
Clone Detection and Removal for Erlang/OTP within a Refactoring Environment

Huiqing Li
Computing Laboratory
University of Kent, UK

H.Li@kent.ac.uk

Simon Thompson
Computing Laobratory
University of Kent, UK

S.J.Thompson@kent.ac.uk

Abstract

This paper proposes a token and AST based hybrid
approach to automatically detecting code clones in Er-
lang/OTP programs, underlying a collection of refactorings
to support user-controlled automatic clone removal. Both
the clone detector and the refactorings are integrated within
Wrangler, the refactoring tool developed for Erlang/OTP.

1. Introduction

Duplicated code could be refactored out after it has been
introduced, but could also be avoided by first refactoring the
existing code to make it more reusable, then reuse it without
duplicating the code. Substantial research effort has been
put into the detection and removal of clones from software
systems; however, few such tools are available for functional
programs, and there is a particular lack of tools that are
integrated with existing programming environments.

Erlang/OTP is an industrial strength functional program-
ming language with built-in support concurrency, com-
munication, distribution, fault-tolerance, and dynamic code
reloading [1]. This paper investigates the application of clone
detection and removal techniques to Erlang/OTP programs
within the refactoring context, proposes a token and anno-
tated AST based hybrid approach to automatically detecting
code clones across multiple modules, and describes three
basic refactorings which together help to remove code clones
under the user’s control. Both the clone detector and the
refactorings have been implemented within Wrangler [2].
Wrangler is a tool that supports interactive refactoring of
Erlang/OTP programs. It is integrated with Emacs and now
also with Eclipse. Wrangler itself is implemented in Erlang.

2. Wrangler’s Clone Detection and Removal

Wrangler’s clone detector is able to report code fragments
in an Erlang project, either in a single module or across the
whole project, that are syntactically identical after semantic
preserving renaming of variables, also allowing for varia-
tions in literals, layout and comments. Syntactically, each of
these code clones is a sequence of well-formed expressions
or functions.

This approach makes use of both a token suffix tree and
abstract syntax tree (AST) annotated with location and static
semantic information. The use of the token suffix tree allows
us to detect the initial clone candidates quickly, whereas use
of the AST ensures that the tool only reports syntactically
well-formed clone candidates. Furthermore, static semantic
information annotated in the AST is used to check whether
two code fragments can be refactored to each other by
consistent renaming of variables and literals, and thus to
ensure that the clones detected are actually removable. Once
a code clone set is found, it is possible to use refactorings in
Wrangler to remove the clones. First, the duplicated code is
extracted into a function, next it may be generalised to ab-
stract over any literals. Finally, it is possible to step through
all the instances of this function in the code base, deciding
for each one whether or not to fold it into a function call.
Three refactorings have been implemented to support the
above process, and they are function extraction, generalise
a function definition, and fold expressions against a function
definition. These refactorings respect the importance of user
intervention, and allow clones to be removed step by step
under the programmer’s control. Apart from removing code
clones from legacy programs, these refactorings are also
for programmers to use as part of their daily programming
activities to avoid the introduction of code clones from the
very beginning. While clone detectors shows where and how
much code has been duplication, our experiences show that
tool support for clone removal is essential for clones to be
removed, given the tedious and error-prone nature of manual
refactoring.

In the future, we would like to investigate the use of
clone detection and removal techniques to testing code.
More details about Wrangler’s clone detection and removal
algorithm are reported in [2].

References

[1] J. Armstrong. Programming Erlang. Pragmatic Bookshelf,
2007.

[2] H. Li and S. Thompson. Clone Detection and Removal for
Erlang/OTP within a Refactoring Environment. In ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipu-
lation (PEPM’09), Savannah, Georgia, USA, January 2009.


	Introduction
	Wrangler's Clone Detection and Removal
	References

