
The Attentional Blink Reveals Serial Working Memory
Encoding: Evidence from Virtual and Human

Event-related Potentials

Patrick Craston1, Brad Wyble2, Srivas Chennu1, and Howard Bowman1

Abstract

& Observers often miss a second target (T2) if it follows an
identified first target item (T1) within half a second in rapid se-
rial visual presentation (RSVP), a finding termed the attentional
blink. If two targets are presented in immediate succession,
however, accuracy is excellent (Lag 1 sparing). The resource
sharing hypothesis proposes a dynamic distribution of resources
over a time span of up to 600 msec during the attentional blink.
In contrast, the ST2 model argues that working memory encod-
ing is serial during the attentional blink and that, due to joint
consolidation, Lag 1 is the only case where resources are shared.
Experiment 1 investigates the P3 ERP component evoked by tar-
gets in RSVP. The results suggest that, in this context, P3 am-

plitude is an indication of bottom–up strength rather than a
measure of cognitive resource allocation. Experiment 2, employ-
ing a two-target paradigm, suggests that T1 consolidation is
not affected by the presentation of T2 during the attentional
blink. However, if targets are presented in immediate succession
(Lag 1 sparing), they are jointly encoded into working memory.
We use the ST2 model’s neural network implementation, which
replicates a range of behavioral results related to the attentional
blink, to generate ‘‘virtual ERPs’’ by summing across activation
traces. We compare virtual to human ERPs and show how the
results suggest a serial nature of working memory encoding as
implied by the ST2 model. &

INTRODUCTION

In daily life, humans have to cope with an environment
consisting of simultaneously occurring events and con-
current sensory input. In order to survive in this parallel
world, attention allows us to filter out irrelevant infor-
mation. On the one hand, attention lets us focus on
one task at a time, whereas on the other hand, we are
also often able to perform multiple tasks simultaneously.
Thus, it seems that cognitive resources can be shared
between tasks, suggesting a notion of divided attention.
This distribution of attention, however, seems to come
with concomitant costs and limitations both in terms of
performance accuracy and reaction times. In this article,
we investigate the extent to which attentional resources
can be shared over time and the cost associated with it.

In spatial attention, the visual system was long assumed
to operate in a serial manner, in that it was restricted to
selecting information from only one location at a time.
Attention was considered to move through the visual field
in the form of a single spotlight (Eriksen & Yeh, 1985;
Posner, 1980; Broadbent, 1958; von Helmholtz, 1867).
However, Pylyshyn and Storm (1988), among others, dis-
proved these classical theories by showing that humans
are capable of simultaneously tracking multiple objects in

space. Some of the new theories preserve the idea of a
single focus of attention, which sequentially switches be-
tween targets (Oksama & Hyöna, 2004; Pylyshyn & Storm,
1988); others propose a notion of concurrent multifocal
attention, which can be focused on more than one loca-
tion at a time (McMains & Somers, 2004; Awh & Pashler,
2000; Castiello & Umilta, 1992).

Whether attention is a single spotlight, switching rap-
idly between locations, or whether attentional resources
are distributed across multiple locations, simultaneous
perception of multiple objects in space requires some
notion of resource sharing. In line with this argument,
Cavanagh and Alvarez (2005) conclude that the ‘‘trade-
off between capacity and feature encoding (Oksama &
Hyöna, 2004; Bahrami, 2003; Saiki, 2003) suggests that
attention has a fixed total bandwidth for selection and
the bandwidth can be shared across several input chan-
nels or targets.’’ Hence, although the system is capable
of tracking multiple objects at a time, there is a fixed
amount of attentional resource. As this resource is shared
across increasing numbers of targets, overall performance
at the task decreases.

Recently, it has been proposed that the notion of a
shared attentional resource with fixed capacity could
be extended to the temporal domain (Shapiro, Schmitz,
Martens, Hommel, & Schnitzler, 2006). Accordingly, if
multiple target items are presented at the same spatial1University of Kent, UK, 2Massachusetts Institute of Technology
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location within a very short period, the system allocates
a certain amount of the resource to each of the targets
and they are, at least to some extent, processed in a
concurrent manner. Hence, if one of the targets is pro-
cessed more extensively, less resource is available for
other targets, which has a detrimental effect on target
detection accuracy, thus, explaining a finding termed
the attentional blink (AB; Raymond, Shapiro, & Arnell,
1992).

The Attentional Blink

The AB describes the empirical observation that de-
tection of a second target (T2) is severely impaired if
it follows an identified first target (T1) within less
than 600 msec. This alleged blink of the ‘‘mind’s eye’’
(Raymond et al., 1992) was initially thought to reflect a
fundamental limitation of visual perception in humans.
Subsequent research, however, suggests the AB is by
no means absolute. Even during the deepest part of the
AB, a number of T2s are detected, that is, performance
is never at zero (Raymond et al., 1992). Furthermore,
evidence from electrophysiology (Rolke, Heil, Streb, &
Hennighausen, 2001; Vogel, Luck, & Shapiro, 1998) and
priming studies (Martens, Wolters, & van Raamsdonk,
2002; Shapiro, Driver, Ward, & Sorensen, 1997) sug-
gests that, even if a T2 is missed during the AB, it is
still processed to a semantic level. Intriguingly, if T2
is presented in immediate succession to T1, T2 detec-
tion accuracy is often above the baseline performance
outside the AB (‘‘Lag 1 sparing’’; Chun & Potter, 1995).

Resource Sharing vs. Two-stage Theories

The resource sharing hypothesis suggests that the AB
is an artifact of compromised allocation of attention
(Shapiro et al., 2006). If the system allocates less re-
source to T1, more attention is available for T2 and T2
is more likely to be detected. If, however, too much
resource is allocated to T1, T2 is more likely to be
missed, which results in an AB (Kranczioch, Debener,
Maye, & Engel, 2007).

In contrast, two-stage theories (Chun & Potter, 1995),
such as the Simultaneous Type Serial Token (ST2) model
(Bowman & Wyble, 2007), propose that the AB re-
veals a cognitive mechanism, which ensures serial work-
ing memory encoding to protect the integrity of an
attentional episode (Wyble, Bowman, & Nieuwenstein,
in press). If T2 is presented during the AB window,
its working memory consolidation is delayed until T1
has been successfully encoded (Chun & Potter, 1995).
At Lag 1, however, this ‘‘protection mechanism’’ breaks
down and T1 and T2 are encoded into a single atten-
tional episode (Wyble et al., in press; Chun & Potter,
1995). Joint encoding increases T2 accuracy at Lag 1, but
comes at the cost of increased swaps (i.e., T1 and T2

are identified correctly but reported in the wrong or-
der) and reduced T1 accuracy (Bowman & Wyble, 2007;
Hommel & Akyürek, 2005; Potter, Staub, & O’Connor,
2002).

The P3 Component as a Measure of
Resource Allocation?

A method for contrasting these theoretical positions is
EEG, a noninvasive technique of recording brain activity
from electrodes placed on the participant’s scalp. Event-
related potentials (ERPs) are generated by averaging
over segments of EEG activity time-locked to an exter-
nally generated event. The averaging process increases
the observable signal by removing ongoing non-time-
locked EEG activity, which is treated as background
noise. The resulting ERP waveform contains a number
of positive and negative deflections, which are referred
to as ERP components. The P3 component of the ERP
occurs 300–600 msec poststimulus presentation and is
evoked most strongly by a rare event among a sequence
of frequent items, through so called oddball tasks. In the
context of rapid serial visual presentation (RSVP), the
P3 has been argued to be a correlate of working memory
update (Vogel et al., 1998).

The resource sharing hypothesis was formulated in
response to a number of findings derived from EEG
(Kranczioch et al., 2007; Martens, Elmallah, London, &
Johnson, 2006) and MEG (Shapiro et al., 2006) experi-
ments investigating the AB. These authors base their
argument on the assumption that the size of the P3
component evoked by a target in RSVP reflects the
amount of resources invested into processing this target.

However, in an extensive review of the P3 component,
Kok (2001) comes to the conclusion that ‘‘the sensitivity
of P3 amplitude as a measure of processing capacity
has only been convincingly demonstrated in a restricted
number of studies in which capacity allocation was
under voluntary control, and the structural character-
istics of the task (e.g., task complexity, perceptual qual-
ity of the stimuli) did not change.’’ Accordingly, P3 size
increases if observers know beforehand that the task is
going to be harder, and allocate more cognitive resource
to it (Kramer & Hahn, 1995; Sirevaag, Kramer, Coles, &
Donchin, 1989; Wickens, Kramer, Vanasse, & Donchin,
1983). When task difficulty is determined only by in-
trinsic stimulus properties, however, there is a recipro-
cal relationship between increasing task difficulty and P3
amplitude ( Johnson, 1986).

This distinction is critical when using the P3 compo-
nent to evaluate theories of the AB. During the AB, tar-
get items are often letters presented in a stream of digit
distractors (e.g., Chun & Potter, 1995). Due to their
shape, some target letters are masked more strongly by
the distractors than others, thus, target letters can be
categorized by their individual accuracy scores, yielding
a measure of task difficulty according to intrinsic stimu-
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lus properties. We will use the terms ‘‘easy’’ and ‘‘hard’’
to categorize letters according to their individual accu-
racy scores. In RSVP, target letters commonly appear in
random order so that observers cannot predict whether
an upcoming target in RSVP will be easy or hard, and
they do not know beforehand how much resource to
allocate to the target. Hence, in Kok’s (2001) terms,
resource allocation is not ‘‘under voluntary control,’’
whereas the ‘‘structural characteristics’’ of the stimuli do
change, and thus, the P3 should not serve as a measure
of resource allocation.

Recent articles arguing in favor of resource sharing
have proposed that the allocation of resource to targets
in RSVP might be random, varying from trial to trial
(Kranczioch et al., 2007; Shapiro et al., 2006). If, by
chance, more resource is allocated to T1, less attention
is available for T2, thus suggesting a tradeoff in accuracy
and P3 sizes. Depending on how one interprets this ar-
gument of random allocation of resources, we can make
two predictions about the resulting nature of P3 for
easy and hard targets: (a) If resource allocation is truly
random, it should produce no difference in the average
P3 amplitude between easy and hard targets. (b) Alter-
natively, if hard targets are somehow able to instanta-
neously attract more resources, we should expect to
observe a larger P3 for intrinsically hard targets, when
compared to easy ones.

The ST2 model, in contrast, makes a different predic-
tion regarding the effects of target difficulty, in that the
amplitude of the P3 for targets in RSVP should be mainly
modulated by bottom–up strength. If a target is more
easy to perceive due to its intrinsic stimulus character-
istics, for instance, if it is less strongly masked, the target
has more bottom–up target strength, which leads to a
larger P3. Vice versa, a target that is intrinsically harder
to detect will have less bottom–up strength, thus evok-
ing a smaller P3 component.

Overview

In this article, we evaluate the resource sharing theory
and the ST2 model as two competing explanations of
the AB. Bowman and Wyble (2007) showed that the ST2

model’s neural network implementation (neural-ST2)
replicates a wide range of behavioral results related to
the AB. Here, we use neural-ST2 to generate artificial
‘‘electrophysiological’’ traces by summing across activa-
tion potentials from the neural network and compare
these so-called virtual ERPs (vERPs) to human ERP data
(hERPs).

To this end, we first address the question of un-
derstanding P3 amplitude differences for RSVP targets,
which is critical for interpreting EEG/MEG results. Does
a large P3 indicate that more effort was dedicated to the
task because it was harder? Or is P3 size mainly modu-
lated by intrinsic stimulus characteristics, in which case a
larger P3 indicates that the target was particularly strong,

hence, easy to perceive? This question is addressed in
Experiment 1 in which participants had their EEG re-
corded while detecting a single letter target among digit
distractors. In Experiment 1, whether a target letter is
easy (or hard) depends solely on intrinsic stimulus char-
acteristics, and thus, the hERP data (and corresponding
vERPs from the ST2 model) can be used to evaluate the
competing hypotheses of P3 amplitude described in the
previous section.

With this finding in hand, a second EEG experiment is
presented in which we asked subjects to perform a two-
target AB task while recording their EEG. Once again,
the ST2 model is used to generate corresponding vERPs.
Although the resource sharing theory lacks a clear for-
mal description, it does make a key prediction for EEG/
MEG data. Resource sharing suggests that targets indi-
rectly compete for resources during the AB through the
amount of resources allocated to each of them. Hence,
it predicts that the T1 P3 component should be larger
for trials in which T2 is missed during the AB, as too
much resource was invested into the processing of T1.
On the other hand, if T2 is seen during the AB, the T1 P3
is likely to be smaller as subjects were able to allocate
resources more evenly between targets. In contrast, the
ST2 model proposes that targets are encoded one at
a time, thus emphasizing the serial nature of working
memory encoding during the AB. This suggests the fol-
lowing prediction for the EEG/MEG correlates of target
encoding during the AB. T1 consolidation (as exempli-
fied by T1’s P3 component) should influence T2 pro-
cessing in both behavioral and electrophysiological
terms because T2s have to ‘‘wait’’ until T1 has been
consolidated. The reverse, however, is not the case, that
is, T1’s P3 should be unaffected, regardless of whether
T2 is seen or missed, thus the influence between T1 and
T2 is unidirectional. Only if the targets appear in imme-
diate succession, as is the case at Lag 1, can there be
mutual interference.

METHODS

The following section commences with a description
of the ST2 model and its connectionist implementation,
termed ‘‘neural ST2.’’ We explain how artificial ‘‘electro-
physiological’’ traces (vERPs) are generated from the
neural network model. Following the discussion of com-
putational modeling methodology, we describe the
methods employed in the two EEG experiments that
are presented in this article.

The ST2 Model

We first describe the fundamental principles of how the
ST2 model describes working memory, temporal atten-
tion and, in particular, the AB (for a more detailed
description, please refer to Bowman & Wyble, 2007).
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Types and Tokens

The ST2 model employs a types–tokens account (Chun,
1997; Kanwisher, 1987) to describe the process of work-
ing memory encoding. Types describe all feature-related
properties associated with an item. These include sen-
sory properties, such as visual features (e.g., its shape,
color, and the line segments comprising it) and also
semantic attributes, such as a letter’s position in the al-
phabet. A token, on the other hand, represents episodic
information, which is specific to a particular occurrence
of an item, thus providing a notion of serial order. An
item is encoded into working memory by creating a con-
nection between a type and a token. At retrieval, tokens
contain information about when an item occurred and,
from tokens, types can be regenerated, yielding a de-
scription of what each item was and in what temporal
order they appeared.

Model Architecture

As illustrated in Figure 1, the ST2 model can be divided
into three parts. We describe them in turn:

1. Input and extraction of types in Stage 1: Input
values, which simulate target letters and digit distractors

in the RSVP stream, are fed into the model at the lowest
layer of Stage 1. As activation values propagate upward,
the following layers reflect forward and backward mask-
ing in early visual processing and extraction of semantic
representations. A task demand mechanism operates
at the highest layer of Stage 1, thus ensuring that only
targets are selected for working memory encoding. De-
spite the fact that stimuli are presented serially during
RSVP, processing within Stage 1 may exceed the pre-
sentation time of sequentially presented items. Hence,
these layers are parallel or simultaneous in nature, in
that more than one node can be active at any one time.

2. Working memory encoding in Stage 2: An item is
encoded into working memory by connecting its type
from Stage 1 to a working memory token from Stage 2.
This process is referred to as ‘‘tokenization.’’ If at the
end of a trial, the type node of a target has a valid con-
nection to a token, the target is successfully ‘‘reported’’
by the ST2 model. Inhibition between working memory
tokens ensures that only one tokenization process is
active at any one time, thus enforcing a serial nature of
working memory encoding.

3. Temporal attention from the blaster: Temporal at-
tention is implemented by a mechanism termed the
blaster. Salient items in Stage 1 trigger the blaster, which
provides a powerful enhancement to all nodes in the
higher layers of Stage 1. The enhancement from the
blaster allows targets to become sufficiently active to
initiate tokenization. During tokenization, the blaster is
suppressed until encoding of the target has completed.
The suppression prevents a second target from refir-
ing the blaster while the first target is being tokenized,
which would corrupt the working memory encoding
process.

During the AB, T1 is being tokenized when T2 is
presented, thus the blaster cannot enhance T2 as it is
being suppressed by T1 tokenization. By the time T1
tokenization has completed, T2 will often lack sufficient
activation to initiate its own tokenization process, which
causes T2 to be missed, resulting in an AB. At Lag 1,
however, T2 is presented during the window of blaster
enhancement triggered by T1. T2 gains sufficient acti-
vation to join T1’s working memory encoding process
and T1 and T2 are tokenized together.

Changes to the ST2 Model in Comparison to Bowman
and Wyble (2007)

For this work we generate vERPs from the ST2 model
with as few parameter changes as possible compared
to the previously published version of the ST2 model.
Table 1 contains a list of neural network weight values
that were modified. Note that we can still reproduce all
behavioral data published in Bowman and Wyble (2007).
The number of distractor nodes in Stage 1 is increased
from 10 to 15 nodes. This has no effect on behavioral

Figure 1. The ST2 model: (1) Input and extraction of types in Stage 1;

(2) Working memory tokens in Stage 2; (3) Temporal attention from

the blaster. For the simplicity of presentation, this article contains a
more abstract description of the model (please refer to Bowman &

Wyble, 2007, for an extensive description of the individual layers of

the ST2 model).
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accuracy, but is required to generate 50 msec SOA vERP
traces as otherwise, due to the fast presentation rate,
nodes are not able to decay to baseline before being
reactivated.

Each item ‘‘presented’’ to the model has a certain
strength value. Distractors have a constant value of
0.526, whereas strength values for T1 and T2 iterate
from 0.442 to 0.61 in steps of 0.014. This results in the
model simulating 169 target strength combinations.

Virtual ERPs

Computational modeling is commonly focused on the
replication of behavioral data. In this article, we ex-
plore an additional dimension, namely, modeling ERPs
recorded during the AB. Due to the novelty of this ap-
proach, there is no established methodology for gen-
erating vERPs. Throughout this work, our philosophy
is to use the most straightforward method while keep-
ing our approach as close as possible to the mechanisms
that are assumed to occur in the brain. It is obvious,
however, that vERPs remain a coarse approximation of
hERPs. Some factors that influence hERPs, such as the
distortion of the signal by the scalp, are not addressed.
Due to these limitations, one can realistically only expect
to obtain a qualitative rather than a quantitative match
to the data. Nevertheless, vERPs from the ST2 model
seem to allow us to make sensible predictions about the
ERPs measured from the human scalp.

Neural Correlates of Human ERPs

The difference in electric charge between the dendrite
and the postsynaptic cell body of an active neuron creates
an electric dipole. To generate a signal that is strong
enough to be registered by the EEG, a population of
neurons has to be active together and spatially aligned,
which causes the individual dipoles to summate. Cortical

pyramidal neurons have long-range connections and are
aligned perpendicular to the cortex, which is why these
neurons are assumed to be a major contributor of the
human EEG (Luck, 2005). Pyramidal neurons release glu-
tamate as their neurotransmitter and are therefore pri-
marily excitatory.

Virtual ERP Calculation

The nodes in neural-ST2 are organized in layers (Fig-
ure 1), which are connected via weighted connections.
We assume these connections to be the analogue of
synaptic projections in the brain.

vERPs from neural-ST2 are generated by summing
across excitatory postsynaptic node potentials, which
are calculated by multiplying the activation value of a
node by the weight value of the connection with the
subsequent layer. We adopt the most straightforward
approach and sum over all nodes of a given subset of
layers in order to avoid a specific weighting of layers or
normalization setting. Neurophysiological evidence sug-
gests that there is a processing delay of around 70 msec
for activation related to visual processing to travel from
the retina to occipital areas (Schmolesky et al., 1998). To
account for this delay, vERPs are shifted by (the model
equivalent of ) 70 msec.

Virtual P3

The P3 component of the hERP is commonly recorded
from parietal electrode sites and considered to be a cor-
relate of working memory encoding (Vogel et al., 1998).
In the ST2 model, working memory encoding occurs by
creating a binding link between types from Stage 1 and
tokens from Stage 2. Hence, the virtual P3 component
(vP3, an example trace is shown in Figure 2) contains
activation from later parts of the first stage, the nodes in
Stage 2, and the binding link connecting the two stages.

Figure 2. Virtual P3 component generated from later parts of Stage 1,

Stage 2, and the binding link between the two stages. Timepoint 0

corresponds to the onset of the RSVP stream. ‘‘T’’ indicates the
presentation of the target.

Table 1. List of Weights that Were Modified during this Work

Layer 1 ) Layer 2 Weight Value

Highest layer Stage 1 (‘‘task filtered
layer’’) ) Blaster

0.02003 (0.018)

Blaster recurrent excitation 0.0112 (0.01)

100 msec presentation rate

First layer Stage 1 (‘‘input layer’’) )
Second layer Stage 1 (‘‘masking layer’’)

0.023 (0.022)

50 msec presentation rate

First layer Stage 1 (‘‘input layer’’) )
Second layer Stage 1 (‘‘masking layer’’)

0.058 (0.05)

The original values (from Bowman & Wyble, 2007) are shown in brack-
ets. All other weight values remained unchanged.
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Experiment 1

Participants

Twelve university students (mean age = 24.1 years;
SD = 2.9; 6 women; 11 right-handed) provided written
consent and received 10 GBP for participation. One par-
ticipant was excluded due to an excessive number of
EEG artifacts, leaving 11 participants for the behavioral
and EEG analysis (mean age = 24.3 years; SD = 3.0;
5 women; 10 right-handed). Participants were free from
neurological disorders and had normal or corrected-
to-normal vision. The study was approved by the local
ethics committee.

Stimuli and Apparatus

We presented alphanumeric characters in black on a
white background at a distance of 100 cm on a 21-in.
CRT computer screen (1024 � 768 at 85 Hz) using the
Psychophysics toolbox (Brainard, 1997) running on
Matlab 6.5 under Microsoft Windows XP. Stimuli were
in Arial font and had an average size of 2.1 � 3.4 visual
angle. A photodiode verified exact stimulus presenta-
tion timing.

Procedure

Participants viewed three blocks, each consisting of 96
single target trials and four distractor-only trials. The
first block was preceded by five practice trials, which
were not included in the analysis. The target for each
trial was chosen at random from a list of 14 capital letters
(B, C, D, E, F, G, J, K, L, P, R, T, U, V); distractors could
be any digit except ‘‘1’’ or ‘‘0.’’ The target’s position
in the stream varied between positions 10 and 54. The
‘‘distractor only’’ trials were randomly inserted to make
the occurrence of the target less predictable. A fixation
cross presented for 500 msec preceded the first item
of each stream. Items were presented at the unconven-
tionally fast rate of approximately 20 items per second
(item duration = 47.1 msec; no interstimulus interval)
to ensure that participants’ detection accuracy was not
at ceiling in this relatively easy single target detection
task. An RSVP stream consisted of 70 items to allow a
sufficient amount of time between target presentation
and the end of the stream. This was required in order
to prevent the subject’s behavioral response from inter-
fering with the EEG signal evoked by the target. Each
stream ended with a dot or a comma presented for
47.1 msec. Following stream presentation, participants
were asked, ‘‘Was the final item a comma or a dot?’’ and
in the following screen, ‘‘If you saw a letter, type it. If
not, press Space.’’ Participants entered their responses
using a computer keyboard. The dot–comma task was
included to ensure that participants maintained their
attention on the stream after the target had passed.

EEG Recording

EEG activity was recorded from Ag/AgCl electrodes
mounted on an electrode cap (FMS, Munich, Germany)
using a high-input impedance amplifier (1000 M�;
BrainProducts, Munich, Germany) with a 22-bit analog-
to-digital converter. Electrode impedance was reduced
to less than 25 k� before data acquisition (Ferree, Luu,
Russell, & Tucker, 2001). EEG amplifier and electrodes
employed actiShield technology (BrainProducts) for noise
and artifact reduction.

The sampling rate was 2000 Hz (digitally reduced to
1000 Hz at a later stage) and the data were digitally
filtered at low-pass 85 Hz and high-pass 0.5 Hz at re-
cording. Electrodes were placed at 20 standard locations
according to the international 10–20 system ( Jasper,
1958). Electrooculographic (EOG) activity was bipolarly
recorded from below and to the right side of the right
eye. Activity from the Pz (midline parietal) electrode
was used to analyze the P3 component. Because only
seen targets evoke a P3, whereas missed targets do not
(e.g., Kranczioch, Debener, & Engel, 2003), ERPs were
generated only from trials in which the target was cor-
rectly identified.

EEG Data Analysis

EEG data were analyzed using BrainVision Analyzer
(BrainProducts). The data was referenced to a common
average on-line and re-referenced to linked earlobes off-
line. Left mastoid acted as ground. Signal deviations in
the EOG channel of more than 50 AV within an interval
of 100 msec were identified as eye blink and movement
artifacts. These were removed by rejecting data in the
window of 200 msec before and after an eye artifact. To
verify that these trials were accurately identified by the
algorithm, we performed a manual inspection after the
algorithm had been applied. After artifact rejection, ERPs
in each of the conditions (‘‘easy’’ and ‘‘hard’’) contained
531 and 387 epochs, respectively. In total, 25% of trials
had to be excluded due to artifacts. ERPs were time-
locked to the onset of the target and extracted from
�200 to 1200 msec with respect to target onset. After
segmentation, direct current drift artifacts were re-
moved using a DC detrend procedure employing the
average activity of the first and last 100 msec of a seg-
ment as starting and end point, respectively. Following
this, the baseline was corrected to the prestimulus in-
terval (�200 msec to timepoint 0) and segments were
averaged to create ERPs. Unless otherwise stated, ERP
component amplitudes were derived from mean am-
plitude values within a certain window. ERP component
latencies were calculated using 50% area latency analy-
sis (Luck & Hillyard, 1990). Amplitude and latency val-
ues from subject averages were submitted to Matlab
scripts (Trujillo-Ortiz, Hernandez-Walls, Castro-Perez,
& Barba-Rojo, 2006; Trujillo-Ortiz, Hernandez-Walls, &
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Trujillo-Perez, 2004) to perform repeated measures
ANOVA. Where appropriate, p values were adjusted
using Greenhouse–Geisser correction. After all statistical
analyzes, a 25-Hz low-pass filter was applied to enhance
visualization of ERP components.

Computational Modeling

In order to simulate single-target RSVP streams with
50 msec presentation rate, the input patterns presented
to the model contained 40 items with the target ap-
pearing at position 14 of the stream. Each item was
presented for 10 timesteps, the equivalent of 50 msec.

Experiment 2

Participants

Twenty new under- and postgraduate university students
(mean age = 23.1 years, SD = 3.2; 10 women; 18 right-
handed) provided written consent and received 10 GBP
for participation. Two participants were excluded from
the analysis. The first one seemed to be a nonblinker
(Martens, Munneke, Smid, & Johnson, 2006), as his per-
formance was at ceiling across all three lags. The sec-
ond participant was excluded due to persistently high
oscillations in the alpha band throughout the experi-
ment. Hence, 18 participants remained for behavioral
and EEG analysis (mean age = 22.5 years, SD = 2.7;
9 women; 18 right-handed). Participants were free from
neurological disorders and had normal or corrected-
to-normal vision. The study was approved by the local
ethics committee.

Stimuli and Apparatus

Stimulus presentation was equal to that in Experiment 1
except for a reduction in average stimulus size (1.038 �
0.698 visual angle) to ensure that the paradigm produced
a reliable AB effect.

Procedure

Participants viewed four blocks of 100 trials. Before start-
ing the experiment, participants were asked to make five
eye blinks and five horizontal eye movements to config-
ure the algorithm for eye blink artifact rejection. Par-
ticipants performed eight practice trials, which were not
included in the analysis. As shown in Figure 3, RSVP
streams were preceded by a fixation cross in the center
of the screen. After 400 msec, the cross turned into an
arrow indicating the side at which the targets would
be presented. After 200 msec, two streams of digits were
simultaneously presented at an equal distance of 2.68
visual angle to the left and right of fixation.1 The RSVP
stream consisted of 35 items presented for 105.9 msec
each with no interstimulus interval. For 84% of trials in
a block, the stream on the side indicated by the arrow
contained two targets (T1 and T2), in 16% of trials both
streams were made up of distractor digits only. The
‘‘distractor only’’ trials were randomly inserted to make
the occurrence of targets less predictable. In a trial, T1 and
T2 were selected from a list of 14 possible targets (A, B,
C, D, E, F, G, H, J, K, L, N, P, R, T, U, V, Y); distractors
could be any digit except ‘‘1’’ or ‘‘0.’’ T1 appeared be-
tween positions 5 and 17; T2 followed T1 at position 1
(no intervening distractors—Lag 1), position 3 (2 inter-
vening distractors—Lag 3) or position 8 (7 intervening
distractors—Lag 8). The arrow remained in the center of
the screen until the streams were over and then turned
into either a dot or a comma.

Before the experiment started, participants were told
to keep their eyes fixated on the center of the screen, as
trials with eye movements would have to be excluded.
Participants were told to direct their covert attention
toward the indicated stream, search for the two target
letters, and remember whether the last item was a dot or
a comma. Participants were informed that streams could
contain either two or zero targets. Following stream
presentation, participants were presented with the mes-
sage ‘‘If you saw letters—type them in order, then dot or

Figure 3. Dual-target bilateral

RSVP stream.
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comma for the final item’’ and entered their response
without time pressure using a computer keyboard.

EEG Recording and Data Analysis

EEG methods for Experiment 2 were the same as for
Experiment 1, with the following changes. The sampling
rate was 1000 Hz and the data were filtered at 80 Hz
low-pass and 0.25 Hz high-pass at recording. Horizontal
eye movements, recorded from a bipolar EOG channel
placed below and to the left of the participant’s left eye,
indicated that participants had moved their eyes away
from fixation and toward one of the RSVP streams. These
trials, along with trials violating the artifact rejection pro-
cedure described for Experiment 1, were excluded from
further analysis. In total, 10% of trials had to be excluded
due to artifacts. After artifact rejection, ERPs for the con-
ditions contained the following number of trials: Lag 3
noAB—863 epochs; Lag 3 AB—702 epochs; Lag 8—1201
epochs; Lag 1—946 epochs.2 For Experiment 2, ERPs
were time-locked to T1 and extracted from �200 to
1800 msec with respect to T1 onset.

Computational Modeling

In order to simulate two-target RSVP streams with
100 msec presentation rate, the input patterns presented
to the model were composed of 25 items presented for
20 timesteps (equivalent to 100 msec) each. T1 appeared
at position 7 in the RSVP stream and T2 followed T1 with
0 to 7 distractors (Lags 1–8) between the two targets.

RESULTS

Experiment 1

Behavior

We determine the accuracy score for each target letter
by using the behavioral results for T1 accuracy per letter
from a previously published study (Bowman & Wyble,
2007), which employed a similar RSVP paradigm.3 Ac-
cordingly, all targets are classified as belonging either
to the ‘‘easy’’ or the ‘‘hard’’ group of target letters. By
dividing targets a priori (with respect to the experiment
reported here), we counter arguments that our sub-
division into easy and hard reflects random variation in
attentional state (i.e., alertness) of subjects, rather than
fluctuations in intrinsic stimulus strength. The fact that
it is the same letters that are easy (respectively hard)
in the Bowman and Wyble (2007) experiment and the
experiment reported here is strong evidence that varia-
tion in intrinsic stimulus characteristics underlies this
subdivision.

The behavioral results from Experiment 1 of this study
show that the ‘‘hard’’ target letters (E, C, B, P, F, J, and
R) have an average accuracy of 67% (SEM = 4), whereas
the ‘‘easy’’ target letters (T, K, U, V, L, D, and G) have an

average accuracy of 86% (SEM = 3). The difference in
accuracy scores between the easy and the hard target
groups is highly significant [F(1, 10) = 48.26, MSE < .01,
p < .001].

In the ST2 model, a target is classified as hard if its
strength value is less than or equal to the value of dis-
tractors (strength values ranging from 0.442 to 0.526).
Target values above those of distractors contribute to
the easy condition (strength values ranging from 0.540
to 0.610). The ST2 model provides a qualitative fit of the
behavioral accuracy scores for the hard (ST2 accuracy:
57%) and easy (ST2 accuracy: 100%) conditions.

Human ERP

As seen in Figure 4, the P3 for easy targets has a sig-
nificantly larger amplitude than the P3 for hard targets
[F(1, 10) = 9.65, MSE = 2.1, p = .011]. The mean
amplitude in the 300–600 msec posttarget area is 9.7 AV
(SEM = 1.1) for easy targets and 7.8 AV (SEM = 1.4) for

Figure 4. (A) hERP P3 component from Pz for the easy and hard

conditions. Positive is plotted upward. (B) ST2’s vERP containing

the virtual P3 component for the easy and hard conditions. For

both panels, ‘‘T’’ indicates the presentation of the target and ERPs
are time-locked to presentation of the target.
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hard targets. Although the P3 for hard targets starts
slightly later than the P3 for easy targets, it also returns
back to baseline more rapidly, thus, the small difference
in 50% area latency analysis (Luck & Hillyard, 1990) is
nonsignificant [easy targets: mean = 464 msec (SEM =
8) vs. hard targets: mean = 469 msec (SEM = 13); F(1,
10) = 0.55, MSE = 241, p = .476].

Virtual ERP

In the ST2 model, easy targets have higher input
strength, and thus, generate more activation than hard
targets. Figure 4 illustrates how the vP3 is larger in am-
plitude for easy compared to hard targets (mean vP3
amplitude: Easy 0.203 vs. Hard 0.189). Once target acti-
vation reaches later parts of Stage 1, easy targets trigger
an earlier blaster response, which causes these items
to be encoded into working memory more rapidly. The
result is a slightly earlier vP3 component for easy (vP3
50% area latency: 455 msec equivalent) compared to
hard (vP3 50% area latency: 460 msec equivalent) tar-
gets, as seen in Figure 4.

Experiment 2

Behavior

Attentional Blink. As shown in Figure 5, human accu-
racy at identifying T2 (conditional on correct report of
T1) shows a significant effect of lag [F(2, 17) = 15.58,
MSE = 0.03, Greenhouse–Geisser (GG)-> = .74, p <
.001]. Pairwise comparisons emphasize the presence of
an AB. T2 accuracy is significantly lower at Lag 3 com-
pared to Lag 8 [F(1, 17) = 11.66, MSE = 0.03, p = .003]
and Lag 1 [F(1, 17) = 60.88, MSE = 0.01, p < .001]. If
T2 is presented in immediate succession to T1 (Lag 1),
T2 accuracy is significantly higher than T2 accuracy at
Lag 8 [F(1, 17) = 5.41, MSE = 0.01, p = .033]. The ST2

model replicates a U-shaped AB curve. T2 accuracy (con-
ditional on correct report of T1) is reduced at Lag 3
compared to Lag 8 and Lag 1. Furthermore, T2 accuracy
at Lag 1 is slightly higher than at Lag 8 (Figure 5).

When comparing performance of the ST2 model to
these data, it should be noted that the model was con-
figured to replicate a specific set of AB data (Chun &
Potter, 1995). Subsequent studies (including this ex-
periment) mostly reported higher Lag 3 accuracy, thus,
a less drastic AB effect. To keep with the philosophy of
changing as few parameters as possible compared to the
ST2 model published in Bowman and Wyble (2007), we
sacrifice a perfect quantitative fit of the data from this
experiment and, instead, emphasize the replication of a
qualitative AB effect.

Reduced T1 Accuracy at Lag 1. Observers are signifi-
cantly worse at reporting T1 if T2 is presented at Lag 1
compared to when T2 is presented at Lag 3 [F(1, 17) =

49.68, MSE = 0.01, p < .001] or Lag 8 [F(1, 17) = 61.21,
MSE = 0.01, p < .001]. The ST2 model replicates a re-
duction in T1 accuracy at Lag 1.

No Effect on T1 Accuracy When T2 is at Lag 3 or 8. We
observe no significant difference in T1 accuracy between
T2 being presented at Lag 3 or Lag 8 [F(1, 17) = 0.44,
MSE < 0.01, p = .515; Figure 5]. Furthermore, there is
no difference in T1 accuracy whether an AB occurs or
not [T1 accuracy conditional on seen T2 at Lag 3: 79%,
SEM = 4; T1 accuracy conditional on missed T2 at Lag 3:
78%, SEM = 3; F(1, 17) = 0.03, MSE = 0.02, p = .862].
The ST2 model replicates these effects, as simulated T1
accuracy is at baseline irrespective of whether T2 is pre-
sented at Lag 3 or Lag 8.

Increased Number of Swaps at Lag 1. At Lag 1 we ob-
serve a high percentage of swaps, but swaps are negli-
gible at Lags 3 and 8. The difference in swaps between

Figure 5. (A) Human behavioral accuracy data for Lag 1, Lag 3,

and Lag 8. (B) Simulated behavioral accuracy of the ST2 model for

Lag 1, Lag 3, and Lag 8. Circles indicate T2 accuracy conditional
on correct T1 report, triangles represent raw T1 accuracy, and

squares indicate swaps, that is, the condition when T1 and T2

were correctly identified but reported in the wrong order.
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Lag 1 and Lag 3 [F(1,17) = 58.67, MSE = 0.01, p < .001]
and also Lag 1 compared to Lag 8 [F(1, 17) = 133.31,
MSE = 0.01, p < .001] is highly significant. The ST2

model replicates this effect and produces a high propor-
tion of swaps if T2 is presented at Lag 1 but produces no
order inversions at Lags 3 and 8.

Human ERPs

Our results suggest no significant difference in mean
amplitude of T1’s P3 (300–600 msec) with respect to
T2 presentation (Figure 6). First, there is no significant
difference in T1 P3 amplitude whether an AB occurs or
not [Lag 3 AB: 6.5 AV (SEM = 0.6) vs. Lag 3 noAB: 7.3 AV
(SEM = 0.6); F(1, 17) = 1.91, MSE = 2.7, p = .185]. Sec-
ond, there is no significant difference in T1 P3 amplitude

whether T2 is presented at Lag 3 or Lag 8 [Lag 3 noAB:
7.3 AV (SEM = 0.6) vs. Lag 8: 7.0 AV (SEM = 0.6); F(1,
17) = 0.32, MSE = 2.0, p = .576].

As suggested by Figure 6, T1 P3 50% area latency
(calculated for the 300–600 msec window) seems to be
independent of T2 presentation. First, there is no sig-
nificant difference in T1 P3 latency whether an AB occurs
or not [Lag 3 AB: 453 msec (SEM = 5) vs. Lag 3 noAB:
452 msec (SEM = 5); F(1, 17) = 0.02, MSE = 241.8,
p = .883]. Second, whether T2 is presented at Lag 3 or
Lag 8 has no significant effect on T1 P3 latency [Lag 3
noAB: 452 msec (SEM = 5) vs. Lag 8: 454 msec (SEM =
3); F(1, 17) = 0.18, MSE = 191.9, p = .670].

We replicate the finding that T2 evokes a P3 com-
ponent in those trials in which an AB does not occur
(Figure 6; see also Kranczioch et al., 2003). The differ-
ence in mean amplitude in the 600–1200 msec window
between the AB and noAB condition is highly significant
[Lag 3 AB: 0.7 AV (SEM = 0.6) vs. Lag 3 noAB: 3.4 AV
(SEM = 0.6); F(1, 17) = 24.58, MSE = 2.6, p < .001].

Figure 7 suggests the presence of a joint P3 for T1
and T2 if T2 is presented at Lag 1. The mean P3 ampli-
tude in the 300–600 msec window is significantly larger
than the mean amplitude for the same window if T2
is presented at Lag 8 [Lag 1: 8.5 AV (SEM = 0.5) vs.
Lag 8: 7.0 AV (SEM = 0.6); F(1, 17) = 11.03, MSE = 1.77,
p = .004].

Virtual ERPs

According to the ST2 model, at Lag 3 and Lag 8 targets
are encoded into working memory in a serial fashion. If
T2 is presented at Lag 3, the blaster is suppressed by
T1’s encoding process and T2’s tokenization is delayed.
However, a T2 presented at Lag 8 appears after T1 has
been encoded into working memory, thus, the T2 can
initiate a new encoding process.

As shown in Figure 6, there is no difference in the
mean amplitude of T1’s vP3 amplitude, irrespective of
whether or not an AB occurs at Lag 3 or whether T2 is
presented at Lag 8 (Lag 3 noAB: 0.18; Lag 3 AB: 0.18;
Lag 8: 0.18). There is also no difference in 50% area
latency for T1’s vP3 component between the Lag 3 AB,
the Lag 3 noAB condition and the Lag 8 condition (Lag 3
AB: 470 msec equivalent; Lag 3 noAB: 470 msec equiv-
alent; Lag 8 470 msec equivalent). In line with serial
working memory encoding, at Lag 3 and Lag 8 T2 is
presented beyond the timepoint where it could have
an effect on T1’s tokenization.

T2 items that are presented at Lag 3 and have rela-
tively low target strength are not encoded into working
memory. They show only a small deviation from base-
line in the vERP (Figure 6; T2 vP3 mean amplitude for
Lag 3 AB: 0.06), which remains below threshold. T2s
that are strong enough to ‘‘outlive’’ T1’s tokenization,
however, refire the blaster once T1 encoding has com-
pleted. They are consolidated into working memory

Figure 6. (A) hERP from Pz for (1) the Lag 3 noAB condition (T1 and

T2 correctly reported), (2) the Lag 3 AB condition (T1 accurately
identified but T2 not correctly reported), and (3) the Lag 8 condition

(T1 and T2 correctly reported). Positive is plotted upward. (B) ST2’s

vERP containing the virtual P3 for (1) the Lag 3 noAB condition, (2) the

Lag 3 AB condition, and (3) the Lag 8 condition. In both panels, ‘‘T1’’
and ‘‘T2’’ indicate the presentation of T1 and T2, respectively, and

ERPs are time-locked to T1.
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and show a vP3 component (Figure 6; T2 vP3 mean
amplitude for Lag 3 noAB: 0.13).

According to the ST2 model, the targets are jointly
encoded into working memory at Lag 1. T2 is presented
within the period of T1’s blaster enhancement and joins
into T1’s tokenization process. Hence, the vERP in Fig-
ure 7 contains one joint vP3 component for both T1 and
T2 at Lag 1. The joint vP3 at Lag 1 combines bottom–up
activation of two targets, which is reflected in a larger
area under the vP3 curve for the Lag 1 vP3 compared to
a vP3 for an individual target, that is, T1’s vP3 if T2 is
presented at Lag 8 (Lag 1: 0.28 vs. Lag 8: 0.17).

DISCUSSION

The present study addresses two issues central to the
evaluation of theories of the AB using electrophysiol-

ogy. In Experiment 1, we investigate the effect of task dif-
ficulty on the P3 component evoked by a target presented
in RSVP. Various hypotheses provide conflicting predic-
tions on the relationship between task difficulty and the
P3, in that if the target is harder to detect, the amplitude
of the P3 should (a) increase (Martens, Elmallah, et al.,
2006), (b) remain equal (Kranczioch et al., 2007; Shapiro
et al., 2006), or (c) decrease (Kok, 2001). The second
experiment does not find a modulation of T1 processing
by T2 presented during the AB, thus, our data are in
contrast with previously published findings (Kranczioch
et al., 2007; Martens, Elmallah, et al., 2006; Shapiro et al.,
2006). We evaluate the findings from our Experiment 2
and then discuss the discrepancy between our data and
the previous experimental findings.

The Meaning of P3 Amplitude for Targets in RSVP

The results from Experiment 1 provide evidence in favor
of the P3 component for targets in RSVP being a cor-
relate of bottom–up target strength. First, certain tar-
get letters have significantly higher accuracy scores than
others. We use the behavioral data from a previous
study (Bowman & Wyble, 2007) to classify target letters
as being easy or hard. Our results replicate the previous
finding and show a highly significant difference in ac-
curacy between easy and hard letters. This suggests
that there are consistent differences in target strengths,
which are determined by the identity of each target let-
ter. Such a measure of task difficulty is purely due to
intrinsic stimulus characteristics. As target letters are
presented at random, observers cannot predict whether
a target is going to be easy or hard.

Second, the P3 amplitude is significantly larger for
easy compared to hard targets. This finding contradicts
theories based on the assumption that P3 amplitude
reflects the amount of resource allocated to processing
a target in RSVP. According to such theories, more re-
source should be required to process harder targets
(Martens, Elmallah, et al., 2006). In consequence, we
should find a larger P3 for hard targets, however, the
data from Experiment 1 shows the opposite effect. Al-
ternatively, P3 size might be determined by the amount
of resource allocated to the processing of the target,
which more or less randomly fluctuates from trial to trial
(Kranczioch et al., 2007; Shapiro et al., 2006). However,
this hypothesis predicts that a measure of task difficulty
due to intrinsic stimulus characteristics (as employed
in Experiment 1) should not modulate P3 amplitude,
which is in contrast with our results. Hence, based on
the results of Experiment 1, we can conclude that if pre-
allocated effort is either random or equal in every trial,
as can be assumed due to the randomness of target
presentation in RSVP, intrinsic target strength is a main
modulator of P3 amplitude.

In neural network terms, target strength might be re-
ferred to as bottom–up trace strength. One of the main

Figure 7. (A) hERP from Pz for (1) the Lag 1 condition (T1 and
T2 correctly reported), (2) the Lag 8 condition (T1 and T2 correctly

reported). Positive is plotted upward. (B) ST2’s vERP containing the

virtual P3 component for (1) the Lag 1 condition and (2) the Lag 8

condition. In both panels, ‘‘T1’’ and ‘‘T2’’ indicate the presentation
of T1 and T2, respectively, and ERPs are time-locked to T1.
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arguments in the theory underlying the ST2 model is
that the working memory encoding process is influ-
enced by the target’s strength. A stronger target will
be consolidated into working memory in a more durable
manner, which is reflected in a larger vP3 component.
Hence, the findings from Experiment 1 validate and
support the ST2 model.

Working Memory Encoding is Serial during
the Attentional Blink

Both the ST2 model and the resource sharing theory
propose that T1 processing affects the consolidation of
T2 during the AB, which is supported by behavioral
(e.g., Chun & Potter, 1995) and EEG (Vogel et al., 1998)
data. In addition to the unidirectional influence of T1
on T2, however, resource sharing also argues that there
is mutual interference during the AB, as T1 and T2
compete indirectly through the amount of resource
allocated to them. The behavioral and EEG data from
Experiment 2, however, do not support this hypothesis.
These data suggest that T2 does not influence T1 if pre-
sented at Lag 3 or Lag 8. In addition, there is no effect
on T1 processing whether an AB occurs or not.

Our findings support theories that suggest T1 and T2
do not compete for resources during the AB (Olivers,
2007) and are consistent with the hypothesis of serial
working memory encoding during the AB (Bowman &
Wyble, 2007). If T2 is presented at Lag 3, T1 is in the
process of being encoded into working memory. During
T1’s tokenization process, the attentional enhancement
is suppressed, preventing any interference from T2. Pro-
viding T2 has sufficient activation strength, T2’s working
memory encoding process is delayed until T1 has been
consolidated. If T2, however, is too weak, it is lost and
an AB occurs.

The data from Experiment 2 are thus in contrast
with a key prediction from the resource sharing theory.
However, resource sharing—as it stands—lacks a formal
interpretation, leaving open the possibility of uncer-
tainty over the exact predictions of the theory. One
might thus imagine a modified version of the theory,
which would explain the data presented in this article,
while, nevertheless, remaining within the ‘‘umbrella’’ of
resource sharing. In that eventuality, however, the re-
source sharing theory risks becoming ‘‘unfalsifiable.’’

Interference between T1 and T2 at Lag 1

If T1 and T2 are presented in immediate succession (i.e.,
at Lag 1), the serial mechanism of working memory en-
coding is not enforced. As indicated by the results from
Experiment 2, T1 and T2 seem to be encoded into work-
ing memory together, thus evoking a single P3 com-
ponent. This finding is a replication of the MEG results
reported in Kessler et al. (2005), who report a single

M300 component for T1 and T2 at Lag 1. The increase
in swaps at Lag 1 provides evidence for joint consolida-
tion during Lag 1 sparing, which sometimes leads to a
loss of order information for T1 and T2 (Bowman &
Wyble, 2007). With respect to the shape of the P3 com-
ponent at Lag 1, neither the human nor the virtual P3
components appear to consist of two individual P3s for
T1 and T2 that are offset by 100 msec. As the P3 is larger
in amplitude but not much broader in time, this sug-
gests a single P3 component (indicating a single en-
hanced encoding process) for two target items, which
is in line with the theory proposed by the ST2 model.

As long as target characteristics are relatively simple
(single letters), the joint consolidation has a beneficial
effect on T2 accuracy, as exemplified by the Lag 1 spar-
ing effect (Bowman & Wyble, 2007). There is a negative
effect on T1 accuracy, however, as it is reduced if T2 is
presented at Lag 1 (see Figure 5 and also Hommel &
Akyürek, 2005).

Hence, if there exists some aspect of resource sharing
in time, it occurs if targets are presented in immediate
succession, as is the case at Lag 1. According to the ST2

model, T1 receives an attentional enhancement from the
blaster, which lasts for around 150 msec. As long as T2
is presented within this period, T2 can join the encod-
ing process and resources are shared between the two
targets.

Spreading the Sparing

If more than two targets are presented in a row, how-
ever, a number of studies have shown that subjects
are capable of reporting these targets without showing
an AB (Olivers, van der Stigchel, & Hulleman, 2007;
Nieuwenstein & Potter, 2006; Di Lollo, Kawahara,
Ghorashi, & Enns, 2005). It seems as if Lag 1 sparing
can be extended to more than two targets and longer
time periods (see also Bowman, Wyble, Chennu, and
Craston, 2008). The current version of the ST2 model
cannot account for spreading the sparing; for work on
a revised version of the model that addresses these find-
ings please refer to Wyble et al. (in press).

Evaluating Previous Findings

As previously mentioned, a number of recent articles
investigating the AB using EEG (and MEG) techniques
have argued in favor of resource sharing during the AB.
The data from those studies seem to be in contrast with
this article’s findings and predictions from the ST2

model. In the following section, we take a closer look
at these previous results. The data presented in each of
the articles in question are tested against the following
set of criteria, which we believe an EEG/MEG experi-
ment should fulfill in order to provide evidence for re-
source sharing during the AB.
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P3 as a Measure of Resource Allocation?

Demonstrate that the size of the P3 component evoked
by a target in RSVP can be used as a measure of the
cognitive resource/effort invested into the detection of
that target.

Resource Sharing during the AB?

Resource sharing proposes that if more cognitive re-
sources are allocated to T1, the T2 is more likely to be
missed. Accordingly, the P3 component for T1 should
be larger for those trials in which an AB occurs com-
pared to when T2 is detected and there is no AB.

McArthur, Budd, and Michie (1999)

This study investigates the relationship between T1-
related processing (as exemplified by its P3 component)
and the AB. Both the P3 component and the AB are
‘‘maximal at about 300 msec’’ and return to baseline
around 700 msec following the presentation of T1,
thus, it seems that ‘‘the AB and P300 [or P3] follow a
similar time course’’ (McArthur et al., 1999).4 Indeed, a
significant correlation between the amplitude of six time
intervals of the T1 P3 (235–325 msec, 328–415 msec, 415–
505 msec, 505–595 msec, 595–685 msec, 685–775 msec;
grand-averaged across all lags of T2 presentation) and the
depth of the AB5 at Lags 1–6 (Figure 2 in McArthur et al.,
1999) emphasizes the similarity between the time course
of T1’s P3 and the AB.

P3 as a Measure of Resource Allocation?

In McArthur et al. (1999), difficulty is not manipulated
on the basis of intrinsic stimulus characteristics (as in
Experiment 1 of this article) but by making T1 less or
more frequent. The authors assume that frequent tar-
gets are easy and infrequent targets are hard to per-
ceive. However, the data from Martens, Elmallah, et al.
(2006, p. 209) suggests the opposite, that is, lower aver-
age accuracy scores for frequent than infrequent tar-
gets, although the results are not significant ( p values of
approximately .10). Consequently, the relationship be-
tween frequency and task difficulty in the AB context is
unclear.

Furthermore, due to the very nature of P3, the less
frequent a target is, the more of an ‘‘oddball’’ it becomes
(Kok, 2001). Thus, P3 size is likely to be strongly mod-
ulated by frequency/oddball effects, which may not be
related to the difficulty of identifying the stimulus, or
to the amount of resources allocated to it. With this
point in mind, the finding of less frequent targets elic-
iting a larger P3 (Figure 4 in McArthur et al., 1999) does
not per se provide evidence for the P3 component as
a measure of resource allocation and does not contra-
dict our results from Experiment 1.

Resource Sharing during the AB?

As T1 P3 data for the Lag 3 noAB condition are not
presented in McArthur et al. (1999), this study cannot
directly contribute toward the current discussion. How-
ever, McArthur et al. find a negative correlation between
T1 P3 size and depth of the AB (r = �.59, p = .03; Fig-
ure 3 in McArthur et al., 1999), which provides evidence
against resource sharing but in favor of a reciprocal rela-
tionship during the AB (Bowman et al., 2008).

Martens, Elmallah, et al. (2006)

This article investigates cueing and frequency effects on
the AB. In Experiment 1, T1 difficulty is modulated by
making T1 more or less frequent. In Experiment 2, T1
difficulty is manipulated by presenting a cue (the same
letter as the T1) above the RSVP stream shortly before
the presentation of T1.

P3 as a Measure of Resource Allocation?

Experiment 1 in Martens, Elmallah, et al. (2006) is a rep-
lication of McArthur et al. (1999) in that a notion of task
difficulty is modified by making T1 more or less fre-
quent. As discussed in the previous section, we argue
that the relationship between task difficulty and fre-
quency is unclear. What is clear is that frequency alone
is a potent factor in determining P3 size (Kok, 2001),
which explains a larger P3 for infrequent targets than for
frequent targets (Figure 1 in Martens, Elmallah, et al.,
2006) without resorting to the explanations involving
task difficulty or resource allocation.

We believe that the results from Experiment 2 can be
explained by the way in which T1 was cued. Cueing the
T1 with the same character makes it easier to detect in
behavioral terms, however, also makes the T1 less of
an oddball, which explains the decrease in P3 amplitude
for targets preceded by valid cues compared to invalid
cues (Figure 3 in Martens, Elmallah, et al., 2006). Fur-
thermore, invalidly cued T1s also come as more of a
‘‘surprise’’ to the participant, which increases the am-
plitude of the P3 component (Kok, 2001; Donchin,
1981). Hence, these results per se do not provide evi-
dence in favor of the P3 being a measure of resource
allocation as they are confounded by frequency and ex-
pectancy effects influencing P3 amplitude.

Resource Sharing during the AB?

Both experiments presented in Martens, Elmallah, et al.
(2006) show T1’s P3 to be smaller6 on those trials in
which no AB occurs compared to when T2 is missed and
AB does occur, thus suggesting resource sharing. How-
ever, if T1’s P3 is mainly modulated by frequency and ex-
pectancy effects, as suggested in the previous paragraph,
the data support a different conclusion. By increasing
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the frequency of T1 or by validly cueing it, the AB is
attenuated (Tables 1 and 2 in Martens, Elmallah, et al.,
2006), which is in line with the reciprocal relation-
ship between T1 strength and the AB (Bowman et al.,
2008). Hence, the noAB condition is likely to contain
a larger number of frequent T1s (Experiment 1) and
validly cued T1s (Experiment 2) than the AB condition.
Smaller T1 P3s in the noAB compared to the AB
condition (Figures 2 and 4 in Martens, Elmallah, et al.,
2006) can be explained by the reduction of T1 P3 am-
plitude through increased frequency and valid cueing
effects. Hence, we argue that the differences in P3 size
between the noAB and the AB condition do not per se
support resource sharing during the AB.

As it stands, further investigation is needed to provide
evidence for resource sharing. Such a study would ma-
nipulate task difficulty using intrinsic stimulus character-
istics, in order to avoid experimental confounds from
various factors affecting P3 size.

Shapiro et al. (2006)

This study presents M300 (MEG P3 equivalent) data for
both T1 and T2 during the AB. Task difficulty is not
manipulated, hence, cannot be discussed.

Resource Sharing during the AB?

The difference in T1 M300 amplitude between the AB
and noAB conditions at Lag 2 is not significant ( p > 0.05),
hence, on this measure the data cannot provide evi-
dence for resource sharing. However, the authors do
find that T1 M300 amplitude is reduced if T2 is pre-
sented inside compared to outside the AB window,
which suggests that T2 is able to influence T1 processing
during the AB. Such a finding is in contrast with the ST2

model’s proposal of serial working memory encoding
during the blink. A potential explanation for the finding
might be the experimental setup of the study. There is
evidence for interference between targets at Lag 1, so a
T2 presented at Lag 2 might be presented close enough
to influence T1 processing. Other studies (Experiment 2
of this study or Martens, Munneke, et al., 2006), which
use Lag 3 as the AB condition, do not find a modulation
of T1’s P3, hence, the evidence is inconclusive.

Shapiro et al. (2006) report a positive correlation be-
tween the size of a subject’s T1 M300 and the ‘‘strength’’
of their AB impairment. They argue that this is evidence
for resource sharing, as it indicates that if a subject is
able to allocate less resource to T1 (exemplified by
a smaller T1 M300) they are able to reduce their AB
deficit. However, such a positive correlation between
T1 P3 size and depth of the AB was not found in other
previously published studies (Martens, Elmallah, et al.,
2006; McArthur et al., 1999).

Furthermore, we believe there might be an additional
confound. What if certain participants always have smaller

M300 components (for both T1 and T2) than other par-
ticipants? If, as reported for blinkers and nonblinkers
(Martens, Munneke, et al., 2006), these participants are
also worse at the behavioral task, that is, have a stronger
AB, this would produce the positive correlation observed
in Shapiro et al. (2006), emphasizing individual differ-
ences in the behavioral and MEG data. However, it
requires a study showing a significant positive correlation
between T1 M300 (or P3) size and the depth of the AB
within each subject, for instance, across experimental
blocks, to prove resource sharing.

Kranczioch et al. (2007)

In this article, the authors present an EEG study of the
AB including data containing the P3 component for T1
and T2. As task difficulty is not manipulated, this issue is
not discussed.

Resource Sharing during the AB?

Kranczioch et al. (2007) report a ‘‘significant interaction
of the factors T2 performance and time window [levels
T1–P3 window and T2–P3 window] [F(1, 14) = 5.25,
p = .038]’’ when T2 is presented at Lag 2, that is, during
the AB (see Figure 2B in Kranczioch et al., 2007). They
conclude that ‘‘the T1-related P3 process is larger for
trials in which T2 is missed, whilst the T2-related P3 pro-
cess is smaller in these trials’’ and that there is resource
sharing during the AB.

We argue, however, that the significant interaction
does not necessarily provide evidence for resource
sharing. The factor time window consists of two levels,
namely, ‘‘T1–P3’’ and ‘‘T2–P3,’’ whereas the factor T2
performance consists of the levels ‘‘T2 seen’’ and ‘‘T2
missed.’’ Although the interaction indicates a relation-
ship between T2 performance and P3 time window,
such an analysis is not necessarily evidence for a mod-
ulation of the ‘‘T1–P3’’ by the AB.

We illustrate this by performing an equivalent statistical
analysis on our data from Experiment 2. A time window
(‘‘T1–P3’’ and ‘‘T2–P3’’) by T2 accuracy (‘‘T2 seen’’ and
‘‘T2 missed’’) interaction analysis on our data is also
significant [F(1,17) = 7.72, MSE = 3.5, p = .0129]. Two
separate paired tests, however, indicate that the interac-
tion is due to a highly significant relationship between
T2 accuracy and ‘‘T2–P3’’ [F(1, 17) = 24.58, MSE = 2.6,
p < .001], whereas a comparison of ‘‘T1–P3’’ and T2 ac-
curacy is not significant [F(1, 17) = 1.91, MSE = 2.7,
p = .185]. Hence, without a paired test between ‘‘T1–P3’’
and T2 accuracy, the data from Kranczioch et al. (2007)
do not necessarily provide evidence for resource sharing.

Martens, Munneke, et al. (2006)

This article is not directly related to the current discus-
sion as it is primarily concerned with the difference in
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EEG signatures between so-called blinkers and non-
blinkers. They do, however, make an interesting obser-
vation concerning T1 P3 latency, which is relevant to the
resource sharing discussion.

Resource Sharing during the AB?

Martens, Munneke, et al. (2006) report delayed T1 con-
solidation if T2 is presented at Lag 3 compared to Lag 8.
This finding suggests that T2 can have some influence
on T1 if presented at Lag 3, which is intriguing and,
indeed, troublesome for the ST2 model. The reported
delay in T1 P3 latency for T2 inside compared to out-
side the AB, however, resulted from peak latency analy-
sis [Lag 3: 495 msec, Lag 8: 427 msec, t(10) = 2.275,
p = .046; S. Martens, personal communication, January
2007]. Luck (2005) suggests that if ERP components
overlay in time, as is the case during the AB, a 50%
area latency analysis (Luck & Hillyard, 1990) can yield
more reliable results. The present study and others
(Kranczioch et al., 2007; Martens, Elmallah, et al., 2006;
Shapiro et al., 2006) do not find a delay in T1 consoli-
dation if T2 is presented at Lag 3 compared to Lag 8,
thus, the evidence in favor of delayed T1 consolidation
during the AB is inconclusive.

Evaluating the vERP Technique

The vERPs presented here are used to validate the com-
putational model but also provide opportunities for elec-
trophysiological experimentation strategies. A review by
Picton et al. (2000) emphasizes the importance of a clear
hypothesis before conducting EEG experiments: ‘‘The
overwhelming amount of ERP data along the time and
scalp distribution dimensions can easily lead to incorrect
post hoc conclusions based on trial-and-error analyzes of
multiple time epochs and electrode sites.’’ Virtual ERPs
provide a means of making more formal predictions of
ERP latencies and amplitudes, which can aid the con-
struction of hypotheses prior to experimental design
and data collection. One can investigate how parameter
changes in the model affect results in both the virtual
behavioral and virtual ‘‘electrophysiological’’ domain,
thereby giving a principled method for exploring a theo-
retical hypothesis.

Due to the nature of EEG, the extraction of signals
related to the cognitive processes of interest from back-
ground activity can be problematic. The vERP, however,
can be dissected into its underlying components. For ex-
ample, one could generate vERP traces related to atten-
tional processes or working memory consolidation by
including only the associated parts of the model. If one
used blind source separation techniques, such as Inde-
pendent Components Analysis (Makeig, Debener, Onton,
& Delorme, 2004), to decompose the hERP, correlations
between individual components of the vERP and hERP

might help to further explain the cognitive processes
underlying the hERP.

Conclusion

In this article, we present findings from two electrophysio-
logical studies addressing issues fundamental to the eval-
uation of current theories of temporal attention and the
AB. We use the ST2 model and its neural network im-
plementation to generate vERP traces, which we compare
to the hERPs. In addition to validating the dynamics of the
computational model, the vERPs are used to make pre-
dictions from the theory underlying the ST2 model.

Experiment 1 suggests that, at least for targets in RSVP,
the P3 component is modulated mainly by target strength
and provides only a limited measure of the amount of
resource allocated to the task. Thus, EEG/MEG experi-
ments that were taken in support of the resource sharing
theory, which assumed P3 size to be a measure of cogni-
tive resource allocated, might have to be reinterpreted.

In Experiment 2, our data suggest that if two targets
are presented in immediate succession and within a very
short period (<150 msec), they can be encoded into
working memory together. However, during the AB, our
data suggest that the encoding of the first target into
working memory influences the consolidation of subse-
quent targets, but this interference is not mutual. Thus,
‘‘resource sharing in time’’ seems to be limited to short
time spans (<150 msec) and cannot be extended to the
duration of the AB.

To recapitulate the issue of dividing an attentional
resource among multiple tasks, we can conclude that
although such a mechanism seems to exist in the spatial
domain (Cavanagh & Alvarez, 2005), resource sharing in
temporal attention is severely limited. When orienting
in space, the system seems to be able to dynamically
adapt its behavior to achieve an effective tradeoff be-
tween monitoring the visual field and looking at indi-
vidual items in detail. In time, however, such dynamic
adaptation is restricted to very short periods (i.e., Lag 1)
where it is constrained by the length of an attentional
episode. Thus, as suggested by the ST2 model, the AB is
an observable side effect of this strategy, which enforces
a notion of serial order and ensures that perception of
stimuli in time is unambiguous.
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Notes

1. This study employed a bilateral RSVP paradigm as we also
investigated a modulation of the lateralized N2pc component
during the AB (Chennu, Craston, Wyble, & Bowman, 2008).
Target presentation to the left and right of fixation was equally
probable, randomized and the P3 was recorded from the mid-
line Pz electrode. Hence, bilateral presentation was irrelevant
for the purpose of this study.
2. In the following sections, ‘‘Lag 3 noAB’’ refers to the con-
ditions when T2 was presented at Lag 3 and both targets were
correctly identified, thus, an AB did not occur. ‘‘Lag 3 AB’’ is
the condition when T1 was accurately reported but T2 could
not be correctly identified, hence, the observer experienced an
AB on that particular trial. The ‘‘Lag 8’’ and ‘‘Lag 1’’ conditions
describe scenarios in which T2 was presented at the given lag
(with respect to T1) and both targets were correctly reported.
3. The 54-msec SOA experiment from Bowman and Wyble
(2007) also used a presentation rate of approximately 20 items
per second and the resulting T1 accuracy (averaged across
conditions where T2 is presented at Lag 12/648 msec, Lag 14/
756 msec, and Lag 16/864 msec) is comparable to the accu-
racy of detecting single targets in the current experiment (72%
vs. 77%).
4. Note that the similarity in time course of the P3 compo-
nent and AB is increased by shifting the whole AB curve
forward in time by 235 msec. This is justified by the need to
account for ‘‘the propagation delay between probe [the T2]
onset and the arrival of the signal [processing related to T1]
at the cortex’’ (McArthur et al., 1999), in order for the T1
to be processed to a level where it could influence the pro-
cessing of T2.
5. The term ‘‘depth of the attention blink’’ is the opposite of
T2 performance, that is, how strong the AB impairment (and
thus how low T2 accuracy) is at that particular timepoint.
6. Note the effect seems rather weak. In Experiment 1, sta-
tistical significance is at p = .085/p = .048 (peak amplitude/400–
520 msec mean value) when comparing the T1 P3 of the AB to
the noAB condition. In Experiment 2, significance levels are at
p = .050/p = .062 (peak amplitude/432–584 msec mean value)
when comparing the T1 P3 of the AB to the noAB condition.
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