
Clone Detection and Removal for Erlang/OTP within a
Refactoring Environment

Huiqing Li
Computing Laboratory, University of Kent, UK

H.Li@kent.ac.uk

Simon Thompson
Computing Laboratory, University of Kent, UK

S.J.Thompson@kent.ac.uk

Abstract
A well-known bad code smell in refactoring and software mainte-
nance is duplicated code, or code clones. A code clone is a code
fragment that is identical or similar to another. Unjustified code
clones increase code size, make maintenance and comprehension
more difficult, and also indicate design problems such as lack of
encapsulation or abstraction.

This paper proposes a token and AST based hybrid approach
to automatically detecting code clones in Erlang/OTP programs,
underlying a collection of refactorings to support user-controlled
automatic clone removal, and examines their application in sub-
stantial case studies. Both the clone detector and the refactorings
are integrated within Wrangler, the refactoring tool developed at
Kent for Erlang/OTP.

Categories and Subject Descriptors D.2.3 [SOFTWARE ENGI-
NEERING]: Coding Tools and Techniques; D.2.6 []: Program-
ming Environments; D.2.7 []: Distribution, Maintenance, and En-
hancement; D.3.2 [PROGRAMMING LANGUAGES]: Language
Classifications—Applicative (functional) languages; Concurrent,
distributed, and parallel languages; D.3.4 []: Processors

General Terms Languages, Design

Keywords Erlang, refactoring, Wrangler, duplicated code, pro-
gram analysis, program transformation.

1. Introduction
Duplicated code, or the existence of code clones, is one of the well-
known bad code smells when refactoring and software maintenance
is concerned. ‘Duplicated code’, in general, refers to a program
fragment that is identical or similar to another, though the exact
meaning of ‘similar’ might vary slightly between different applica-
tion contexts.

While some code clones might have a sound reason for their
existence (Kapser and Godfrey 2006), most clones are considered
harmful to the quality of software, as code duplication increases
the probability of bug propagation, the size of both the source
code and the executable, compile time, and more importantly the
maintenance cost (Roy and Cordy 2007; Monden et al. 2002).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’09, January 19–20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-327-3/09/01. . . $5.00

Software clones appear for a variety of reasons, among which
the most obvious is the reuse of existing code (by copy and paste
for example), logic or design. Duplicated code introduced for this
reason often indicates program design problems such as the lack of
encapsulation or abstraction. This kind of design problem can be
corrected by refactoring out the existing clones in a later stage (Bal-
azinska et al. 1999; M. Fowler 1999; Higo et al. 2004), it could also
be avoided by first refactoring the existing code to make it more
reusable, then reuse it without duplicating the code (M. Fowler
1999). In the last decade, substantial research effort has been put
into the detection and removal of clones from software systems;
however, few such tools are available for functional programs, and
there is a particular lack of tools that are integrated with existing
programming environments.

Erlang/OTP (Armstrong 2007) is an industrial strength func-
tional programming environment with built-in support for concur-
rency, communication, distribution, and fault-tolerance. This pa-
per investigates the application of clone detection and removal
techniques to Erlang/OTP programs within the refactoring context,
proposes a new hybrid approach to automatically detecting code
clones across multiple modules, and describes three basic refactor-
ings which together help to remove code clones under the user’s
control. Both the clone detector and the refactorings have been im-
plemented within Wrangler (Li et al. 2006a, 2008), the refactoring
tool developed at Kent for Erlang/OTP.

Wrangler is a tool that supports interactive refactoring of Er-
lang/OTP programs. It is integrated with Emacs and now also with
Eclipse. Wrangler itself is implemented in Erlang, apart from the
implementation of a suffix tree construction algorithm, which is
written in C. The current version of Wrangler supports more than a
dozen refactorings, as well as functionalities for code inspection to
find ‘bad smells’ of various kinds

The proposed clone detection approach is able to report code
fragments in an Erlang program that are syntactically identical after
semantic preserving renaming of variables, also allowing for varia-
tions in literals, layout and comments. Syntactically, each of these
code clones is a sequence of well-formed expressions or functions.
This approach makes use of both a token suffix tree and abstract
syntax tree (AST) annotated with location and static semantic in-
formation. The use of the token suffix tree allows us to detect clone
candidates quickly, whereas use of the AST ensures that the tool
only reports syntactically well-formed clone candidates. Further-
more, static semantic information annotated in the AST is used to
check whether two code fragments can be refactored to each other
by consistent renaming of variables and literals, and thus to ensure
that the clones detected are actually removable.

Three refactorings from Wrangler have been designed and im-
plemented to support the clone removal process, and they are gen-
eralise a function definition, function extraction, and fold expres-
sions against a function definition. Unlike fully automated removal

of clones, these refactorings respect the importance of user inter-
vention during the clone removal process, and allow clones to be
removed step by step under the programmer’s control. Apart from
removing code clones from legacy programs, these refactorings are
also for programmers to use as part of their daily programming
activities to avoid the introduction of code clones from the very
beginning.

The remainder of the paper is organised as follows. An overview
of the Erlang/OTP language is given in section 2. Section 3 presents
the approach taken by the Wrangler clone detector, as well as intro-
ducing terminology used in the remainder of the paper. Section 4
discusses the three major refactorings developed for use in dupli-
cated code removal scenarios. The usefulness of the tool is demon-
strated in section 5; section 6 gives an overview of related work;
finally, conclusions and future work are given in section 7.

2. The Erlang/OTP Language
Erlang is a strict, dynamically typed, functional programming lan-
guage with support for higher-order functions, pattern matching,
concurrency, communication, distribution, fault-tolerance, and dy-
namic code reloading (Armstrong 2007).

One of the fundamental properties of the Erlang language is
built-in support for light-weight processes, each with its own mem-
ory, and the use of explicit message passing for inter-process com-
munication. With the support for SMP (Symmetric MultiProcess-
ing) being added to the recent releases of the Erlang Virtual Ma-
chine (VM), applications implemented in Erlang as a number of co-
operating Erlang processes can take advantage of multi-core tech-
nology without being modified.

Erlang’s elementary data types are atoms, numbers (integers
and floats), process identifiers, references, binaries, and ports; com-
pound data types are tuples, records and lists. Types in Erlang are
checked at run time, and compound data structures will be hetero-
geneous; some compile-time type checking is provided by tools
such as Dialyzer (Sagonas 2005).

An Erlang program typically consists of a number of modules,
each of which defines a collection of functions. Only functions ex-
ported explicitly may be called from other modules, and a module
can only export functions which are defined in the module itself.

Figure 1 shows an Erlang module containing the definition of
the factorial function. In this example, fac/1 denotes the function
fac with arity of 1. In Erlang, a function name can be defined with
different arities, and the same function name at different arities will
generally represent entirely different computations.

-module (fac).
-export ([fac/1]).
fac(0) -> 1;
fac(N) when N > 0 -> N * fac(N-1).

Figure 1. Factorial in Erlang

Erlang allows static scoping of variables, in other words, match-
ing a variable to its binding only requires analysis of the program
text. However, some variable scoping rules in Erlang are rather
different from other functional programming languages, such as
Haskell (S. Peyton Jones 2003). For instance,

• In Erlang, the binding occurrence of a variable always occurs
in a pattern, but a pattern may also contain applied (i.e. non-
binding) occurrences of variables.
• Non-linear patterns with multiple occurrences of the same vari-

able are allowed.

• A variable may have more than one binding occurrence, due
to the fact that branches in a case or receive expression in
Erlang can export variables.

Knowledge of these scoping rules is essential to the correct res-
olution of the binding structure of variables in an Erlang program.
The binding structure of variables is used by Wrangler’s clone de-
tection process, as will be discussed in section 3.6, as well as in a
number of refactorings implemented in Wrangler; see section 4.

The Erlang language itself is small, but it comes with libraries
containing a large set of built-in functions. Erlang has also been
extended by the Open Telecom Platform (OTP) middleware plat-
form, which provides a number of ready-to-use components and
design patterns, such as finite state machines, generic servers, etc,
embodying a set of design principles for fault-tolerant robust Er-
lang systems

3. The Wrangler Clone Detector
The phrase ‘code clone’ in general refers to a set of program frag-
ments that are identical or similar to each other. Two code frag-
ments can be similar if their program texts are similar or their func-
tionalities are similar without being textually similar. Since seman-
tic similarity is generally not decidable, in the research reported
here we only consider textually identical or similar code fragments,
which can be compared on the basis of their program text or inter-
nal representation, such as parse trees or ASTs.

Our aim is to develop a clone detection and removal tool for
a specific language, Erlang/OTP in this case. Instead of starting
from scratch, we make use of the infrastructure established for
Wrangler; this also allows a natural integration of the tool into
Wrangler. The clone detection tool should be able to handle large
Erlang programs, to report as many clones as possible but without
giving false positives.

Being part of the programming environments of choice for Er-
lang programmers, the tool is more accessible to working program-
mers, and so it has a better chance to be used in practice.

It has been our experience in building refactoring tools that what
might initially be seen as a single refactoring operation in fact has
a number of variants. For instance, in generalising a function over
a sub-expression, should the generalisation be over a single occur-
rence of the sub-expression, all such occurrences or a user-defined
selection of them: different answers apply in different situations.
A similar phenomenon occurs in clone detection, and so instead of
fully automating the clone refactoring process, the clone removal
tool gives the user more control on which clone to remove and how
to remove. This is done by providing a number of basic refactorings
which can together be used to accomplish clone removal. These are
discussed in more detail in section 4.

3.1 Terminology
Common terminology for the clone relations between two or more
code fragments are the phrases clone pair and clone class (Kamiya
et al. 2002). A clone pair is a pair of code fragments which are
identical or similar to each other; a clone class is the maximal set
of code fragments in which any two of the code fragments form a
clone pair.

In this paper, we distinguish the following four types of clones.
All these four types of clones ignore variations in literals, layout
and comments.

• Type 1: Identical code fragments.
• Type 2: Code fragments that are identical after consistent (i.e.

semantic-preserving) renaming of variable names.
• Type 3: Code fragments that are identical after renaming all

variable names to the same name.

• Type 4: Code fragments that are identical after renaming all
function names and variable names to the same name, respec-
tively.

Obviously, these four types of clones satisfy a subset relation, i.e.
clones of Type i(i=1,2,3) form a subset of clones of Type (i+1).
Among the four types of clones, Type 1 and Type 2 represent the
clones that are most suitable for automatic clone removal because
of the semantic equivalence between cloned code fragments, and
they are also the kinds of clones that are reported by the Wran-
gler clone detector. Type 3 and Type 4 clones are not suitable for
mechanical removal, but they somehow reveal structure-level du-
plication, and are obtainable from the intermediate results of the
Wrangler clone detector.

3.2 Clone detection architecture
With Wrangler, clones are reported in the form of clone classes by
giving the number of clones included in a clone class, and each
member clone’s start and end locations in the program source. Two
threshold values can be given by the user to specify the granularity
of the clone classes reported by the clone detector, and they are:

• the minimum number of tokens that the reported clones should
contain, and
• the minimum number of members of a clone classes reported.

Figure 2 gives an overview of the Wrangler clone detection
process. First, the target program is tokenised into a token stream.
The generated token stream is then normalised with all the atom
identifiers, variables and literals being replaced by a special symbol
representing each kind of token. After that a suffix tree is built on
the transformed token stream, and the initial clone classes, which
are of Type 4, are collected from the suffix tree. The collected
Type 4 clone classes are further processed to filter out those clone
classes which are not of Type 3 by token-level comparison of tokens
representing a function name. In order to decompose non-syntactic
clones into syntactic units, and check for consistent renaming of
variables, annotated ASTs of the related Erlang modules are built,
and the token representation of remaining Type 3 clones are mapped
to their AST representation. The final clone classes of Type 2,
ordered by size, are reported after the decomposition and consistent
renaming checking processes.

3.3 Token-level Clone Detection
As the first step of the clone detection process, the target program is
transformed into a token stream, in which each token is associated
with its location information including the name of the source file
and the line and column numbers of each occurrence. White spaces
between tokens and comments are not included in the token stream.
In the case that the target program contains more than one Erlang
file, tokens of all these files are concatenated into a single token
stream. The generated token stream is further processed by normal-
ising all atom identifiers, variables, and literals as described earlier,
but keywords and operators are left untouched. Before suffix tree
construction, the whole token stream is mapped into a string over
a fix-sized alphabet by mapping each token into a character from
the alphabet. Tokens with the same value are mapped to the same
character.

Suffix tree analysis (Ukkonen 1995) is the technique used
by most token-based clone detection approaches because of its
speed (Baker 1995; Kamiya et al. 2002). A suffix tree is a rep-
resentation of a string as a tree where every suffix is represented
through a path from the root to a leaf. The edges are labelled with
the substrings, and paths with common prefixes share an edge.

Figure 3 shows the well known suffix tree example – the suffix
tree representation of MISSISSIPPI padded with a special termi-

root-->|---MISSISSIPPI $
|
|---I -->|---SSI -->|---SSIPPI $
| | |
| | |---PPI $
| |
| |---PPI $
| |
| |---$
|
|---S -->|---SI -->|---SSIPPI $
| | |
| | |---PPI $
| |
| |---I -->|---SSIPPI $
| |
| |---PPI $
|
|---P -->|---PI $
| |
| |---I $
|
|---$

Figure 3. Suffix Tree for MISSISSIPPI

nating character ’$’. A clone can be identified in the suffix tree as
an inner node. An inner node is a node in the tree that has more
than one child node, but is not the root node. The length of the
clone is the number of characters from the root to this inner node,
and the number of occurrences of the clone is the number of leaf
nodes that can be reached from this inner node. Instead of labelling
edges in the suffix tree with actual substrings, we label each edge
with the list of locations, in terms of start and end index, where
the substring appears in the whole string. As there is a one-to-one
mapping between the tokens in the token stream and the characters
in the string, the location of a substring also indicates the location
of the corresponding token sequence in the token stream.

Once the suffix tree has been constructed, it is traversed and
clone classes are collected. While each inner node represents a set
of cloned code fragments, only those nodes representing a maximal
set of cloned code fragments, i.e. a clone class, are included in the
final result. Suppose we represent a set of cloned code fragments
as a tuple {S, N}, where S is the cloned code fragment, and N is
the number of times S is cloned, then {S, N} is maximal if and
only if there is not another set of cloned code fragments, {S1, N1}
say, such that S is a substring of S1 and N is less than N1. Back
to the MISSISSIPPI example, given a threshold value of 1 for the
minimum number of characters that a clone should have, and 2 for
the minimum number of members of a clone class, the suffix-tree
clone collector will report the following cloned substrings: I, ISSI,
S, and P.

For efficiency reason, we did not implement the construction of
suffix tree in Erlang, instead we made use of an open source ANSI
C implementation (Tsadok 2002) of E.Ukkonen’s suffix tree con-
struction algorithm (Ukkonen 1995), which has O(nlog|

∑
|) time

and O(n) space complexity (where n is the length of the source
string,

∑
is the alphabet and |

∑
| is the size of the alphabet.

The clone classes generated at this stage are of Type 4 because of
the normalisation of function and variables names before the suffix
tree construction. The clone classes generated are then processed to
take function names into account, during which process an original
clone class could be decomposed into smaller clone classes (in
terms of the size of the code fragments or the number of clone
members), or be discarded because of the difference in function
names. After this step, only clone classes that are of Type 3 are
kept.

Parsing + Static Analysis

Clone Decomposition

Clone Filter Formatting

Consistent Renaming
Checking

Suffix Tree Construction

Tokenisation

Normalisation

Source Files

Token Stream

Normalised Token Stream

Annotated ASTs

Type 3 Clones

Syntactic
Clones

Type 2 Clones

Clone Classes
Clone Collector

Suffix tree Type 4 Clones

Figure 2. An Overview of the Wrangler Clone Detection Process

-> case lists:subtract(SLocs1, ELocs2) of
[]->

R1 = lists:filter(fun({S, E}) ->
lists:member(E, SLocs1)

end, Range),
R2= lists:map(fun({S, E}) -> S end, R1),
{lists:zip(R2, ELocs1), Len1+Len2, F1};

_ ->

(a)

-> case lists:subtract(ELocs1, SLocs2) of
[] ->

R3= lists:filter(fun({S,E}) ->
lists:member(S, ELocs1)

end, Range),
R4 = lists:map(fun({S,E}) -> E end, R3),
{lists:zip(SLocs1, R4), Len1+Len2, F1};

_ ->

(b)

Figure 4. A clone pair found in Wrangler

While the code clones reported at this stage provide useful code
duplication information about the target program, some of these
clones might be spurious, or not very interesting from the code
removal perspective. For example, Figure 4 shows a clone class
of two code fragments, which are actually from the same function,
found by the above process from the source code of Wrangler. A
couple of problems immediately show from this example:

• The code fragments do not form syntactic units. A syntactically
not well-formed code fragment cannot be removed as a whole
by means of function extraction. While in general there could
be one or more meaningful syntactic units embedded in a non-
syntactic code fragment, in some extreme cases, it is possible
that, after removing those incomplete parts, a code clone does
not contain any interesting syntactic units at all, or the con-

tained syntactic units are under the specified thresholds, and
therefore should not be reported to the user. Decomposing code
fragments into meaningful syntactic units needs certain syntax
information, which is naturally available from ASTs but is not
so obvious from the token stream.
• While the two code fragments do look similar, semantically

they are different. Applying consistent variable renaming to the
two code fragments does not produce the same code, therefore it
is not an interesting candidate from the clone removal perspec-
tive. This problem is due to the normalisation process applied
to the token stream, in which all variables names are treated
as the same. Consistent renaming of variable names at token
stream level is in general complex for programming languages
that allow the same name to be declared across nested scopes.

We make use of ASTs annotated with location and static semantic
information to decompose non-syntactic clones into syntactic ones,
and filter out those clones that do not unify after consistent renam-
ing of variables/literals.

3.4 Annotated Abstract Syntax Trees
Like most refactoring tools, Wrangler uses AST as the internal rep-
resentation of the program under refactoring. Both program anal-
ysis and transformation manipulate the AST directly. To facilitate
the refactoring process, we annotate the generated ASTs with fur-
ther syntax, semantic, and location information, therefore comes
the term annotated abstract syntax tree (AAST). Some of the anno-
tation information was naturally used by the clone detector to post-
process the clone classes reported from the previous step. These
information includes

• Location information. Each AST node is annotated with the
start and end location of the program entity that it represents
in the source code. Location information was originally added
for interface purposes, but it also makes it straightforward to
map the token sequence representation of a code fragment to
its AST representation, or vice versa (recalling that each token
in the token stream is also associated with its location in the
program source).

• Binding structure information. Binding structure describes the
association between the uses of an identifier and its defini-
tion. In Wrangler, this information is incorporated in the AST
through the defining and occurrence locations of an identifier.
For example, each occurrence of a variable node in the AST is
annotated with the location of its occurrence in the program as
well as the location where it is defined. Two occurrences of the
same identifier name refer to the same thing if and only if they
have the same defining location. With this kind of binding in-
formation, we can easily check whether a code clone fragment
can be transformed to another code fragment in the same clone
class by applying consistent variable renaming.

3.5 Decomposing into Syntactic Clones
The previous token-based step produces a set of clone classes of
Type 3. However code fragments reported by these clone classes
may not form complete syntactic units as shown in Figure 4. In
this step, we decompose these code fragments into sub portions,
each of which forms a syntactic unit. Within the context of Erlang
programs, we say that a clone is a syntactic clone, or forms a
syntactic unit, if it consists of a sequence of expressions separated
by a comma, or a sequence of functions separated by a full stop.

To process a clone class, we first choose a code clone from the
class, and construct the AAST of the module to which the code
clone belongs, then traverse the generated AAST in a top-down
left-to-right order collecting those nodes whose start and end loca-
tions in the program source fall into the range of the code clone,
and whose syntax type is expression or function. Once a node has
been collected, its arguments are not to be traversed. These col-
lected nodes are then put into groups, each group containing a
maximal consecutive sequence of expressions/functions. Because
all the code fragments in a clone class have identical syntactical
structure, only one fragment’s AAST is needed for the decompo-
sition purpose; once this fragment has been decomposed, the de-
composition of the others can be done at token-level by projecting
the new code portions to the token sequence, and removing those
unwanted tokens.

Returning to the example in Figure 4, this clone class will be
decomposed into two classes, one containing the guard expression
of the case expression, and the other containing the sequence of
three expressions of the first case clause. However, since the guard
expression only has 8 tokens, it is very likely that the first clone
class is below the threshold value specified, and discarded during
the process. Therefore after this step the original clone class could
become the one shown in Figure 5. Here we assume that the two
remaining code fragments are not members of other existing clone
classes.

3.6 Checking For Consistent Renaming
Checking for consistent renaming of identifiers is another impor-
tant aspect of a clone detector. A related study (R. Koschke and
R. Falke and P. Frenzel 2006) has shown that clone detectors that
check for consistent renaming have better precision than those that
do not. From the clone removal perspective, clone classes whose
clone members can be transformed to each other by consistent re-
naming of variables and literals are good candidates for automatic
clone removal.

With the Wrangler clone detector, we check the consistent re-
naming of bound variables, i.e., those variables that are locally de-
clared in the code fragment under consideration. The checking for
consistent renaming is done by comparing the binding structure of
the clone members of a clone class. This is feasible only because
all the code fragments in a clone class are structurally/syntactically
identical. Given a code fragment, we can treat each variable occur-

R1 = lists:filter(fun({S, E}) ->
lists:member(E, SLocs1)

end, Range),
R2= lists:map(fun({S, E}) -> S end, R1),
{lists:zip(R2, ELocs1), Len1+Len2, F1};

(a)

R3= lists:filter(fun({S,E}) ->
lists:member(S, ELocs1)

end, Range),
R4 = lists:map(fun({S,E}) -> E end, R3),
{lists:zip(SLocs1, R4), Len1+Len2, F1};

(b)

Figure 5. The clone pair after decomposition

Figure 6. The binding graph of clone (a)

rence in it as a node in a graph; we explain the construction of this
in more detail now.

Instead of using variable names as the node names, we replace
each variable occurrence with a number according to their textual
occurrence order in the code. For example, the first variable occur-
rence is numbered as 1, the second is numbered as 2, and so on. If
a node represents a use occurrence of a bound variable, then there
is an edge drawn from this node to the node representing the defin-
ing occurrence of this variable (recalling that, in the AAST, each
variable occurrence is associated with its defining location). In the
case that the node itself represents a defining occurrence of a vari-
able, an edge is drawn to itself. No edges are associated with nodes
that representing occurrences of free variables, i.e., variables that
are used, but not declared, in the code fragment. This means that
we treat each free variable occurrence as a different entity, even
though some occurrences might share the same variable name.

In this way, we are able to represent the binding structure of a
code fragment as a graph, and two structurally/syntactically iden-
tical code fragments can be transformed to each other by consis-
tent variable renaming only if their binding structure graphs are the
same. As an example, Figure 6 shows the binding structure graph
of the code fragment (a) shown in Figure 5, in which we annotated
the variable name to each node for clarity.

Returning to the previous clone example shown in Figure 5, it
is obvious that these two code fragments have different binding
structure graphs, therefore this clone class will be removed from
the finial result too.

start_loc(Node, Toks)->
case refac_syntax:type(Node) of

if_expr ->
Cs = if_expr_clauses(Node),
{S, E} = get_range(hd(Cs)),
extend_forwards(Toks,S, ’if’);

cond_exp ->
Cs = cond_expr_clauses(Node),
{S, E} =get_range(hd(Cs)),
extend_forwards(Toks,S, ’cond’);

end.

start_loc(Node, Toks) ->
case type(Node) of

if_expr ->
Cs = if_expr_clauses(Node),
newfun(Cs, Toks);

cond_exp ->
Cs = cond_expr_clauses(Node),
{S, E} = get_range(hd(Cs)),
extend_forwards(Toks, S, ’cond’);

end.
newfun(Cs, Toks) ->
{S, E} = get_range(hd(Cs)),
extend_forwards(Toks, S, ’if’).

Figure 7. The ‘function extraction’ refactoring

It is possible, in this step, that a clone class is partitioned into
two or more small clone classes according to their binding structure
equivalence. Again, clone classes under the specified thresholds are
discarded. At this point, all the reported clones are syntactic clones
of Type 2.

4. Refactoring Support for Clone Removal
Duplicated code often indicates lack of encapsulation and reuse;
therefore a primary purpose of clone detection is to remove them
from the system via refactoring to improve the system’s quality. As
code clones will generally be scattered throughout the program, re-
moving clones manually can be tedious and error prone. To support
the clone removal process, we have developed a set of refactorings
which together can help to remove clones efficiently and reliably.

Another scenario for the use of these refactorings is to refactor
the existing code and then to reuse it, thus avoiding the introduc-
ing of clones from the beginning. There are other refactorings in
Wrangler, such as renaming, moving a function definition between
modules, etc, which were not designed especially for duplicated
code elimination purpose, but still can help in some cases.

Instead of fully automating the clone removal process, we give
the user more control as to which clone instance to remove and how
to remove. Furthermore, the undo feature of Wrangler can always
be used to recover a removed clone if the user changes his/her mind.

Next, we introduce the three main refactorings we have de-
veloped for clone removal purpose, and some examples are given
where it is necessary.

4.1 Function Extraction
Function extraction is the first step towards clone removal. This
refactoring encapsulates a sequence of expressions into a new func-
tion. To perform this refactoring with Wrangler, the user highlights
in the editor a sequence of expressions, and inputs the new func-
tion name when prompted. Wrangler checks whether the selected
expression sequence can be extracted, and whether the new func-
tion name causes conflicts within current module. If all the check-

start_loc(Node, Toks) ->
case type(Node) of

if_expr ->
Cs = if_expr_clauses(Node),
newfun(’if’ , Cs, Toks);

cond_exp ->
Cs = cond_expr_clauses(Node),
{S, E} = get_range(hd(Cs)),
extend_forwards(Toks, S, ’cond’);

end.
newfun(Keyword , Cs, Toks) ->
{S, E} = get_range(hd(Cs)),
extend_forwards(Toks, S, Keyword).

Figure 8. The program after generalisation

ing succeeds, a new function will be created automatically with the
selected expression sequence as its function body, and free vari-
ables of the expression sequence as its formal parameters. The se-
lected expression sequence is then replaced by a function call, or
a match expression with the function call as its right-hand side if
the expression sequence exports values. The newly created function
is put right after the enclosing function of the selected expression
sequence. In Figure 7, the italised text in the first code fragment
represents the code for extraction, and the result of this refactoring
is shown in the second fragment.

4.2 Generalisation of Function Definition
Generalisation of a function definition makes the function more
reusable. This is especially useful when the clone members of a
clone class have variations in literals. With Wrangler, to generalise
a function over an expression in its function body, the user only
needs to highlight the expression from the source, and provide a
new parameter name when prompted. If the side-condition check-
ing succeeds, Wrangler will generalise the function by adding the
new parameter to the function’s definition, replacing the selected
expression with the new parameter, and making the selected expres-
sion the actual value of the new parameter at the call sites of this
function. In the case that the selected expression has side-effects or
free variables, it would be wrapped in a function expression before
being supplied to the call sites of the function. Figure 8 shows the
program after generalising function newfun on the literal expres-
sion ’if’.

4.3 Folding against a Function Definition
Folding against a function definition is the refactoring which ac-
tually removes code clones from the program. This refactoring
searches the program for instances of the right-hand side of a func-
tion clause, and replaces them with applications of the function to
actual parameters under the user’s control. This refactoring can de-
tect not only instances where parameters are replaced by variables
or literals, but also instances where parameters are replaced by arbi-
trary expressions. Therefore the instances found by the refactoring
could be a superset of the clone instances reported by the clone
detector.

To apply this refactoring to a program, the user only needs to
select the function clause against which to fold by pointing the
cursor to it (or input the function clause information if it is not
defined in the current module), and the refactoring command from
the menu. Wrangler automatically searches for code fragments that
are clones of the selected function clause’s body expression. Once
clone instances have been found, the user can decide whether to
fold all the clone instance without any further interaction with

Figure 9. A snapshot of Wrangler showing folding

Wrangler, or to go through the instances one by one, and instruct
Wrangler whether a particular instance should be replaced or not.
Note that the folding is not performed within the selected function
clause itself, since doing this will change the program’s semantics.

The snapshot in Figure 9 shows the scenario of folding against
the function newfun: the user has selected the function newfun,
selected the Folding Expression against Function command from
the refactor menu, and have decided to go through the candidates
one by one. The snapshot shows that Wrangler highlights the first
candidate instance, and asks whether the user wants to replace this
expression sequence with the application of newfun. If the users
types yes within the minibuffer, the highlighted expression will
be replaced by newfun(’cond’, Cs, Toks), otherwise the high-
lighted expression will remain unchanged. In either case, Wrangler
will move to the next candidate instance if there is any, or finish the
process if no more candidate instances left.

5. Experiments
The section presents a detailed evaluation of Wrangler’s clone
detection and elimination support by applying it to real Erlang
applications.

5.1 Experiment Setup
To evaluate the tool, we have applied it to several applications
written in Erlang including Wrangler itself (30,872 LOC), Mne-
sia (28,152 LOC) (Mattsson et al. 1998) which is a distributed
database management system from the Erlang/OTP release, and
Yaws (29,603 LOC) (Yaw) which is a web server. Due to the com-
pactness of program written in functional programming languages,
these applications are by no means small Erlang programs. All ex-
periments were run on a laptop with Intel(R) 2.00 GHz processor,
2015MB RAM, and Windows Vista installed.

With these experiments, we aimed to evaluate the tool in terms
of the following: running time, the number of clones reported, the
percentage of clones that are inter-module and number of clones
refactored out using Wrangler’s clone elimination support. In order
to illustrate the number of false positives eliminated during the
clone detection process, we customised the clone detector to report
both the final result and the intermediate results after each step. As
to the threshold settings, we used the default values, i.e., 30 for

Wrangler Mensia Yaws
No. of files 44 38 68
Program size(K LOC) 30.9 28.2 26.9
Time(Min) < 6 < 3 < 3
Type 4 clones 311 133 181
Type 3 clones 56 123 178
before syntactic decomposition
Type 3 clones 72 53 92
after syntactic decomposition
Type 2 clones 52 43 66
Inter-module Type 2 clones 35 5 18

Table 1. Clone Detection Results

No. of class 30-40 40-50 50-70 70-100 >100
members (tokens) (tokens) (tokens) (tokens) (tokens)

2 17 1 7 3 18
3 1
4 1
5 1

>5 2 1

Table 2. Clone Distribution of Wrangler

the minimum number of tokens in a clone, and 2 for the minimum
number of members in a clone class.

5.2 Experiment Results
Table 1 shows the result of applying Wrangler’s clone detector to
the three Erlang applications mentioned above. For all three appli-
cations, Wranlger were able to finish the clone detection process
in reasonable time. The running time is not only affected by the
size of the program, but also by the number of initial candidates
collected from the suffix tree. In this table, we distinguish the num-
ber of Type 3 clones before and after the syntactic decomposition
step. More often, the number of clones classes will be reduced af-
ter syntactic decomposition, but it is also possible for the number
to increase because a clone class with large code fragments could
be decomposed into several clone classes with smaller code frag-
ments. These experiments also demonstrated the benefit of consis-
tent renaming checking, hence the knowledge of the scoping rules
of the target language; without consistent renaming checking, the
accuracy of the tool would be deteriorated significantly.

Table 1 also shows that Wrangler has a very high percentage
of inter-modules clones. This is due to the fact that Wrangler keeps
two versions of token scanner, one in the module refac scan.erl
and the other in refac scan with layout.erl. The latter keeps
white spaces and comments in the token stream, and is a mod-
ified version of refac scan.erl. Initially just for experimental
purpose, we copied the refac scan module, and made some nec-
essary modifications. Therefore these two modules share a lot com-
mon functions, which should be refactored out into a separate mod-
ule. Unsurprisingly, 25 clone classes of the inter-module clones re-
ported are related to these two modules.

Table 2-4 illustrates the distribution of clones from each appli-
cation in terms of the size of cloned code fragments, i.e., the num-
ber of tokens, and the number of times the cloned code fragment
appear in the code. Menesia apparaently has the least amount of
duplicated code.

5.3 Clone Elimination
To evaluate Wrangler’s support for clone elimination by means
of refactoring, we underwent the process of removing the clones
found in Wrangler using Wrangler itself.

No. of class 30-40 40-50 50-70 70-100 >100
members (tokens) (tokens) (tokens) (tokens) (tokens)

2 20 8 7 4 1
3 1 2

Table 3. Clone Distribution of Mnesia

No. of class 30-40 40-50 50-70 70-100 >100
members (tokens) (tokens) (tokens) (tokens) (tokens)

2 22 12 5 7 7
3 1 2 1 1
4 3 3 1

>5 1

Table 4. Clone Distribution of Yaws

The first step is to remove those inter-module function clones
related to refac scan and refac scan with layout. This is
achieved by moving these duplicated functions to a newly created
module, refac scan lib, by applying the refactoring move func-
tion to another module from Wrangler. With this step 19 duplicated
function definitions were removed.

The refactoring move function to another module moves a func-
tion definition from its current module to a module specified by the
user, and changes all the references to this function across the pro-
gram accordingly. As a side-condition, the function to be moved
should not cause any conflicts in the target module. Originally, this
refactoring would fail if the same function name is already defined
in the target module, regardless whether the two function defini-
tions are syntactically, therefore semantically, the same or not; dur-
ing this clone removal process, we modified the implementation of
this refactoring so that the refactoring process will continue if syn-
tactically the same function is already defined in the target module,
that is, Wrangler will remove the function definition from its origi-
nal module without adding it to the target module, and will change
all references to this function consistently.

Using the combination of function extraction, generalisation
and folding, we managed to remove another 20 clone classes re-
ported. From our experience, these three refactorings are all very
convenient to use, except that the user needs to figure out which
parts (i.e., literals) of the new function introduced by function ex-
traction need to be generalised before applying the folding refac-
toring to this function.

The remaining clones were left unchanged because the dupli-
cated code fragments only contain a single function application
with a large number of parameters. For example, the following ex-
pression:

scan(Cs, Stack, [{’->’, {Line, Col}} | Toks],
{Line, Col + 2}, State, Errors);

was reported with 17 duplications, but it is not necessary to encap-
sulate it again.

6. Related Work
A typical clone detection process first transforms source code into
an internal representation which allows the use of a comparison al-
gorithm, then carries out the comparison and finds out the matches.
A recent survey of existing techniques is given by Roy and Cordy
in (Roy and Cordy 2007), an overview of which is given now.

6.1 Text-based approaches
Text-based approaches consider the target program as sequence
of lines/strings. Two code fragments, possibly after some pre-
processing, are compared with each other to find sequences of same

text/strings. The comparison techniques used may vary from each
other. For example, suffix-tree based matching is used by Baker in
(Baker 1992); fingerprint-based string comparison is used by John-
son in (Roy and Cordy 2007); whereas Ducasse et al. (Ducasse
et al. 1999) use string-based Dynamic Pattern Matching (DPM) to
textually compare whole lines that have been normalised to ignore
whitespace and comments.

Text-based approaches can be sensitive to minor changes made
in the copy-pasted code, and for such approaches it is hard to
guarantee that the reported clones form well-formed syntactic units.
Checking of consistent renaming of variables at a textual level is
also a challenge.

6.2 Token-based approaches
Token-based approaches first perform lexical analysis on the pro-
gram to produce a sequence of tokens, then apply comparison
techniques to find duplicated subsequences of tokens. Representa-
tive techniques include CCFinder (R. Komondoor and S. Horwitz
2001), a language-independent clone detector that reports clones
of Type 3; Dup (Baker 1995), which uses the notion of parame-
terised matching by a consistent renaming of identifiers; and CP-
Miner (Li et al. 2006b), which uses a frequent subsequence mining
technique to indentify a similar sequence of tokenized statements.
Both CCFinder and Dup use suffix-tree based token matching tech-
niques.

Like text-based approaches, token-based approaches are in gen-
eral efficient, but can report syntactically non well-formed clones.
While Dup does consistent-renaming checking of variables, with-
out knowing the scoping rules of the target language, false positives
are impossible to avoid.

6.3 AST-based approaches
AST-based approaches search for similar subtrees in the AST with
some tree matching techniques. Since naı̈ve comparison of subtrees
for equality does not scale, Baxter et al.’s CloneDR (Baxter et al.
1998) partitions the sets of comparisons by categorizing sub-trees
with hash values. The use of hashing enables consistent renaming
checking to be performed, and therefore for clones of Type 2)
to be detected. It also supports the detection of near-miss clones
such as clones involving commutative operators with the operands
swapped.

In (Baxter et al. 1998), Baxter et al. also suggest a mechanism
for the removal of code clones with the help of macros, but they
did not carry out clone removal. DECKARD (Jiang et al. 2007)
is another AST-based language independent clone detection tool,
whose main algorithm is to compute certain characteristic vectors
to approximate structural information within ASTs and then cluster
similar vectors, and thus code clones. In (R. Koschke and R. Falke
and P. Frenzel 2006), Koschke et al. propose to use suffix tree
representation of AST to detect clones, and point out that their tool
could have a better precision if consistent renaming were checked.

6.4 Using the program dependency graph
There are also clone detection approaches based on the program
dependency graph, as demonstrated in (R. Komondoor and S. Hor-
witz 2001). Using data mining techniques, Basit et at. (Basit and
Jarzabek 2005) have gone one step further to infer design-level
similarities based on patterns of clones. Most of the above men-
tioned clone detection tools target large legacy programs, and none
of them is closely integrated with an existing programming envi-
ronment. Without applying deeper knowledge of the scoping rules
of the target programming language, language-independent clone
detection tools tend to have a lower precision, and are not very
suitable for mechanical clone refactoring.

The hybrid approach that we have described earlier in the paper
can be seen to combine the speed of a token-based approach with
the accuracy of the AST-based approach, through using the former
to identify candidate clones, whose more detailed analysis can be
performed with reference to the annotated AST.

7. Conclusions and Future Work
In this paper, we have presented a hybrid clone detection tech-
nique which makes use of both the token stream and the AST to
improve performance and efficiency, and a collection of 3 refac-
torings which together help to remove clones from code under the
user’s control.

The Wrangler clone detector benefits from both the speed of
token-based clone detection approaches and the accuracy achieved
by AST-based approaches. The usefulness and ease of use of the 3
refactorings were also demonstrated via examples. Both the clone
detector and the refactorings are part of the Erlang refactoring tool
Wrangler, which is embedded in Emacs and Eclipse. Integrating
Wrangler within the program development environment allows it
to be used in the normal development process, and in the spirit of
this paper to remove any clone as soon as it appears.

In the future, we would like to improve the tool in three direc-
tions. First we would like to make use of visualisation techniques
to improve the presentation of the clone results; Second, we would
also like to provide functionalities for scripting refactoring com-
mands, basing on clone results, to support users who prefer fully
automated clone removal; Third, we would like to develop func-
tionalities for detecting code fragments that are similar but not
clones in the spirit of this paper. A particularly fruitful direction
here is the refactoring possibilities for test code, to be investigated
in the ProTest project (ProTest).

While the presented tool is especially for Erlang/OTP programs,
the idea is not limited to this single language. In fact, we would
like to apply the technique to Haskell programs, to add duplicated
code detection and elimination support to HaRe (Li et al. 2005; Li
and Thompson 2008), the tool we have developed for refactoring
Haskell programs. Since Haskell is a statically typed language, we
can foresee that type information needs to be taken into account
when clone removal is concerned.

The idea of hybrid clone detection can be applied to programs
from any paradigm; it would be a very useful project to assess the
effectiveness of hybrid techniques in other programming domains.

Acknowledgement
The authors would like to thank the UK Engineering and Physical
Sciences Research Council for its support for Wrangler (project
EP/C524969/1).

References
J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

B. S. Baker. A Program for Identifying Duplicated Code. Computing
Science and Statistics, 24:49–57, 1992.

B. S. Baker. On Finding Duplication and Near-Duplication in Large Soft-
ware Systems. In L. Wills, P. Newcomb, and E. Chikofsky, editors, Sec-
ond Working Conference on Reverse Engineering, Los Alamitos, Cali-
fornia, 1995.

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Partial Redesign of Java Software Systems Based on Clone Analysis. In
Working Conference on Reverse Engineering, pages 326–336, 1999.

H. A. Basit and S. Jarzabek. Detecting higher-level similarity patterns in
programs. SIGSOFT Softw. Eng. Notes, 30(5):156–165, 2005. ISSN
0163-5948.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
Detection Using Abstract Syntax Trees. In ICSM ’98, Washington, DC,
USA, 1998.

S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach
for detecting duplicated code. In Proceedings ICSM99 (International
Conference on Software Maintenance, pages 109–118. IEEE, 1999.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN
0-201-48567-2.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring
Support Environment Based on Code Clone Analysis. In IASTED Conf.
on Software Engineering and Applications, pages 222–229, 2004.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In ICSE ’07: Proceedings
of the 29th international conference on Software Engineering, pages 96–
105, Washington, DC, USA, 2007. IEEE Computer Society.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multi-Linguistic
Token-based Code Clone Detection System for Large Scale Source
Code. IEEE Computer Society Trans. Software Engineering, 28(7):654–
670, 2002.

C. Kapser and M. W. Godfrey. ”Clones Considered Harmful” Considered
Harmful. In Proc. Working Conf. Reverse Engineering (WCRE), 2006.

R. Komondoor and S. Horwitz. Tool Demonstration: Finding Duplicated
Code Using Program Dependences. Lecture Notes in Computer Science,
2028:383–386, 2001.

R. Koschke and R. Falke and P. Frenzel. Clone Detection Using Abstract
Syntax Suffix Trees. In WCRE ’06, pages 253–262, Washington, DC,
USA, 2006.

H. Li and S. Thompson. Tool Support for Refactoring Functional Programs.
In Partial Evaluation and Program Manipulation, San Francisco, Cali-
fornia, USA, January 2008.

H. Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe, and its
API. Electr. Notes Theor. Comput. Sci., 141(4):29–34, 2005.

H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Vı́g, and T. Nagy.
Refactoring Erlang Programs. In EUC’06, Stockholm, Sweden, Novem-
ber 2006a.

H. Li, S. Thompson, G. Orosz, and M. T”oth. Refactoring with Wrangler,
updated. In ACM SIGPLAN Erlang Workshop 2008, Victoria, British
Columbia, Canada, September 2008.

Z. Li, S. Lu, and S. Myagmar. Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng., 32(3):176–
192, 2006b. ISSN 0098-5589. Member-Yuanyuan Zhou.

H. Mattsson, H. Nilsson, and C. Wikstrom. Mnesia - a distributed robust
dbms for telecommunications applications. In PADL ’99: Proceedings
of the First International Workshop on Practical Aspects of Declarative
Languages, pages 152–163, London, UK, 1998. Springer-Verlag.

A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software
Quality Analysis by Code Clones in Industrial Legacy Software. In
METRICS ’02, Washington, DC, USA, 2002.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: the Revised
Report. Cambridge University Press, 2003. ISBN 0-521-82614-4.

ProTest: property-based testing. http://www.protest-project.eu.
C. H. Roy and R. Cordy. A Survey of Software Clone Detection Research.

Technical report, School of Computing, Queen’s University at Kingston,
Ontario, Candada, 2007.

K. Sagonas. Experience from Developing the Dialyzer: A Static Analysis
Tool Detecting Defects In Erlang Applications. Presented at the ACM
SIGPLAN Workshop on the Evaluation of Software Defect Detection
Tools, 2005.

D. Tsadok. ANSI C implementation of a Suffix Tree. Technical report,
Computer-Science Department, Haifa University, Israel, August 2002.

E. Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14(3):
249–260, 1995.

Yaws – An Open Source Web Server Written in Erlang. http://yaws.
hyber.org/.

http://www.protest -project.eu
http://yaws.hyber.org/
http://yaws.hyber.org/

	Introduction
	The Erlang/OTP Language
	The Wrangler Clone Detector
	Terminology
	Clone detection architecture
	Token-level Clone Detection
	Annotated Abstract Syntax Trees
	Decomposing into Syntactic Clones
	Checking For Consistent Renaming

	Refactoring Support for Clone Removal
	Function Extraction
	Generalisation of Function Definition
	Folding against a Function Definition

	Experiments
	Experiment Setup
	Experiment Results
	Clone Elimination

	Related Work
	Text-based approaches
	Token-based approaches
	AST-based approaches
	Using the program dependency graph

	Conclusions and Future Work

