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Abstract

Spider diagrams are a visual language for expressing logical statements or constraints. Several

sound and complete spider diagram systems have been developed and it has been shown that they are

equivalent in expressive power to monadic first order logic with equality. However, these sound and

complete spider diagram systems do not contain syntactic elements analogous to constants in first

order predicate logic. We extend the spider diagram language to include constant spiders which

represent specific individuals. Formal semantics are given for the extended diagram language. We

prove that this extended system is equivalent in expressive power to the language of spider diagrams

without constants and, hence, equivalent to monadic first order logic with equality.
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1. Introduction

It is widely recognized that diagrams play an important role in various areas particularly
in many aspects of computing, including visualizing information and reasoning about that
information. Diagrams are often useful for conveying complex information in accessible
and intuitive ways. This is one reason behind the widening perception of the importance of
diagrams in computing systems and more widely.
Traditionally in mathematics and logic, diagrams have been excluded from playing a

formal role and were considered only as a heuristic aid. Some people have held the view
that diagrams cannot be formalized, so as to be permitted when reasoning formally.
However, it has been shown that this view is incorrect: Shin devised a sound and complete
diagrammatic logic [1] that is capable of making statements about certain relationships
between sets. Her work is widely regarded as seminal, overturning the view that diagrams
could not yield a formal reasoning system. Thus, diagrams are now being recognized as a
valuable tool that can be exploited in a logical setting; see the overview paper [2] for an
extensive discussion of the importance of diagrams in numerous reasoning contexts.
With such a large body of research existing for symbolic logics, there needs to be solid

justification for developing diagrammatic logics. Whilst logicians and mathematicians are
highly competent when using symbolic logics, including formulating rigorous arguments,
they typically have many years training and experience of working in such a way.
Unfortunately, symbolic logics are not generally accessible to a broad range of potential
users due to the steep learning curve associated with the accurate and fluent use of
‘mathematical’ symbols.
Software engineers form one group of users that need formal languages to specify and

design complex systems. Ideally, their software specifications should be accessible to all
stakeholders involved in the modelling process, including customers, managers and
programmers. Thus, symbolic logics do not provide a comprehensive solution to the
problem of precisely specifying software in an accessible way. Perhaps this is a reason why
there has not been any significant uptake of formal methods by the software engineering
community in general. By contrast, there is extensive use of diagrams to model software,
with the Unified Modelling Language (UML) [3] being an industry standard, mainly
visual, notation. The only non-diagrammatic part of the UML is the Object Constraint
Language (OCL) which is designed to place formal constraints on software models. It,
therefore, seems sensible to offer formal diagrammatic notations for the purpose of
precise, yet accessible, software specification.
Constraint diagrams were introduced in [4] as a way to visualize object-oriented

invariants in the context of the UML and were subsequently extended to depict operation
contracts as well [5]. They have been used to develop high-level models independently of
UML [6,7]. Building on Euler and Venn diagrams, constraint diagrams contain spiders to
indicate existential and universal quantification and use arrows to make statements about
binary relations. For example, the constraint diagram in Fig. 1 expresses that people
can borrow only books that are in the collections of libraries that they have joined.
A formalization of constraint diagrams can be found in [8].
The language of spider diagrams [9,10] forms a fragment of the constraint diagram

language. The only spiders present in spider diagrams represent the existence of elements
(called existential spiders) and arrows are not permitted. The spider diagram d3 in Fig. 2
expresses, by the disjointness of the curves Fish and Lions, that no element is both a fish
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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Fig. 1. A constraint diagram.

Fig. 2. Two spider diagrams.

Fig. 3. Spider diagrams with constants.
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and a lion and there are at least three elements, one of which is a fish, the other two are in
the set Fish [ Lions. The spider diagram d4 expresses that there are exactly three lions that
are not fish. Shading is used to indicate an upper limit on the cardinality. It has been shown
that the spider diagram language is equivalent in expressive power to monadic first order
logic with equality [11].

It is not clear whether spider diagrams provide us with a mechanism for talking
about particular, named, individuals. It would seem useful to introduce a syntactic
device analogous to constant symbols in predicate logic. Indeed, from a usability
perspective, it may be important to augment the language of spider diagrams with such
syntactic devices. We introduce constant spiders (corresponding to given spiders in [12])
to provide users of the notation with explicit syntax with which to write constraints
involving named individuals. At the syntactic level, we distinguish the two types of spiders
by using round nodes for existential spiders and square nodes for constant spiders.
Moreover, constant spiders will always be labelled and existential spiders will not be
labelled.

In Fig. 3, the diagrams d5, d6 and d7 all contain a constant spider labelled tom. The
diagram d5, for example, expresses that tom is either a shark or a whale, but not both.
From the conjunction of d5 and d6 we can deduce that tom is a whale but not a shark,
expressed by d7 (that is, d7 is a consequence of the conjunction of d5 and d6). By contrast,
in Fig. 4, from d8 and d9, which contain existential spiders, we cannot deduce d10.
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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Fig. 4. Spider diagrams without constants.
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Fig. 5. A spider diagram containing a tie.
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We also augment the language with ties in order to assert that two constants represent
the same individual. A tie is a pair of parallel straight line segments that connect con-
stant spiders. Any two nodes (called feet) can be joined by a tie provided that the two
nodes are placed in the same minimal region called a zone. Two constant spiders, s1 and s2
say, joined by a tie represent the same individual if and only if s1 and s2 both represent an
individual in a zone that contains a tie between them. For example, the diagram in Fig. 5
contains two constant spiders, s and t, that are joined by a tie. The diagram asserts that
s represents an individual in the set C � ðA [ BÞ if and only if s represents the same
individual as t.
Previous spider diagram systems have not included explicit negation of diagrams. That

is, for any spider diagram D it is not the case that :D is a spider diagram. Our final
extension to the syntax is to remove this restriction by incorporating the : operator.
In Section 5, we show that the spider diagram language augmented with constants,

ties and negation is expressively equivalent to the spider diagram language, thus proving
that our extensions to the syntax do not increase expressiveness. A key idea of the
proof is to turn each constant spider into a contour containing a single existential
inhabitant. However, this key idea by itself is not sufficient; it merely points us towards
a correct proof technique which has to be adapted to take into account a variety of
issues. One issue of particular note is that we allow empty universes which is not
typical. Further difficulties are discussed in Section 5 and we provide a thorough treat-
ment of the translation required to eliminate constants, ties and negation from the
language. Clearly introducing constant spiders, ties and negation does not decrease
expressiveness and it follows that the language of spider diagrams with constants is equally
as expressive as the language of spider diagrams and, hence, to monadic first order logic
with equality; see [11].
We review related work and some application areas for spider diagrams in Section 2. In

Section 3, we define the syntax of spider diagrams with constants and Section 4 formalizes
the semantics.
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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Fig. 6. Two Venn-II diagrams.
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Fig. 7. An Euler/Venn diagram.
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2. Related work and applications of spider diagrams

Several visual languages have emerged that extend Euler and Venn diagrams; for
example, Venn-II introduced by Shin [1]. The diagram d1 in Fig. 6 is a Venn-II diagram. In
addition to what is expressed by the underlying Venn diagram (i.e. Mammals\

Insects ¼ ;), d1 also expresses, using an �-sequence, the set Mammals [ Insects is not
empty.

Venn-II diagrams can express whether a set is empty or not empty but cannot express
arbitrary finite lower bounds on cardinality. So, the presence of more than one �-sequence
in a particular region provides no more information than a single �-sequence in that
region. Furthermore, if an �-sequence is placed in the same region as shading in a
diagram, then the diagram expresses contradictory information and is unsatisfiable. For
example, the diagram d2 in Fig. 6 asserts that Mammals ¼ ; (by the use of shading) and
Mammalsa; by the use of an �-sequence and, therefore, has no models. Shin shows that
Venn-II is equivalent in expressive power to monadic first order logic (in which all
predicate symbols are one place) and she calls this language L0 [1]. The language L0 is a
pure monadic language that does not include equality, constants or function symbols. Shin
also defined sound and complete reasoning rules for Venn-II.

In [13], Swoboda and Allwein introduce their Euler/Venn language, based on Euler
diagrams. Euler/Venn diagrams do not contain �-sequences but instead use constant

sequences to talk about particular individuals rather than simply denoting the non-
emptiness of a set. Another difference is that Euler/Venn diagrams have underlying
Euler diagrams whereas Venn-II diagrams are more restrictive, allowing only Venn
diagrams as the underlying diagrams. The diagram in Fig. 7 is an Euler/Venn diagram
and expresses that no element is both a mammal and an insect and that there is
something called tim that is either a mammal or an insect. The semantics of constant
sequences (used in Euler/Venn diagrams) are different from our interpretation of con-
stant spiders: both represent particular individuals but, within a diagram, constant
sequences with distinct labels do not necessarily denote distinct individuals whereas
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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constant spiders with distinct labels do denote distinct individuals, unless they are joined
by a tie.
Swoboda and Allwein give an algorithm that determines whether particular monadic

first order formulas are ‘observable’ from a given Euler/Venn diagram. If the formula is
observable from the diagram then it may contain weaker information than the diagram
(i.e. the formula is a consequence of the information contained in the diagram). In [14],
sound reasoning rules for Euler/Venn diagrams are given.
In [11,15] we proved that the spider diagram language without constants is equivalent in

expressive power to monadic first order logic with equality (MFOL¼). The language
MFOL¼ extends L0 by adding equality. Within L0 it is not possible to express that a
particular property, P, holds for a unique element, whereas this is straightforward in
MFOL¼:

9xðPðxÞ ^ 8yðPðyÞ ) x ¼ yÞÞ.

Thus spider diagrams properly increase expressiveness over Venn-II diagrams.
Sound and complete reasoning rules for various spider diagram systems without

constants have been given [9,10] (differing, for example, by way of being based on either
Euler or Venn diagrams). A sound, but not complete, system of spider diagrams that
includes constant spiders, but not existential spiders, can be found in [12]. The reasoning
rules presented in [12] are largely similar to those in [9,10]. However, the level of rigour
displayed in the formalization of the most recent spider diagram system, namely that in [9],
is much higher than that in [12]; a key difference is the use of a very precise abstract syntax
in [9] as opposed to the concrete syntax specified in [12]. Consequently, there is a need to
put spider diagrams with constants on an ‘equal footing’ to those without constants, which
we do in this paper.
In [16], we first considered the impact of augmenting spider diagrams with constants.

The approach taken utilized a non-standard definition of the semantics of constants: when
the universal set was non-empty we did not force constants to denote. This leads to some
counter-intuitive aspects that were not apparent until one considers reasoning with the
notation. In particular, from a diagram containing a single existential spider only (i.e.
asserting the non-emptiness of the universe), one could not (semantically) deduce that the
individual tim was in the universe, even though we may have some syntactical device for
representing tim. Drawing an analogy with representing sets, this would be similar to
having access to a contour (closed curve) label, such as ‘mammals’, and not being able to
deduce from the knowledge that the universe is non-empty that there is an element which is
either a mammal or not a mammal. Thus, in this paper, we improve the semantics for
constants given in [16] so that these non-intuitive situations do not arise.
Moreover, [16] allowed an overloading of label use: any given label could be used to

label a contour in one diagram and a constant spider in another. In this paper, we make the
distinction between sets and individuals more explicit at the syntax level and use one set of
labels specifically for contours and another (disjoint) set of labels for constants. This
impacts our definition of spider diagrams with constants given below. These changes to the
syntax and semantics have a significant impact on the proof that constants do not lead to
an increase in expressive power. Indeed, the details of the proof become much more
complex. A number of additional results are also provided in this paper which do not
appear in [16]. First, [16] does not include ties; not only do we provide a formalization of
the notation involving ties, but we also prove that they can be removed from the notation
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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without decreasing expressiveness. Secondly, we now prove that removing the negation
operator also does not lead to a decrease in expressiveness, a result some may find
surprising since diagrammatic languages are often thought not rich enough to express
negated statements. Finally, we also provide a satisfiability result, showing how to
construct a model for any so-called unitary spider diagram with constants.

There are a number of examples of spider diagrams being used in practice, such as
assisting with the task of identifying component failures in safety critical hardware designs
[17]. They have also been used (but not explicitly) for displaying the results of database
queries [18], representing non-hierarchical computer file systems [19], in a visual semantic
web editing environment [20,21] and for viewing clusters which contain concepts from
multiple ontologies [22]. All of these application areas (except the first) use constants to
represent specific objects, thus highlighting the importance of augmenting spider diagrams
with constants.

3. Syntax

In this section, we define what constitutes a spider diagram, using an abstract syntax.
There are good, well documented reasons for using this type of approach, rather than
defining at the concrete (drawn) diagram level; see, for example, [23,24].

The contour labels (that is, the closed curves’ labels) used in our diagrams are chosen
from a countably infinite set, CL. Informally, a zone is a region of the plane that can be
described by the set of labels of the contours that include it. However, in different
diagrams, zones can be included by contours with the same labels but differ in the labels
which exclude them. We will define a zone to be a pair of finite, disjoint sets, ðin; exÞ. The
set in contains the labels of the contours that include ðin; exÞ whereas ex is the set of labels
of the contours that do not include ðin; exÞ. So, in a diagram, in and ex form a partition of
the contour label set. A region is a non-empty set of zones. We define Z and R ¼
PZ� f;g to be the sets of all zones and regions, respectively. As an example, the diagram
in Fig. 8, contains two zones, ðfAg; ;Þ and ð;; fAgÞ, and therefore contains three regions.

To describe the existential spiders in a drawn diagram, it is sufficient to say how many
existential spiders there are in each region. In Fig. 8, for example, there is one existential
spider in the region fðfAg;;Þg and another in the region fðfAg;;Þ; ð;; fAgÞg. The nodes of the
spiders are called feet; there are two one-footed spiders and a two-footed spider in d1. We
will use a bag of regions, called existential spider descriptors, to formalize the notion of an
existential spider. Alternatively, we could specify any finite set to be a collection of
existential spiders and map each of these spiders to a region in the diagram (called the
‘habitat mapping’, with the region in which the spider is placed called its habitat).
However, with this alternative choice, for any given drawn diagram containing existential
Fig. 8. The syntax of spider diagrams.
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spiders there are many choices for the representation of the drawn spiders at the abstract
level.
In any diagram we use only a finite set of constant spiders. We will assume that all the

constant spider labels come from a finite set CS. An alternative choice would be to have a
countably infinite set of constant spider labels. However, the approach we take to prove
that augmenting the spider diagram language with constants does not increase
expressiveness would need to be adjusted if CS is not finite and we discuss this at the
end of Section 5.
Formally, a diagram will contain a finite set of constant spider labels together with a

habitat function, mapping each constant spider label to a region in the diagram. The
definition of an abstract spider diagram with constants extends that given in [15] for spider
diagrams (without constants). We assume that the sets CS, CL, Z and R are pairwise
disjoint.
Now we are in a position to specify formally spider diagrams with constants. Example

3.1 will more fully illustrate the concepts. We start by defining so-called unitary diagrams
and then extend the definition to allow such diagrams to be joined using logical
connectives.

Definition 3.1. An abstract unitary spider diagram with constants, d (with contour labels in
CL and constant spider labels in CS) is a tuple hL;Z;Z�;ESD;CS; y;oi whose
components are defined as follows.
(1)
Pl

Jo
L ¼ LðdÞ � CL is a finite set of contour labels.

(2)
 Z ¼ ZðdÞ � fða;L� aÞ : a � Lg is a set of zones such that

(i) for each contour label l 2 L there is a zone ða;L� aÞ 2 ZðdÞ such that l 2 a and
(ii) the zone ð;;LÞ is in ZðdÞ.
ease

urna
We define RðdÞ ¼ PZðdÞ � f;g to be the set of regions in d.

(3)
 Z� ¼ Z�ðdÞ � Z is a set of shaded zones and we define R�ðdÞ ¼ PZ�ðdÞ � f;g to be the

set of shaded regions in d.

(4)
 ESD ¼ ESDðdÞ � Zþ � RðdÞ is a finite set of existential spider descriptors such that

8ðn1; r1Þ; ðn2; r2Þ 2 ESD ðr1 ¼ r2 ) n1 ¼ n2Þ.

If ðn; rÞ 2 ESD then there are n existential spiders with habitat r.

(5)
 CS ¼ CSðdÞ � CS is a finite set of constant spider labels.

(6)
 y ¼ yd :CS! RðdÞ is a function which maps each constant spider label to a region in d.

If ydðsiÞ ¼ r then si has habitat r in d.

(7)
 o ¼ od :CS � CS! PZ is a function which returns the web of each pair of constant

spiders such that

8si; sj ; sk 2 CS oðsi; sjÞ � yðsiÞ \ yðsjÞ ^ oðsi; siÞ ¼ yðsiÞ

^ oðsi; sjÞ ¼ oðsj ; siÞ ^ ð8z 2 ZðdÞ ðz 2 oðsi; sjÞ \ oðsj ; skÞ ) z 2 oðsi; skÞÞÞ.

The web of a pair of constant spiders is the set of zones that contain a tie between those
two spiders.
Let d ¼ hL;Z;Z�;ESD;CS; y;oi be a unitary spider diagram with constants. The tuple
hL;Z;Z�;ESDi is a unitary spider diagram without constants.
cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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Some remarks about the above definition are in order. Every contour in a diagram
contains at least one zone and this is captured by condition 2(i). In any diagram, the zone
inside the boundary rectangle but outside all the contours is present and this is captured by
condition 2(ii). Being joined by a tie in a zone is interpreted transitively. In fact, ties give
rise to an equivalence relation on the feet in each zone. In the abstract syntax, if spiders si

and sj are joined by a tie in zone z and sj and sk are also joined by a tie in z then so too are
si and sk, giving the transitive property. Moreover, si is deemed to be joined by a tie to itself
in each zone of its habitat, giving the reflexive property. Finally, for symmetry, si is joined
to sj in zone z if and only if sj is joined to si in zone z. Therefore, in a zone z, taking the
constant spider feet in z as a set of vertices and the ties in that zone as a set of edges, we
have a graph whose components are complete graphs with loops at each vertex. However,
in drawn diagrams we will only draw a spanning forest in each zone so as to avoid ‘visually
cluttered’ diagrams.

We note that ties could also be used to connect existential spider feet. Indeed, they could
also be used to connect an existential foot to a constant foot. However, for any diagram that
incorporated such ties there exists a semantically equivalent diagram that does not contain
such ties. This is not the case for ties between constant spider feet. It is straightforward to
extend the work in this paper to the case where these additional types of tie are permitted.

Example 3.1. The diagram d1 in Fig. 9 has the following formal description:
(1)
Pl

Jo
Contour label set Lðd1Þ ¼ fL1;L2g.

(2)
 Zone set

Zðd1Þ ¼ fð;; fL1;L2gÞ; ðfL1g; fL2gÞ; ðfL2g; fL1gÞ; ðfL1;L2g;;Þg.
(3)
 Shaded zone set Z�ðd1Þ ¼ fðfL2g; fL1gÞg.

(4)
 Existential spider descriptors set

ESDðd1Þ ¼ fð1; fðfL2g; fL1gÞgÞ; ð1; fðfL1g; fL2gÞ; ðfL2g; fL1gÞgÞg.
(5)
 Constant spider label set CSðd1Þ ¼ fs1; s2g.

(6)
 The function yd1

: fs1; s2g ! Rðd1Þ where yd1
ðs1Þ ¼ fðfL1g; fL2gÞg and yd1

ðs2Þ ¼

fðfL1;L2g; ;Þg.

(7)
 The function od1

:CSðd1Þ � CSðd1Þ ! PZðd1Þ where od1
ðs1; s1Þ ¼ yd1

ðs1Þ, od1
ðs2; s2Þ ¼

yd1
ðs2Þ and od1

ðs1; s2Þ ¼ od1
ðs2; s1Þ ¼ ;.
In order to be able to refer to the set of existential spiders in a diagram, d, we define

ESðdÞ ¼ feiðrÞ : 9ðn; rÞ 2 ESDðdÞ ^ 1pipng
Fig. 9. Two spider diagrams with constants.
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to be the set of existential spiders. The subscript ‘i’ can be thought of as labelling the
existential spiders in a region. We also define SðdÞ ¼ ESðdÞ [ CSðdÞ to be the set of spiders

in d. We assume that the sets ESðdÞ and CS [ CL [Z [R are disjoint. We define a
function

Z:ESðdÞ ! RðdÞ

by ZðeiðrÞÞ ¼ r which returns the habitat of each existential spider. Spiders represent the
existence of elements and regions represent sets—thus we need to know how many
elements we have represented in each region. Note here that, in a unitary diagram, a
constant spider and an existential spider represent the existence of distinct elements. For
example, in Fig. 9, the diagram d2 asserts that the set represented by the zone ðfL1g; fL2gÞ

contains at least three elements, including the individual represented by s1. The set of
existential spiders contained by region r in d is denoted by ESðr; dÞ. More formally,

ESðr; dÞ ¼ fe 2 ESðdÞ : ZðeÞ � rg.

Similarly, the set of constant spiders contained by region r in d is

CSðr; dÞ ¼ fs 2 CSðdÞ : ydðsÞ � rg

and we also define Sðr; dÞ ¼ ESðr; dÞ [ CSðr; dÞ. So, any spider in d whose habitat is a
subset of r is in the set Sðr; dÞ. The set of existential spiders touching r in d is denoted by
ETðr; dÞ:

ETðr; dÞ ¼ fs 2 ESðdÞ : ZðsÞ \ ra;g.

The sets of constant spiders touching a region, CTðr; dÞ, and the set of spiders touching a
region, Tðr; dÞ, are defined similarly. In d1, Fig. 9,

jSðfðfL2g; fL1gÞg; d1Þj ¼ 1

and

jTðfðfL2g; fL1gÞg; d1Þj ¼ 2.

In d2,

jSðfðfL1g; fL2gÞg; d2Þj ¼ jTðfðfL1g; fL2gÞg; d2Þj ¼ 3.

Unitary diagrams form the building blocks of compound diagrams.

Definition 3.2. An abstract spider diagram with constants is defined as follows.
(i)
Ple

Jo
Any unitary diagram with constants is a spider diagram with constants.

(ii)
 If D1 and D2 are spider diagrams with constants then :D1, ðD1 _D2Þ and ðD1 ^D2Þ

are a spider diagrams with constants.
We adopt the usual convention of omitting brackets where no ambiguity arises. Another
convention will be to denote unitary diagrams by d and arbitrary diagrams by D.
Definition 3.2 adapts to spider diagrams without constants in the obvious way.
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4. Semantics

We now sketch, informally, the semantics of unitary spider diagrams. Regions in spider
diagrams with constants represent sets. Missing zones (i.e. zones in the set fða; bÞ 2
Z : a [ b ¼ LðdÞg � ZðdÞ) represent the empty set. Existential spiders assert the existence
of elements and distinct existential spiders assert the existence of distinct elements.
Therefore, we can express lower and, using shading, upper bounds on the cardinalities of
the sets we are representing. For simplicity, suppose the diagram d does not contain any
ties. If region r is inhabited by n spiders in d then d expresses that the set represented by r

contains at least n elements. If r is shaded and touched by m spiders in d then d expresses
that the set represented by r contains at most m elements. Thus, if d has a shaded,
untouched region, r, then d expresses that r represents the empty set.

Each constant spider asserts that the individual represented by its label is in the set
represented by its habitat. Moreover, the individuals represented by constant spiders are
distinct from those represented by existential spiders. Therefore, if a region contains an
existential spider and a constant spider, s, we can deduce that there are at least two
elements in that region, including that represented by s. Within a unitary diagram, no two
constant spiders represent the same individual unless they are joined by a tie. Constant
spiders joined by ties must represent the same individual if they both represent individuals
in the set represented by some particular zone in their web, otherwise they must represent
distinct individuals. So, the presence of a tie between two constant spiders has the effect of
potentially reducing the upper and lower cardinality constraints placed on the set
represented by the union of their habitats.

To formalize the semantics of spider diagrams with constants we shall map the constant
spider labels in CS, the contour labels in CL, zones in Z and regions in R to subsets of
some universal set U. We wish constant spider labels to act like constants in first order
predicate logic, so they will be interpreted by single element subsets of the universal set,
unless the universal set is the empty set. We could, equivalently, choose to map constant
spiders to elements of the universal set. However, the semantics predicate (defined below)
is more elegant when we map constant spiders to sets, as are the details in some of the
proofs below. We could also choose to force models with constant spiders to have non-
empty universal sets. However, having only existential spiders in the language does not
force the universal set to be non-empty. We note that any unitary diagram containing
spiders has only non-empty models. In either spider diagram language (with or with-
out constants) we can express that there are no elements by shading all the zones in a
unitary diagram that does not contain any spiders. The motivation for this non-standard
choice (allowing an empty universe) arises from an intended application domain of
constraint diagrams: modelling object-oriented systems. The domain will consist of objects
in the system and in some instances there will be no objects (for example, in an initial state
before any objects have been created). Logic with potentially empty structures is explored
in [25].

Our formalization of the semantics extends that given for spider diagrams without
constants in [15].

Definition 4.1. An interpretation of constant spider labels, contour labels, zones and regions,
or simply an interpretation with constants, is a pair ðU ;CÞ where U is a set (the universal set)
and C:CL [Z [R [ CS! PU is a function mapping constant spider labels, contour
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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labels, zones and regions to subsets of U such that the images of the zones and regions are
completely determined by the images of the contour labels as follows:
(1)
Pl

Jo
for each zone ða; bÞ,

Cða; bÞ ¼
\
l2a

CðlÞ \
\
l2b

CðlÞ,

where CðlÞ ¼ U �CðlÞ and we define\
l2;

CðlÞ ¼ U ¼
\
l2;

CðlÞ

and

(2)
 for each region r,

CðrÞ ¼
[
z2r

CðzÞ
and either the universal set is the empty set or the constant spiders map to singleton subsets
of U. More formally

U ¼ ; _ 8si 2 CS jCðsiÞj ¼ 1.

We will write C:R [ CS! PU when strictly speaking we mean C:CL [Z [R [
CS! PU .

We introduce a semantics predicate which determines whether an interpretation agrees with
the meaning of any given diagram with constants.

Definition 4.2. Let D be a diagram with constants and let m ¼ ðU ;CÞ be an interpretation
with constants. We define the semantics predicate of D, denoted PDðmÞ. If D is a unitary
diagram then PDðmÞ is the conjunction of the following conditions.
(1)
 Plane tiling condition: The union of the sets represented by the zones in D is the
universal set:[

z2ZðDÞ

CðzÞ ¼ U .
(2)
 There exists an extension of C:R [ CS! PU to C:R [ CS [ ESðDÞ ! PU such
that the following conditions are satisfied.
(a) Spiders condition: Each spider represents the existence of an element (strictly, a

single element set) in the set represented by its habitat and existential spiders do not
represent the same elements as any constant spiders:

8s 2 ESðDÞ ðjCðsÞj ¼ 1 ^CðsÞ � CðZðsÞÞÞ

and

8s 2 CSðDÞ ðjCðsÞj ¼ 1 ^CðsÞ � CðyDðsÞÞÞ

and

8e 2 ESðDÞ 8s 2 CSðDÞCðeÞaCðsÞ.
ease

urna
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Pl

Jo
(b) Existential spiders condition: No two existential spiders represent the existence of
the same element:

8e1; e2 2 ESðDÞ ðCðe1Þ ¼ Cðe2Þ ) e1 ¼ e2Þ.

That is, the function C is injective when the domain is restricted to ESðDÞ.
(c) Constant spiders condition: Two constant spiders represent the same individual if

and only if they both represent an individual in the set denoted by some zone in
their web:

8si; sj 2 CSðDÞ ðCðsiÞ ¼ CðsjÞ 3 9z 2 oDðsi; sjÞCðsiÞ [CðsjÞ � CðzÞÞ.

(d) Shading condition: Each shaded zone, z, represents a subset of the set of elements
represented by the spiders touching z:

8z 2 Z�ðDÞ CðzÞ �
[

s2Tðfzg;DÞ

CðsÞ.
he s

give

hing

ease

urna
If C:R [ CS [ ESðDÞ ! PU ensures PDðmÞ is true then C is a valid extension to

existential spiders for D. If D ¼ :D1 then PDðmÞ ¼ :PD1
ðmÞ. If D ¼ ðD1 _D2Þ then

PDðmÞ ¼ ðPD1
ðmÞ _ PD2

ðmÞÞ. If D ¼ ðD1 ^D2Þ then PDðmÞ ¼ ðPD1
ðmÞ ^ PD2

ðmÞÞ. We say m

satisfies D, denoted m � D, if and only if PDðmÞ is true. If m � D we say m is a model for D.

For example, the interpretation m ¼ ðf1; 2; 3; 4g;CÞ partially defined by Cðs1Þ ¼ f1g,
Cðs2Þ ¼ f2g, CðL1Þ ¼ f1; 2g and CðL2Þ ¼ f2; 3; 4g is a model for d1 in Fig. 9 but not for d2.

From the definition of the semantics predicate, it follows that a unitary diagram, d, has
an empty model if and only if d does not contain any spiders. It is easy to see that for any
unitary spider diagram without constants, the constant spiders condition is always true.
We make the following definitions for the language of spider diagrams without constants.

Definition 4.3. Let m ¼ ðU ;CÞ be an interpretation with constants. We restrict the domain
of C to CL [Z [R to give the pair ðU ;CjCL[Z[RÞ which we call an interpretation.

Making the obvious change to the semantics predicate given for spider diagrams with
constants, we define the semantics predicate for spider diagrams without constants. The
definitions of satisfies and model adapt similarly. We note here that the semantics predicate
we give for spider diagrams without constants is different from that given in [11], which
uses a collection of inequalities to capture the notion of a model,5 however, they are
equivalent [26]. That is, the two semantics predicates identify the same interpretations as
models for any given diagram without constants.

Theorem 4.1. Every unitary diagram d is satisfiable.

Proof (Sketch). The proof strategy is to construct a model for d. We start by noting that,
in any model for unitary diagram d, the set represented by the region containing all of the
zones is the universal set. Moreover, there must be sufficiently many elements in the
universal set for the spiders in d, taking any ties into account. To start the construction of
emantics predicate in [11] states that for a unitary diagram d, the number of existential spiders in

n region, r, in d is at least jCðrÞj, and, if r is shaded, jCðrÞj is at most the number of existential spiders

r.
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our model, we specify the universal set as follows. First, define a function f :SðdÞ ! ZðdÞ

so that for each spider s, f ðsÞ is in the habitat of s, essentially selecting a foot of each spider.
Recall that od identifies which spider feet are joined by ties. For each constant spider, si,
we define

½si	 ¼ fsj 2 CSðdÞ : f ðsjÞ ¼ f ðsiÞ ^ f ðsiÞ � odðsi; sjÞg.

It is easy to verify that these sets ½si	 give rise to an equivalence relation and, hence, form a
partition of CSðdÞ. The universal set is then taken to be

U ¼ ESðdÞ [ f½si	 : si 2 CSðdÞg.

Next, we define C. Each contour label, L, in d maps to the set

CðLÞ ¼ fe 2 ESðdÞ : f ðeÞ ¼ ða; bÞ ^ L 2 ag [ f½si	 : si 2 CSðdÞ ^ f ðsiÞ ¼ ða; bÞ ^ L 2 ag

and each constant spider, sk, in d, maps to the set

CðskÞ ¼ f½sk	g.

The constant spiders (labels) that are not in CSðdÞ map to any single element subset of U,
provided U is not empty. The contour labels that are not in LðdÞmap to any subset of U. It
is relatively straightforward to show that ðU ;CÞ is a model for d, noting that for each zone,
z, in d, CðzÞ ¼ fe 2 ESðdÞ : f ðeÞ ¼ zg [ f½si	 : si 2 CSðdÞ ^ f ðsiÞ ¼ zg. &

We note here that the equivalence relation on CSðdÞ induced by f in the above proof is
related to od but not equivalent to it. For each choice of f, there is one such equivalence
relation which essentially identifies when the spider feet selected by f are joined by a tie.
When each spider in d has a single foot only, the equivalence relation on CSðdÞ induced by
f and od are capturing the same information; in such a case, f is unique. Much of the work
in the remainder of this paper considers diagrams where each spider has a single foot only
and the equivalence classes ½si	 are utilized.

5. Expressiveness

In order to show that augmenting spider diagrams with constants does not increase
expressiveness, we will specify a translation from spider diagrams with constants to spider
diagrams without constants ensuring that an expressively equivalent relation holds.
Informally, two languages are equivalent in expressive power when they are capable of
axiomatizing the same classes of interpretations (sometimes called structures), up to some
notion of equivalence between interpretations; this will be more fully explored shortly.
The essence of our translation, for unitary diagrams, is to replace each constant spider

by a contour containing a single existential spider, shading and nothing else. The
associated contour label is determined by the label of the constant spider; a function, L,
will be defined which maps elements of CS to contour labels in order to enable consistent
contour label selection across different unitary diagrams. Intuitively, a contour, L, with
shading and an existential spider allows the identification of a particular individual, since
in any model, ðU ;CÞ, there is only one element in CðLÞ. There are some difficulties to be
overcome, however; the aforementioned intuition points us towards a key technique used
to eliminate constant spiders but is not adequate to cope with a variety of complicating
issues.
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First, we observe that a unitary diagram containing, say, two constant spiders with
many feet, some of which are joined by ties, contains disjunctive information about
situations when the two constant spiders denote the same individual. Incorporating this
type of uncertainty into our translation of unitary diagrams makes the details more
complicated. Our translation, therefore, will focus only on diagrams where the spiders
have single feet (every diagram can be reduced to a semantically equivalent diagram in this
form).

Secondly, in any given unitary diagram, d, it need not be the case that all of the constant
spider labels are used (i.e CSðdÞaCS). However, in any non-empty model for d, all of the
constant spiders labels in CS represent single element sets. Thus our translation must
ensure that the contour labels, arising from the constant spider labels in CS under the
function L just described, all represent single element sets, not just those arising from the
constant spiders in d.

Third, it is not the case that, having translated unitary diagrams, we can extend the
translation to compound diagrams inductively. This is because, for example, the negation
of the translation of unitary diagram d is not expressively equivalent to :d. Intuitively, the
negation of a diagram containing only a contour label, l, which is inhabited by a single
spider and is shaded (in particular, those arising from a constant spider, c say) allows l to
contain any number of elements other than exactly one but c always represents an
individual unless U ¼ ; regardless of whether a negated statement is made. To simplify the
presentation of our results, we will first translate the fragment of spider diagrams with
constants where the operator : is not permitted.

In order to define when two diagrams are expressively equivalent we will now return to
the notion of identifying when two interpretations are equivalent. In first order predicate
logic, a structure (see, for example [25]) corresponds to our notion of an interpretation.
A structure for a first order language with constant symbols consists of a universal set (or
domain), U, together with an ordered list of sets, each of which corresponds to the
interpretation of either a function symbol or a predicate symbol in the language. So, a
structure can be written as

hU ; f 1; f 2; . . . ; f m; . . . ;R1;R2; . . . ;Rn; . . .i,

where each f i is a function with domain Uarityðf iÞ and codomain U and each Ri is a subset of
UarityðRiÞ.

Two structures are equal when they have the same universal set and the same ordered list
of sets (i.e. the functions and relations). This notion of equality, therefore, is independent
of the actual symbols being interpreted. Two first order predicate logic languages are
equivalent in expressive power precisely when they can axiomatize the same sets of
structures under this notion of equality. We generalize this notion to the spider diagrams
case.

We will assume, without loss of generality, throughout this section that CL ¼
fL1;L2; . . . ;Ln; . . .g and CS ¼ fs1; s2; . . . ; smg. Given an interpretation with constants,
I ¼ ðU ;CÞ, we can write I in a similar manner to structures (i.e. as an ordered list),
provided we consider C as its image, rather than as a function:

I ¼ hU ;Cðs1Þ;Cðs2Þ; . . . ;CðsmÞ;CðL1Þ; . . . ;CðLnÞ; . . .i.
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Likewise, we can write an interpretation (without constants), J ¼ ðV ;FÞ as

J ¼ hV ;FðL1Þ;FðL2Þ; . . . ;FðLmÞ;FðLmþ1Þ; . . . ;FðLmþnÞ; . . .i.

As just stated, the actual labels interpreted are of no significance when considering equality
of structures. Generalizing this idea to interpretations, I is equivalent to J precisely when
U ¼ V , CðsiÞ ¼ FðLiÞ for all constant spiders si and CðLiÞ ¼ FðLmþiÞ for all Li, illustrated
below:

I ¼ h U ; Cðs1Þ; Cðs2Þ; . . . ; CðsmÞ; CðL1Þ; . . . ; CðLnÞ; . . . i

k k k . . . k k . . . k . . .

J ¼ h V ; FðL1Þ; FðL2Þ; . . . ; FðLmÞ; FðLmþ1Þ; . . . ; FðLmþnÞ; . . . i

.

This is a mechanism we use to show that augmenting spider diagrams with constants and
ties does not lead to an increase in expressive power.

Example 5.1. Suppose that CS ¼ fs1g (that is, m ¼ 1) and consider the diagram d1 in
Fig. 10, which includes a constant spider. Our aim is to find a spider diagram without constants
expressively equivalent to d1. To construct such a diagram, firstly we replace each contour
label Li by Liþ1. This ‘frees’ the contour label L1. We can use this free contour label to
identify a specific individual (constant symbols represent specific individuals). We replace
the constant spider, s1, by a contour with label L1, that is entirely shaded inside and that
contains a single existential spider. The resulting spider diagram without constants is d2.

In general, we have jCSj ¼ m, so Li will be freed for each 1pipm.

Definition 5.1. Define a bijection L:CS [ CL! CL by

LðxiÞ ¼
Liþm if xi 2 CL;

Li if xi 2 CS:

(

The codomain of an interpretation is a power set and we allow the power set of any set
(including the empty set) to be a codomain. We define U to be the class of all sets.

Definition 5.2. Define INTCS to be the class of all interpretations with constants, that is

INTCS ¼ fðU ;CÞ : U 2 U ^C:CS [ CL [Z [R! PUg,

where ðU ;CÞ is an interpretation with constants. Define also INTES to be the class of all
interpretations (ES for existential spiders), that is

INTES ¼ fðU ;CjCL[Z[RÞ : ðU ;CÞ 2 INTCSg.
Fig. 10. A spider diagram with constants and an expressively equivalent spider diagram without constants.
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Fig. 11. Expressively equivalent diagrams.

Fig. 12. Illustrating the relationship between models for expressively equivalent diagrams.
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Using the functionL we will now define a mapping, h, from interpretations with constants
to interpretations which captures the notion of equivalence described above.

Definition 5.3. Define h:INTCS ! INTES by hðU ;CÞ ¼ ðU ;FÞ where F:CL [Z [
R! PU is defined by FðLiÞ ¼ CðL�1ðLiÞÞ.

If, under C, we consider the images of the elements in CS [ CL [Z [R as an ordered
list, then applying h to ðU ;CÞ will preserve this list.

Lemma 5.1. The function h is injective.

Example 5.2. For this example, assume that CS ¼ fs1; s2; s3; s4g. In Fig. 11 diagrams d1

and d2 are expressively equivalent. The function h provides a bijective correspondence
between their models.

Whether two diagrams are expressively equivalent will be determined by the function h

just defined. There are many other choices we could have made for h, each choice giving
rise to an expressively equivalent relation.

Definition 5.4. Let D1 be a spider diagram with constants and let D2 be a spider diagram
without constants. The diagrams D1 and D2 are expressively equivalent if and only if h

provides a bijective correspondence between their models.

A model level relationship between expressively equivalent diagrams is shown in Fig. 12.
In the examples we have given so far to illustrate the expressively equivalent relation, we

assumed that the constant spider label set CS was the same as the constant spider label set
in the example diagrams. We now give a further illustration, but where CS contains more
labels than the example diagram.

Example 5.3. For this example, assume that CS ¼ fs1; s2; s3g. In Fig. 13 the diagram d1

contains just s1 and s2. However, in any model for d1, the constant spider s3 represents a
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Fig. 13. Expressively equivalent diagrams.

Fig. 14. Semantic equivalence.
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specific individual. Thus, to find a diagram expressively equivalent to d1, we must ensure
that L3 represents a single element set, asserted by d3. The diagram d2 ^ d3 is expressively
equivalent to d1.

In order to show that augmenting spider diagrams with constants does not increase
expressiveness, we must find, for each spider diagram with constants, an expressively
equivalent spider diagram without constants. To make this task more straightforward
we appeal to a-diagrams. A spider diagram D (with or without constants) is called an
a-diagram if and only if all the spiders have exactly one foot. The diagrams in Fig. 11 are
not a-diagrams but those in Fig. 10 are a-diagrams.

Example 5.4. In Fig. 14 the diagram d1 is semantically equivalent to the a-diagram
d2 _ d3 _ d4 _ d5. That is, all the models for d1 are models for d2 _ d3 _ d4 _ d5 and
vice versa.

Theorem 5.1. Every spider diagram with constants is semantically equivalent to an a-diagram

with constants.

Proof (Sketch). Spider legs represent disjunction within a unitary diagram, d. Therefore, if
there is a spider, s, in d that inhabits region r1 [ r2 where r1 \ r2 ¼ ; then d is semantically
equivalent to d1 _ d2 where each of d1 and d2 are copies of d except that s inhabits r1 in d1

and r2 in d2, thus removing a spider’s leg. This process of splitting spiders can be repeated
until all spiders inhabit exactly one zone. &

Thus, for each a-diagram with constants if we can find an expressively equivalent spider
diagram without constants then we will have shown that augmenting the language of
Please cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,
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Fig. 15. Changes in the zone set.
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spider diagrams with constants does not increase expressiveness. To begin, we consider
unitary a-diagrams.

Example 5.5. The diagrams in Fig. 15 are expressively equivalent, given CS ¼ fs1; s2g. By
relabelling the contours in d1 when constructing d2, we have changed the zone set. More
drastic, though, are changes to the zone set that occur when replacing each constant spider
by a contour (along with the shading and an existential spider). The zones in d1 are

Zðd1Þ ¼ fðfL1g; fL2gÞ; ðfL1;L2g; ;Þ; ðfL2g; fL1gÞ; ð;; fL1;L2gÞg.

Each of these zones gives rise to a zone in d2, for example z1 ¼ ðfL1;L2g;;Þ gives rise to
z2 ¼ ðfL3;L4g; fL1;L2gÞ. We have used the containing label set for z1, namely fL1;L2g and
applied L to each of its elements to give the containing label set for z2, namely fL3;L4g.
Since the contour label set for d2 is generated from the contour label set and constant
spider label set in d1 we can deduce the excluding label set for z2:

fL1;L2g ¼ Lðd2Þ � fL3;L4g.

If a zone is shaded in d1 then it gives rise to a shaded zone in d2. Moreover, if an existential
spider inhabits z in d1 then it inhabits the zone that z gives rise to in d2. This establishes the
habitat for each existential spider in d2 that arises from an existential spider in d1. Further
zones, all of which are shaded, are in d2; there is one such zone for each constant spider. As
an example, the constant spider s1 gives rise to the zone z3 ¼ ðfL1;L3g; fL2;L4gÞ. In d1,
spider s1 has habitat z4 ¼ ðfL1g; fL2gÞ. The constant spider s2 gives rise to the shaded zone
ðfL2;L4g; fL1;L3gÞ.

In building the translation, we need to identify which constant spiders are joined by ties.
The constant elimination collapses the constant spiders joined by ties into a single
existential spider. Recall that yd is a function that returns, for each constant spider (label)
in unitary diagram d, the region which in which that constant spider is placed (its habitat).

Definition 5.5. We define, for unitary a-diagram d, the set of connected constant spider

components, denoted ConSðdÞ, to be

ConSðdÞ ¼ f½si	 : si 2 CSðdÞg,

where ½si	 is the equivalence class ½si	 ¼ fsj 2 CSðdÞ : odðsi; sjÞa;g. We denote the set of
connected constant spider components in a zone z of d by ConSðz; dÞ ¼ f½si	 2 ConSðdÞ :
ydðsiÞ ¼ fzgg.

For example, in Fig. 11, we have the equivalence classes ½s1	 ¼ fs1g, ½s2	 ¼ fs2g and
½s3	 ¼ fs3; s4g and ConSðd1Þ ¼ f½s1	; ½s2	; ½s3	g. Also, we have ConSððfL1g; fL2gÞ; d1Þ ¼

f½s1	; ½s2	g.
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For the next step in our translation, we identify the contour labels and the zones that an
expressively equivalent diagram must have.

Definition 5.6. Let d be a unitary a-diagram with constants. First, we define the set of
contour labels that arise from the contour labels in d, which we call OldLðdÞ. The contour
labels in OldLðdÞ are generated by applying L to the contour labels in LðdÞ. More
formally,

OldLðdÞ ¼ fLðLiÞ : Li 2 LðdÞg.

Further contour labels are generated from the constant spiders in d by applying L to the
constant spider labels giving a set we call NewLðdÞ. More formally,

NewLðdÞ ¼ fLðsiÞ : si 2 CSðdÞg.

We define the zone sets OldZðdÞ and NewZðdÞ as follows:
(1)
Pl

Jo
The zone set OldZðdÞ is the set of zones that arises from the zones in d, given CSðdÞ:

OldZðdÞ ¼ fða; ðOldLðdÞ [NewLðdÞÞ � aÞ : 9ðx; yÞ 2 ZðdÞ a ¼ fLðLiÞ : Li 2 xgg.
(2)
 The zone set NewZðdÞ is the set of zones that arises from the constant spiders in d:

NewZðdÞ ¼ fða; ðOldLðdÞ [NewLðdÞÞ � aÞ : 9ðx; yÞ 2 ZðdÞ 9½sj	 2 ConSðdÞ

yd ðsjÞ ¼ fðx; yÞg ^ a ¼ fLðxiÞ : xi 2 x _ xi 2 ½sj	gg.
We also define the shaded zone set OldZ�ðdÞ to be

OldZ�ðdÞ ¼ fða; ðOldLðdÞ [NewLðdÞÞ � aÞ : 9ðx; yÞ 2 Z�ðdÞ a ¼ fLðLiÞ : Li 2 xgg.

In Example 5.5, we have
(1)
 The set

OldLðd1Þ ¼ fL3;L4g

arises from the contour labels in d1 and

NewLðd1Þ ¼ fL1;L2g

arise from the spider labels in d1. The union OldLðd1Þ [NewLðd1Þ is the set of contour
labels in d2.
(2)
 The set

OldZðd1Þ ¼ fðfL3g; fL1;L2;L4gÞ; ðfL4g; fL1;L2;L3gÞg

arises from the zone set of d1. Arising from the constant spiders is the set of zones

NewZðd1Þ ¼ fðfL1;L3g; fL2;L4gÞ; ðfL2;L4g; fL1;L3gÞg.

The union of these two sets, OldZðd1Þ [NewZðd1Þ, is the zone set for d2.

(3)
 Finally, the set

OldZ�ðd1Þ ¼ fðfL4g; fL1;L2;L3gÞg

arises from the shaded zone set of d1. The union OldZ�ðd1Þ [NewZðd1Þ gives the
shaded zones of d2.
ease cite this article as: G. Stapleton, et al., The expressiveness of spider diagrams augmented with constants,

urnal of Visual Language and Computing (2008), doi:10.1016/j.jvlc.2008.01.005

dx.doi.org/10.1016/j.jvlc.2008.01.005


ARTICLE IN PRESS
G. Stapleton et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 21
Now we consider the existential spiders. When translating unitary diagrams, we change the
contour label set. Consequently, the spider habitats also change; the next definition

identifies the new habitats by way of the spider descriptors.

Definition 5.7. Let d be a unitary a-diagram with constants. We define the sets OldEðdÞ and
NewEðdÞ as follows.
(1)
Ple

Jo
The set of existential spider descriptors, OldEðdÞ, arises from the existential spider
descriptors in d:

OldEðdÞ ¼ fðn; fða; ðOldLðdÞ [NewLðdÞÞ � aÞgÞ:

9ðn; fðx; yÞgÞ 2 ESDðdÞ a ¼ fLðLiÞ : Li 2 xgg.
(2)
 The set of existential spider descriptors, NewEðdÞ, arises from the constant spiders
in d:

NewEðdÞ ¼ fð1; fða; ðOldLðd1Þ [NewLðd1ÞÞ � aÞgÞ : 9ðx; yÞ 2 ZðdÞ 9½sj	 2 ConSðdÞ

yd ðsjÞ ¼ fðx; yÞg ^ a ¼ fLðxiÞ : xi 2 x _ xi 2 ½sj	gg.
In Example 5.5, we have

OldEðd1Þ ¼ fð1; fðfL3g; fL1;L2;L4gÞgÞg

and

NewEðd1Þ ¼ fð1; fðfL1;L3g; fL2;L4gÞgÞ; ð1; fðfL2;L4g; fL1;L3gÞgÞg.

The union OldEðd1Þ [NewEðd1Þ is the set of existential spider descriptors for d2.

Definition 5.8. We define Ca
u (Da

u) to be the set of all unitary a-diagrams with constants
(unitary a-diagrams without constants). We also define E:Ca

u ! Da
u to be Eðd1Þ ¼ d2 if and

only if the following all hold.
(1)
 The labels in d2 are the images of the labels in d1 under L:

Lðd2Þ ¼ OldLðd1Þ [NewLðd1Þ.
(2)
 The zones are ‘preserved’ and one new zone is introduced for each connected constant
spider component:

Zðd2Þ ¼ OldZðd1Þ [NewZðd1Þ.
(3)
 The shaded zones are ‘preserved’ and one new shaded zone is introduced for each
constant spider:

Z�ðd2Þ ¼ OldZ�ðd1Þ [NewZðd1Þ.
(4)
 The existential spiders are ‘preserved’ and one new existential spider is introduced for
each connected constant spider component:

ESDðd2Þ ¼ OldEðd1Þ [NewEðd1Þ.
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Pl

Jo
e have translated a diagram with constants, d1, into a diagram without constants,
W
Eðd1Þ. If the diagram d1 has only non-empty models then Eðd1Þ is not necessarily
expressively equivalent to d1 since, in any model for d1, the constant spider labels in CS all
map to single element sets but it need not be the case that all the contour labels in the set
fLi 2 CL : si 2 CS� CSðd1Þg map to single element sets. We take Eðd1Þ in conjunction
with one unitary diagram for each constant spider label in the set CS� CSðd1Þ which we
call si-constrainers, defined as follows.

Definition 5.9. Let d1 be a unitary diagram with constants. Let si 2 CS� CSðd1Þ. The
diagram d2 whose component parts are as follows is called an si-constrainer for d1, denoted
d1 7!si

d2.
(1)
 The only contour label in d2 arises from the constant spider label si:

Lðd2Þ ¼ fLig.
(2)
 The diagram d2 is in Venn form:

Zðd2Þ ¼ fðfLig; ;Þ; ð;; fLigÞg.
(3)
 The only shaded zone is that inside Li:

Z�ðd2Þ ¼ fðfLig; ;Þg.
(4)
 There is a single existential spider in d2, inside Li:

ESDðd2Þ ¼ fð1; fðfLig;;ÞgÞg.
We define DIAGðd1Þ ¼ fd2 : Eðd1Þ ¼ d2 _ 9si 2 CS� CSðd1Þ d1 7!si
d2g.

In Fig. 13, d3 is an s3-constrainer for d1.
So far, all of the examples we have considered to illustrate the expressively equivalent

relation have included spiders in the diagram to be translated. We now consider an
example where we do not include any spiders in the diagram to be translated.

Example 5.6. For this example we fix the constant spider label set to be CS ¼ fs1g. In
Fig. 16, the diagram d1 has an empty model as well as non-empty models. We must
consider these two possibilities when constructing a diagram expressively equivalent to d1.
If m ¼ ðU ;CÞ is a model for d1 and Ua; then the constant spider s1 represents a specific
individual. In the translation, this is captured by diagram d3, and m is a model for d2 ^ d3.
Alternatively, U ¼ ; and in this case m is a model for d4. The diagram d1 is expressively
equivalent to ðd2 ^ d3Þ _ d4.

We now map each a-diagram with constants but without the : operator to
an expressively equivalent diagram without constants. We denote the set of all
a-diagrams with constants but without : by Ca and the set of all a-diagrams without
constants by Da.
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Fig. 16. Diagrams with empty models.
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Definition 5.10. Define EXP:Ca! Da (EXP for EXPressively equivalent) as follows.
Let D 2 Ca.
(1)
Pl

Jo
If D is a unitary diagram such that SðDÞa; (i.e. the set of spiders in D is not empty)
then

EXPðDÞ ¼
^

d22DIAGðDÞ

d2.
(2)
 If D is a unitary diagram such that SðDÞ ¼ ; (i.e. D contains no spiders) and
ZðDÞaZ�ðDÞ then

EXPðDÞ ¼
^

d22DIAGðDÞ

d2

 !
_ d�,

where d� is a unitary a-diagram that satisfies Lðd�Þ ¼ LðEðDÞÞ, Zðd�Þ ¼ ZðEðDÞÞ,
Z�ðd�Þ ¼ ZðEðDÞÞ and ESDðd�Þ ¼ ESDðEðDÞÞ ¼ ;.
(3)
 If D is a unitary diagram such that SðDÞ ¼ ; and ZðDÞ ¼ Z�ðDÞ then

EXPðDÞ ¼ EðDÞ.
(4)
 If D ¼ ðD1 _D2Þ for some D1 and D2 then

EXPðDÞ ¼ ðEXPðD1Þ _ EXPðD2ÞÞ.
(5)
 Otherwise, D ¼ ðD1 ^D2Þ for some D1 and D2 and we define

EXPðDÞ ¼ ðEXPðD1Þ ^ EXPðD2ÞÞ.
Theorem 5.2. Let d1 be a unitary a-diagram with constants. Then d1 is expressively

equivalent to EXPðd1Þ.
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Proof. There are three cases to consider, corresponding to the definition of EXP in the
unitary case.

Case 1: SðDÞa;. Let m ¼ ðU ;CÞ be an interpretation with constants and suppose m is a
model for d1. Firstly, we will show that hðU ;CÞ ¼ ðU ;FÞ is a model for Eðd1Þ ¼ d2. To do
so, we consider each of the zones in Zðd2Þ in turn. Let z ¼ ða;Lðd2Þ � aÞ 2 Zðd2Þ. We will
show that there exists an injective map from CðzÞ to ESðfzg; d2Þ which is bijective when z is
shaded in d2. We start by noting

FðzÞ ¼
\
Li2a

FðLiÞ \
\

Li2Lðd2Þ�a

FðLiÞ

¼
\
Li2a

CðL�1ðLiÞÞ \
\

Li2Lðd2Þ�a

CðL�1ðLiÞÞ

¼
\

LðPiÞ2a

CðPiÞ \
\

LðPiÞ2Lðd2Þ�a

CðPiÞ. (1)

First, we consider the subcase where a contains a contour label, Lj say, where the subscript,
j, satisfies jpn. That is, the zone z ¼ ða; bÞ arose from a constant spider and is in the set
NewZðd1Þ. In this subcase, z is shaded in d2 and contains exactly one existential spider. We
show that FðzÞ ¼ CðsjÞ, which allows us to deduce jFðzÞj ¼ 1 and, hence, the required
bijection exists. By (1) and since LðsjÞ ¼ Lj 2 a,

FðzÞ ¼
\

LðPiÞ2a

CðPiÞ \
\

LðPiÞ2Lðd2Þ�a

CðPiÞ \CðsjÞ.

We have

a ¼ fLðxiÞ : xi 2 x _ xi 2 ½sj	g,

where yd1
ðsjÞ ¼ fðx; yÞg and

Lðd2Þ � a ¼ fLðyiÞ : yi 2 y _ yi 2 CSðd1Þ � ½sj	g.

Therefore, from (1) and since LðsjÞ 2 a,

FðzÞ ¼
\

LðPiÞ2fLðxiÞ:xi2xg

CðPiÞ\

\
LðPiÞ2fLðyiÞ:yi2y_yi2CSðd1Þ�½sj 	g

CðPiÞ \
\

si2½sj 	

CðsiÞ

¼
\

Pi2x

CðPiÞ \
\

Pi2y[ðCSðd1Þ�½sj 	Þ

CðPiÞ \
\

si2½sj 	

CðsjÞ

¼
\

Pi2x

CðPiÞ \
\
Pi2y

CðPiÞ \
\

Pi2CSðd1Þ�½sj 	

CðPiÞ \
\

si2½sj 	

CðsjÞ

¼ Cðx; yÞ \
\

Pi2CSðd1Þ�½sj 	

CðPiÞ \
\

si2½sj 	

CðsjÞ. (2)

Consider the term\
Pi2CSðd1Þ�½sj 	

CðPiÞ.
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Now \
Pi2CSðd1Þ�½sj 	

CðPiÞ ¼ U �
[

Pi2CSðd1Þ�½sj 	

CðPiÞ.

By the constant spiders condition for d1, all the constant spiders in the set CSðd1Þ � ½sj 	

map to individuals distinct from that represented by sj. Moreover, for all si 2 ½sj	,
CðsjÞ ¼ CðsiÞ. We deduce that

CðsjÞ � U �
[

Pi2CSðd1Þ�½sj 	

CðPiÞ.

Therefore (2) becomes

FðzÞ ¼ Cðx; yÞ \CðsjÞ.

Now CðsjÞ � Cðx; yÞ by the spiders condition for d1. Therefore

FðzÞ ¼ CðsjÞ. (3)

Hence jFðzÞj ¼ 1 ¼ jESðfzg; d2Þj ¼ jETðfzg; d2Þj.
Alternatively a does not contain any contour label, Lj, with subscript j that satisfies jpn.

That is, the zone z ¼ ða; bÞ is in the set OldZðd1Þ. In this case there is a zone ðx; yÞ 2 Zðd1Þ

such that

a ¼ fLðLiÞ : Li 2 xg

and

Lðd2Þ � a ¼ fLðyiÞ : yi 2 y _ yi 2 CSðd1Þg.

Now, from (1),

FðzÞ ¼
\

Li2x

CðLiÞ \
\

yi2y [ CSðd1Þ

CðyiÞ

¼ Cðx; yÞ \
\

si2CSðd1Þ

CðsiÞ.

By the spiders condition for d1, we deduce the following:

ðaÞ FðzÞ ¼ Cðx; yÞ �
[

si2CSðfðx;yÞg;d1Þ

CðsiÞ. (4)

ðbÞ
[

e2ESðfðx;yÞg;d1Þ

CðeÞ � Cðx; yÞ.

(c) The sets
[

e2ESðfðx;yÞg;d1Þ

CðeÞ and
[

si2CSðfðx;yÞg;d1Þ

CðsiÞ are disjoint.

By the existential spiders condition for d1,

[
e2ESðfðx;yÞg;d1Þ

CðeÞ

�����
����� ¼ jESðfðx; yÞg; d1Þj.
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Hence

jFðzÞj ¼ Cðx; yÞ �
[

si2CSðfðx;yÞg;d1Þ

CðsiÞ

�����
�����XjESðfðx; yÞg; d1Þj ¼ jESðfzg; d2Þj.

Thus jFðzÞjXjESðfzg; d2Þj. Suppose that z is shaded in d2. Then ðx; yÞ is shaded in d1 and

jFðzÞj ¼ Cðx; yÞ �
[

si2CSðfðx;yÞg;d1Þ

CðsiÞ

�����
�����

p jETðfðx; yÞg; d1Þj � jConSððfðx; yÞg; d1ÞÞj

¼ jESðfðx; yÞg; d1Þj � jConSððfðx; yÞg; d1ÞÞj

p jESðfzg; d2Þj.

Hence jFðzÞjpjESðfzg; d2Þj, so jFðzÞj ¼ jESðfzg; d2Þj.
We deduce that, for any z 2 Zðd2Þ, there exists an injective map from ESðfzg; d2Þ to

FðzÞ. Moreover, when z is shaded in d2, such an injective map is also bijective. It is,
therefore, straightforward to show that there exists a valid extension of C to existential
spiders for d2. By considering (3) and (4) along with the construction of Zðd2Þ, it can be
shown that, since the plane tiling condition holds for d1, the plane tiling condition and
the constant spiders condition hold for d2. Hence hðU ;CÞ ¼ ðU ;FÞ is a model for d2.
Noting that, since d1 contains at least one spider, Ua;, it is straightforward to show that
ðU ;FÞ is a model for each diagram in the set DIAGðd1Þ � fEðd1Þ ¼ d2g. Therefore ðU ;FÞ is
a model for

D ¼
^

d2DIAGðd1Þ

d.

What remains is to show that any model for D is the image of some model for d1. Let
ðU ;FÞ be a model for D. The strategy is to start by showing h�1ðU ;FÞ is defined and then
follow a similar argument to the first part of the proof.

Case 2: Sðd1Þ ¼ ; and Zðd1ÞaZ�ðd1Þ. In this case, we note that in any model m ¼ ðU ;CÞ
for d1, either U ¼ ; or Ua;. In the first subcase, m is a model for d�. In the second
subcase, m is a model for^

d2DIAGðd1Þ

d.

The strategy used in case 1 can be modified (and simplified) to both subcases.
Case 3: Sðd1Þ ¼ ; and Zðd1Þ ¼ Z�ðd1Þ. In this case, d1 has only the empty model, and the

proof is similar to the first subcase of case 2. Hence d1 is expressively equivalent to
EXPðd1Þ. &

Theorem 5.3. Let D be an a-diagram with constants but without the : operator. Then D is

expressively equivalent to EXPðDÞ.

Proof. The proof follows by induction on the depth of D in the inductive construction,
with the base case provided by Theorem 5.2. &
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Fig. 17. Negation issues.

d3 d4

L1

Fig. 18. Fixing negation issues.
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5.1. Incorporating negation

Our focus now turns to the case where we allow the : operator to be used. First, we
illustrate why extending the translation to include negation is not as straightforward as for
^ and _.

Example 5.7. Taking CS ¼ fs1g, the unitary diagram d1 in Fig. 17 is expressively
equivalent to d2. However, :d1 is not equivalent to :d2. For example, the interpretation
without constants m ¼ ðf1; 2g;CÞ, where CðL1Þ ¼ f1; 2g and CðL2Þ ¼ ;, is a model for :d2

but not in the image of h used to define the expressively equivalent relation (s1 maps to L1,
but s1 never represents a set containing two elements). In other words, h does not provide a
bijective correspondence between the models for :d1 and :d2.

Thus, the ‘problem’ is that all interpretations with constants force the constant spider
labels to denote single element sets or the empty set (when U ¼ ;). So, when we translate
the negation of a unitary diagram, we must ensure that the contour labels arising from the
constant spider labels (under L) also have this property.

Example 5.8. Returning to Fig. 17, we observe that :d1 is semantically equivalent to
:d2 ^ ðd3 _ d4Þ where d3 and d4 are in Fig. 18.

In general, an extension of the definition of EXP to each diagram with constants of the
form :D is6

EXPð:DÞ ¼ :EXPðDÞ ^ d3 _
^

d2DIAGð&Þ

d

 !
;

6We use & to represent the unitary diagram containing no contours, no spiders and no shading.
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the conjunction^
d2DIAGð&Þ

d

expresses that each of the contour labels arising from the constant spider labels in CS
represent single element sets whereas d3 expresses the fact that the universe is empty. The
diagram :D is expressively equivalent to EXPð:DÞ.
The definition of EXPð:DÞ returns a spider diagram without constants that includes

negation. However, it immediately follows from the expressiveness result in [11] that
negation is a derived operator in this language. Thus we have the following result.

Theorem 5.4. Augmenting the spider diagram language with constants, ties and negation does

not increase expressiveness.

Proof. We must show that every diagram with constants has an expressively equivalent
diagram without constants. We have shown that for every a-diagram with constants there
exists an expressively equivalent diagram without constants. Let D1 be a diagram with
constants. By Theorem 5.1, D1 is semantically equivalent to some a-diagram with
constants, D2 say. Since D1 and D2 have the same models, it follows that h provides a
bijective correspondence between the models for D1 and those for EXPðD2Þ. Therefore D1

is expressively equivalent to the diagram without constants EXPðD2Þ. Hence augmenting
the spider diagram language with constants does not increase expressiveness. &

We proved in [11], that the language of spider diagrams without constants is equivalent
in expressive power to monadic first order logic with equality. Hence we obtain the
following corollary.

Corollary 5.1. The language of spider diagrams with constants is equivalent in expressive

power to monadic first order logic with equality.

5.2. Further discussion

We mentioned in Section 3 that there are two possible ways of performing the
construction which eliminates constant spiders. The construction given above works with a
finite set of constant spider labels; an alternative approach would use an infinite set of
constant spider labels. The advantage of using this alternative approach is that we can
always be sure of having enough constant spider labels for our purposes; the disadvantage
is that the construction becomes infinite in some places.
In essence, the change comes from the fact that the set of diagrams, DIAGðdÞ,

becomes infinite rather than finite, since one diagram is required for each constant
spider label. We now discuss the effect of defining CS to be a countably infinite set of
constant spider labels, rather than a finite set at a more detailed level. We redefine
L:CS [ CL! CL by

LðxiÞ ¼
x2i if xi 2 CL;

x2i�1 if xi 2 CS:

(

If we use the same translation mapping, EXP, with an infinite set of constant spider labels
then some unitary diagrams, d, map to infinite conjunctions of diagrams since the set
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Title NC

NC

NAT

0

InColl

ExColl

Fig. 19. A constraint diagram with a constant.
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DIAGðdÞ is not necessarily finite. So, rather than EXPðdÞ returning a diagram, the function
would need to be redefined to return a (sometimes infinite) set of diagrams representing an
infinite conjunction. This set of diagrams is expressively equivalent to d. In the language of
spider diagrams with constants (with an infinite set of constant spider labels) the property
that all the constant spider labels represent individuals is finitely axiomatizable (for
example, by a unitary diagram containing exactly one spider). By contrast, in the language
of spider diagrams without constants, the property that all the contour labels which arise
from constant spider labels (of which there are infinitely many) represent single element
sets is infinitely axiomatizable (for each such contour label Li, the unitary diagram that
contains Li with a single existential spider and shading is an axiom) but not finitely.

6. Conclusion

In this paper, we have augmented the spider diagram language with constants and
provided a formalization of the extended system. Subsequently, we proved that this
augmentation does not lead to an increase in expressive power. However, we believe that if
one wishes to make statements about specific individuals then it is natural to do so using
constants rather than a contour, shading and an existential spider. Thus augmenting with
constants, although it brings no expressiveness benefits, is highly likely to increase the
usability of the notation. For this reason, the formalization of constraint diagrams, found
in [8], would benefit from being extended to include constants.

As an example, the constraint diagram in Fig. 19 is taken from the specification of a
library system and indicates that titles (in the library catalogue) have a ‘number of copies’
(NC) associated with them (NAT is the set of natural numbers, which includes 0). Titles are
partitioned into two disjoint subsets: those having no copies are said to be ‘ex-collection’
(ExColl); all others are ‘in-collection’ (InColl).

The highly expressive nature of constraint diagrams may mean that including constants
in the language brings even more usability benefits: when making complex statements, it
should not be overly difficult to find a diagram capturing the required constraint.

The approach we have taken to eliminate constants is likely to generalize to other
languages. Consequently, this work is of greater significance than the face value of the results
alone. Furthermore, a modification of the high level approach and the constant elimination
strategy can be used to compare the expressiveness of syntactically disparate languages.
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