include accesses to 8 and 20 disks from multiple users and miscellaneous applications [23].
TPC-D is an Oracle trace of decision support processes collected in 1997. The three traces were collected from storage
Table 1
Main characteristics of power, energy, and time statistics

Parameter IBM 40GNX Flash memory

Power (Active) 3.0 W 0.03 W
Power (Idle) 0.82 W N/A
Power (Standby) 0.25 W N/A
Energy (Spin Down) 0.4 J N/A
Energy (Spin Up) 8.7 J N/A
Time (Spin Down) 0.5 s N/A
Time (Spin Up) 3.5 s N/A



Y. Deng et al. / Information Sciences 178 (2008) 4403–4417 4409
systems consisting of multiple disk drives. Each line of a trace contains disk ID information. According to the disk ID, we ex-
tracted the requests which go to a specific disk and reconstructed three new traces. Because the storage capacity of disk
drives used in Cello96 and TPC-D is smaller than the storage capacity of the disk model used in our experiment, we scaled
the request address to fit the traces in the Quantum Atlas 10k disk model. In our experiments, we only used parts of the
traces and modified the trace format to meet the requirements of Disksim. Table 2 illustrates the characteristics of the three
traces used in our experiment, where the skews of 100/3.5, 96/10, 45/10 indicate that 100%, 96%, and 45% I/Os accumulate in
3.5%, 10%, and 10% storage space, respectively. As discussed in Section 2.2, the skew is recursive. Therefore, though the sta-
tistics in this section are based on a 10 GB disk drive (Quantum Atlas 10k), we believe that the results can be applied to disk
drives which have much larger capacity (e.g. 500 GB). The inter-arrival time denotes the time between the arrival of the first
request and the arrival of the next request.

Fig. 2 shows a data access pattern of Cello99 (part of Cello99) across a Quantum Atlas 10k disk. Fig. 2(a) illustrates that
only a small number of cylinders are accessed with a high frequency (very skewed). It demonstrates a significant temporal
locality. Fig. 2(b) shows the data access pattern after a data migration which moves the frequently accessed data from the
magnetic disk media to the flash memory. Fig. 2(b) also shows that most of the data accesses are accumulated within a rel-
atively small and specific area of the disk drive, which indicates that the data migration enhances the spatial locality. In our
experiment, we will validate that grouping the most frequently accessed data blocks into the flash memory can save energy
and improve performance.

5.2. The optimal object size

As discussed in Section 4.2, we adopted objects, which are groups of consecutive blocks on the disk, to reorganize the data
blocks. We have tested the effects of moving objects with different object size (16, 32, 64, 128, and 256 blocks, respectively).
According to the experimental results illustrated in Fig. 3, the general trend is that smaller objects perform better. However,
it would incur more overhead to manage the objects with their increase in quantity. On the other hand, due to the small size
of objects, the block correlations could be destroyed, and some sequential I/O accesses could be converted to random I/O
accesses which normally incur significant performance penalties. In the case of very small objects, a single I/O may have
to be split into two (consider a group of blocks requested by an I/O that spans an object boundary before moving). We found
through the experiment that around 1.5% I/O accesses are split with an object size of 16 blocks. Based on the above analysis
and the test results illustrated in Fig. 3, we employed 32 blocks as the optimal object size in the following tests.

5.3. Evaluating energy saving

The EED drive architecture is proposed to save energy by extending the length of disk idle phases and forcing transitions
into the standby state. The idle time is the time between the end and the beginning of two consecutive busy periods within
Table 2
Characteristics of the three traces

Trace name Cello99 Cello96 TPC-D

Request number 268426 354675 103395
Read percentage 46.12% 46.40% 98.28%
Average request size (KB) 8.025 7.75 56.65
Skew 100/3.5 96/10 45/10
Average Inter-arrival time (ms) 320.6 247.89 205.42
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the disk drives. Table 3 illustrates the average idle time of both the original disk and the proposed EED with different real
traces. It shows that due to the proposed EED architecture, the average idle time of three different traces are extended by
3400%, 19.2%, 17.4%, respectively. The extended average idle time of Cello99 is the highest one among the three traces
due to the highest skew, illustrated in Table 2. Figs. 4–6 show a slice (201 requests of the overall trace) of the idle time
of the original disk and the EE disk with three different traces. The figures demonstrate that the idle times are generally in-
creased due to the proposed EE disk architecture. We believe that longer average idle time indicates lower energy
consumption.

An important feature of EED is that most of the data accesses can be satisfied with the flash memory, which enables the
magnetic disks to remain in the low power state much longer, thus saving energy. Furthermore, because the data access of
flash memory is much faster than that of a traditional disk drive, the EED can improve performance as well. Fig. 7 shows how
many requests access the magnetic disk with three traces. In this test, we did not apply the timeout policy. It illustrates that
77% of requests from Cello99, 90% of requests from Cello96, and 74% of requests from TPC-D go the magnetic disk of the ori-
ginal disk drive. The other requests are absorbed by the disk cache. The EED reduces the disk accesses to 3%, 13%, and 41%,
respectively. The test results indicate that the EED can significantly decrease the number of disk accesses, thus saving energy
and improving performance.

Figs. 8–10 show the energy consumption of the original disk and the EED with different traces and timeout thresholds.
The rightmost bar labelled with NP in each figure indicates the baseline energy consumption of the Quantum Atlas 10k disk
drive, which does not adopt any energy management policy. The figures confirm, through the observation of the three un-
ique traces, that the proposed EED architecture can indeed save energy.

Fig. 11 shows the conserved energy of EED and the original disk with three different traces and differing timeout thresh-
olds in comparison with the baseline energy consumption of the original disk drive. For both the EED and the original disk,
the trend is that the amount of energy saved decreases with the growth of the threshold. The reason is that the disk spends
more time in the active state with the increase of the threshold. For the original disk, Cello99 achieves energy use reduction
Table 3
Average idle time of the original disk and the EE disk with three different traces (ms)

Cello99 Cello96 TPC-D

Original disk 317.6453 241.6937 190.8757
EE disk 11104.48 288.0996 224.1312
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ranging from 17.72% to 51.09%. When the timeout threshold is 2 s, Cello96 obtains a 19.32% energy use reduction. However,
the timeout policy begins to incur energy loss when the threshold reaches 26 s. TPC-D achieves negligible energy saving
ranging from 2.57% to 5.37%. For EED, the saved energy of Cello99 and TPC-D are relatively stable. The reason is that both
Cello99 and TPC-D have a relatively stable idle time (see Figs. 4 and 6). However, due to the longest average idle time, Cello99
results in a significant amount of conserved energy ranging from 86.27% to 89.63%. The saved energy of TPC-D only ranges
from 19.26% to 23.96%. In contrast to Cello99 and TPC-D, the amount of energy conserved with Cello96 is decreased dramat-
ically (from 67.05% to 7.19%) with the growth of the thresholds. This is because Cello96 has a dramatic variation in the length
of idle time, illustrated in Fig. 5. The above measurements validate that the proposed EED architecture can save significant
amounts of energy on account of the extended idle times of the disk.

The above experimental results also show that the highest energy use reduction of TPC-D is only 23.96%. This is mainly
caused by three factors. The first one is that TPC-D is collected from a decision support process in which most of the data
accesses are highly sequential. The second one is because the skew of TPC-D is much lower in comparison with that of Cel-
lo99 and Cello96. The third one is that the block correlations of TPC-D are broken to a certain degree, which can produce
more I/O accesses going to the magnetic disk drive, thus incurring greater energy consumption. This is because the object
size (32 KB) used to move the frequently accessed data blocks is smaller than the average request size of TPC-D. We believe
an intelligent correlation detector could alleviate the impact of the object size. According to Table 2, the TPC-D has a much
higher ratio of read/write. Because most of the frequently accessed data blocks in EED are moved to the flash memory, if a
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data stream is skewed (which, as discussed in Section 2.2, most of the I/O accesses are), we believe that there will be a direct
correlation between the ratio of reads to writes and energy conservation. The reason is that most of the I/O accesses (read)
are absorbed by the flash memory, thus keeping the magnetic disk in a low power state for an extended period of time.

5.4. Evaluating performance

Figs. 12–14 show the average response times of the original disk and the EED with different traces and thresholds. The
rightmost bar labelled with NP in each figure indicates the baseline performance of the original disk drive, which does
not employ any energy management policy. The Y axis of Figs. 12 and 13 are in logarithmic scale. Figs. 12 and 14 illustrate
that for the same threshold, the EED shows improved performance (reducing the average response time) when compared
with the original disk. The reason is that most of the frequently accessed requests can be served with the fast flash memory
instead of the slow magnetic disk. Therefore, the time penalty of spin up and spin down is much smaller than the perfor-
mance gains, due to the fast access of flash memory. It is very interesting to observe that Fig. 13 depicts different perfor-
mance behaviours in comparison with Figs. 12 and 14. It shows a significant performance degradation when the
thresholds are 10, 14, and 18 s. As explained in Section 5.3, the Cello96 exhibits dramatic variation in the length of idle time
(see Fig. 5). For a certain thresholds, such as 10 s, the performance gain of fast flash memory access can not compensate for
the performance penalty of the employed energy management strategy.

Fig. 15 describes the performance variation of the EED in comparison with the baseline performance of the original disk.
The negative values denote performance degradation. The positive values indicate performance improvement. Fig. 15 vali-
dates that for three traces, the average response time is decreased with the growth of the threshold. It also shows that if the
threshold is too small, it could incur significant performance degradation. For example, the threshold of 2 s results in 692
times performance degradation with Cello96 trace. The reason is that small thresholds produce more repetitions of spin
downs and spin ups. Fig. 16 shows that when the threshold is increased from 2 to 38 s, the number of disk spin downs
and spin ups is reduced from 525 to 182 for Cello99, from 6452 to 135 for Cello96, and from 527 to 27 for TPC-D. Please note
that the Y axis of Fig. 16 is in logarithmic scale. The disk drive employed in our experiment has a spin down and spin up
latency of 0.5 s and 3.5 s, respectively (see Table 1). The performance penalty incurred by the power management policy
is much larger than the performance gains produced by the fast flash memory access. We can observe in Figs. 11 and 15 that
the EED can save energy while improving system performance with a reasonable time threshold. For example, if a threshold
of 38 s is adopted with Cello99, we can achieve an 86.27% energy use reduction and a 21.27% performance improvement.

As discussed in Section 3, we cannot simply increase the size of the volatile disk cache to improve the disk performance.
Hsu and Smith [18] reported that disk cache in the megabyte range is sufficient, and for a very large disk cache, the hit ratio
continues to slightly improve as the cache size is increased beyond 4% of the storage used. It indicates that if the disk cache
size grows beyond a threshold, the increased cache only achieves a limited contribution to the hit ratio, which results in poor
cost-efficiency. The EED employs flash memory as a sort of non-volatile cache to store the frequently accessed data. There-
fore, it is important to investigate the impact of the size of the flash memory on the EED performance. We performed some
measurements with 32 KB object size by using Cello99. When the size was increased from 2% to 5%, the performance
improvement was about 19%. When the size was increased to 10%, the performance still obtained about 2% growth. However,
when further increasing the flash memory size to 15% and 20%, we found a negligible performance growth. It seems the re-
sults are consistent with Hsu’s suggestions. In order to further investigate the impact, we used the TPC-D trace to perform
the second round of tests. The experiments showed that significant performance improvement was noted when the size of
flash memory was increased from 2% to 5%, 10%, and 20%. We believe that different skews have different impacts on the size
of the flash memory, since the skews of Cello99 and TPC-D are 100/3.5 and 45/10, respectively.

5.5. Energy coefficient

Sections 5.3 and 5.4 illustrate that a smaller threshold produces lower energy consumption, while incurring higher
average response time. A reasonable threshold should be able to strike a good balance between energy conservation and
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performance. Since what we want to achieve is minimal energy consumption accompanied by the lowest average response
time possible, we define an energy coefficient as a metric to measure the original disk and the EED.
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Definition. The energy coefficient is the product of the average response time and the average energy consumption.

The average energy consumption is the overall energy consumption divided by the number of requests. According to the
above definition, the minimal energy coefficient indicates the optimal threshold. Table 4 shows the energy coefficient of the
original disk and the EED. Due to the proposed energy coefficient, we can easily identify that the optimal thresholds of cel-
lo99, cello96, and TPC-D are 18 s, 38 s, and 26 s, respectively. The energy coefficient listed in Table 4 also demonstrates the
behaviours of energy saving and performance discussed in Sections 5.3 and 5.4.

6. Discussion and conclusion

In this paper, we proposed a disk drive architecture which takes a significant step towards an energy efficient storage
device by integrating flash memory into a traditional disk drive and moving the frequently accessed data from the magnetic
disk media to the flash memory. The storage spaces of the flash memory and the magnetic storage media in the EED are
exclusive. From the file system’s point of view, they exist in the same linear space. This method is more cost-efficient than
a traditional non-volatile second level cache. A power management strategy and a module of flash memory are integrated
into the Disksim simulator to validate the proposed EED architecture. Real trace simulations show that the EED can save sig-
nificant amounts of energy while improving performance with an appropriate threshold. An energy coefficient is proposed to
measure the energy consumption and performance of the EED. The energy coefficient provides useful insights into the
behaviours of the proposed EE disk.

In our experiments, the NAND flash memory used in EED is K9F6408U0A, which consumes about 0.03 W. The reason we
chose this flash memory is because its page size (512 Bytes) is equal to the sector size of a traditional disk drive. We believe
that the number of flash chips integrated in EED has an impact on its energy consumption, but these effects are minor. The
flash memory consumes much less energy than a traditional disk drive. For example, the latest NAND flash memory chip
(K9K8G08U0A), which provides 8 GB of storage space, consumes only 0.08 W [37]. This indicates that the energy consumed
by the IBM 40GNX (see Table 1) can support thirty seven K9K8G08U0A flash memory. Please note that the IBM 40GNX is a
laptop EIDE disk drive which consumes much less energy than a server disk drive.

We employed NAND flash memory as the non-volatile memory in the EED. A very important feature of NAND flash is that
the pages cannot be rewritten. When a portion of data on a page is modified, the new version of the data must be written to
an available page somewhere, and the old version is invalidated. When the storage capacity becomes low, garbage collection
is triggered to recycle the invalidated pages. Because erasing is performed in blocks, the valid pages in the recycled blocks
have to be copied to somewhere before erasing the blocks. Another important feature of the NAND flash memory is the
endurance cycles. A block will wear-out after a specified number of program/erase cycles. A poor garbage collection policy
could quickly wear out a block and a flash memory chip. The reader is referred to [3] for a comprehensive understanding of
the NAND flash memory. Due to the above features, the NAND flash memory is unlikely to be used in high-end storage sys-
tems such as servers, though it can be deployed in laptops and desktops. The emerging storage media such as MRAM and
MEMS discussed in Section 1 are not on the market currently. However, they may be good candidates for EED due to the
features of non-volatility, low energy consumption, unlimited life span, etc.

The EED differs from a Solid State Drive (SSD). The traditional term solid state refers to semiconductor devices. Therefore,
an SSD indicates the use of semiconductors to emulate a hard disk drive. SSD commonly consists of either DRAM volatile
memory or NAND flash non-volatile memory. The DRAM based SSD requires an internal battery and backup disk drive to
guarantee data persistence. This is why most of the current SSDs employ non-volatile flash memory as the storage media
(e.g. USB memory sticks). SSD consumes much less energy than a traditional disk drive. Samsung announced a 32 GB SSD
consisting of 16 2 GB NAND flash chips. The product is supposed to replace the mini laptop hard drives. However, it costs
around 960$ to purchase the 32 GB SSD [38]. The price and storage capacity are the major hurdles for the customers to
widely adopt the SSD. In contrast to SSD, the EED integrates a relatively small non-volatile flash memory into a tradi-
tional disk drive, which strikes a good balance among the storage capacity, price, performance, and power consumption.
Table 4
Energy coefficient of the original disk and the EE disk with different traces

Threshold (s) Cello99 Cello96 TPC-D

Original disk EE disk Original disk EE disk Original disk EE disk

2 48.1764 0.6673 53.3735 8.7239 14.7426 11.7142
6 11.6824 0.4592 13.5032 5.0300 9.4503 7.2626

10 8.5392 0.4543 6.2472 4.5202 9.1055 6.8826
14 7.0327 0.4477 3.8876 4.5709 9.0212 6.8021
18 6.2592 0.4473 3.6663 4.6035 8.9782 6.7272
22 5.7924 0.4511 3.4705 4.4976 8.9415 6.7155
26 5.4157 0.4515 3.3856 2.2577 8.9415 6.7082
30 5.1990 0.4571 3.3856 1.9100 8.9415 6.7281
34 4.9419 0.4530 3.3750 1.6623 8.9295 6.7302
38 4.7286 0.4533 3.3728 1.6067 8.9164 6.7377
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Furthermore, the EED can provide a much longer life span than an SSD. Because the NAND flash memory has a limited pro-
gram cycle, the EED focuses on read operations when employing the flash memory to provide storage space for the fre-
quently accessed data, thus reducing the number of program/erase calls and extending the life span of the memory.

Due to the explosive growth of digital information, a large-scale IT infrastructure can involve millions of components. For
example, one of the significant advances in cluster networks over the past several years has been that it is now practical to
connect tens of thousands of nodes with networks that have massively scalable capacity. With the growth of the system
scale, hardware component failures are becoming a big challenge to deal with [9]. Jiang et al. [19] analyzed the storage logs
collected from about 39,000 storage systems commercially deployed at various customer sites and reported that disk failures
contribute to 20–55% of storage subsystem failures. The data set covers a period of 44 months and includes about 1,800,000
disks hosted in about 155,000 storage shelf enclosures. Schroeder and Gibson [39] collected and analyzed seven data sets
which vary in duration from one month to five years and cover in total a population of more than 100,000 drives from at
least four different vendors. Their investigation shows that annual disk replacement rates typically exceed 1%, with 2–4%
common and up to 13% observed on some systems. Media error and high temperature are two persistent causes of disk fail-
ure. For the EED, most of the data accesses can be performed by the flash memory, which reduces the number of physical
accesses to the magnetic disk media and decreases thermal dissipation. Therefore, the EED can alleviate such disk failures.
Furthermore, due to the hot swap facilities, it is easy to replace or upgrade hard disk drives without interrupting the system
operation. Based on the above discussion, we believe that exploration into and design of an Energy Efficient Disk drive archi-
tecture has wide-ranged benefits.

Compressing the data can increase the effective size of the volatile disk cache, non-volatile flash memory, and magnetic
disk. Compression allows for more data to be stored in a cache or flash memory of a given size. This improves the hit ratio of
both the cache and the flash memory, and results in less disk drive accesses. Compression of the I/O data also increases the
quantity of data that can be transferred per time unit. For a large volume of data, latency can be reduced by means of in-
creased bandwidth, even in the presence of compression. Based on the above discussion, we believe that using compression
in the EDD can further conserve energy. Possible directions for future work include an intelligent energy management policy,
capable of predicting threshold and block correlations on the fly.
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