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Abstract. Polyhedra are widely used in model checking and abstract
interpretation. Polyhedral analysis is effective when the relationships be-
tween variables are linear, but suffers from imprecision when it is neces-
sary to take into account the integrality of the represented space. Impre-
cision also arises when non-linear constraints occur. Moreover, in terms
of tractability, even a space defined by linear constraints can become un-
manageable owing to the excessive number of inequalities. Thus it is use-
ful to identify those inequalities whose omission has least impact on the
represented space. This paper shows how these issues can be addressed in
a novel way by growing the integer hull of the space and approximating
the number of integral points within a bounded polyhedron.

1 Introduction

The aim of this work is to take algorithms from computation geometry and linear
programming and apply them to solve problems arising in program analysis using
polyhedra. In abstract interpretation convex polyhedra have long been used to
abstract the sets of values that variables may take [6]. This has proven to be
attractive in program analysis because, as well as prescribing range constraints
on variables, polyhedra can also describe interactions between variables.

Polyhedral analyses sometimes need to consider integrality [16], for instance,
to derive invariants between integral objects such as loop counters and pointer
offsets [20]. In such analyses variables are discrete, whereas polyhedra are defined
over real or rational numbers. Further, polyhedra cannot express non-linear rela-
tionships; in this case, the non-linearity is either projected out or approximated
in an ad hoc way. These drawbacks impede the accurate analysis of programs. In
terms of tractability, polyhedra can be too expressive in some situations; an anal-
ysis can become overwhelmed by large systems of (non-redundant) inequalities.
This paper presents a synthesis of solutions to the three problems introduced
above: integrality, non-linearity and tractability.

The target of this work is abstract interpretation based analyses, such as
those performed by [5]. In such an analysis a fixpoint in the meet semi-lattice of
polyhedra over the variables of interest is calculated, where this fixpoint describes
the values and relationships between program variables. The smaller the fixpoint
(when the polyhedra is interpreted as a set of points), the more information it
contains. In particular, if the polyhedra describes the values of integers (and no



floating point variables), then tightening to the integer hull provides a systematic
way of strengthening an analysis.

The starting point of the work is that a polyhedron can be grown to describe
the integer solutions of a system of constraints. The process is incremental in
nature. First an integer solution to the system of constraints is found. Then a
second distinct integer solution is found whose distance is maximal from the first
and the convex hull of this point and the previous space is taken. Iterating this
mechanism, one of the inequalities that bounds the current space is chosen and
a solution is found at maximal normal distance from the inequality. This process
is repeated until all inequalities have been considered, giving the integer hull
[10]. Computing the integer hull for arbitrary systems of even linear inequalities
is NP-hard, limiting the size of problems likely to be solvable and motivating
approximation techniques. Observe that the technique above gives a series of
integer polyhedra approximating the solution from below, converging on the
precise solution. It will also be seen that an approximation from above can
be extracted from the algorithm. It is important to note that the input set of
constraints is not necessarily linear, thus this approach addresses two of the three
problems: integrality and non-linearity.

A potential drawback of the above technique is that the resulting integer
polyhedron may involve an unmanageably large number of inequalities. This mo-
tivates a systematic technique for relaxing a polyhedron by reducing the number
of inequalities. This is achieved by calculating a Monte Carlo approximation of
the number of integer points that a constraint bars from a polyhedron. The least
contributing constraints are relaxed. This approach provides a way of curbing
the growth of inequalities and computing an integer approximation whose num-
ber of defining constraints does not exceed some bound, addressing the problem
of tractability.

This paper brings together a number of threads in program analysis and
computational geometry and the contributions of the paper are summarised:

– The algorithm of [10] that grows the integer hull and allows anytime approx-
imation from below and above is presented and elucidated.

– This algorithm can be adapted to calculate the integer hull of a projection
of the input constraint system onto a subset of its variables. When running
to completion this method can be used for over-approximating the integer
solutions of a set of non-linear constraints, an approximation problem which
thus far has not been satisfactorily addressed.

– A method to determine which constraints contribute little to the enclosed
space, hence are candidate for relaxation, is presented. This is parameterised
by the method used to determine this contribution and a Monte Carlo ap-
proximation technique is discussed in detail.

– The integer hull algorithm and one approach to relaxation have been imple-
mented and the results of an empirical evaluation have been presented. The
results are promising for the use of the algorithms in program analysis.



2 Growing Integer Hulls

This section details the calculation of the convex hull of the integer solutions
– the so-called integer hull [18] – of a system of constraints C defined over
totally ordered variables x1, . . . , xn. The integer hull is approximated from below,
growing it from a point by giving an inequality c to an oracle that will return
a point p satisfying C, but not c; inequality c bounds the current hull, W . The
convex hull of p and W is then calculated. This approach was first seen in [10]
and is also remarked upon in [4]. Here, the algorithm is detailed with particular
attention given to the maintenance of the inequalities describing the hull. Further
attention is paid to the novel use of this algorithm in the context of program
analysis, especially the way in which it can deal with non-linear constraints.

2.1 An integer hull algorithm

The following three procedures detail the integer hull algorithm implemented in
Section 4. The main loop of the algorithm is contained in the second procedure,
worklisthull. The first procedure, integerhull below, sets up the problem:

1: procedure integerhull(C)
2: p := maximise(C, x1);
3: if p = null thenreturn null; end if
4: Ineqs :={xi≤pi,−xi≤−pi|1≤ i≤n};
5: Ps := {p};
6: Cons := sort(Ineqs);
7: lastrank := 0;
8: rank := rank(Ineqs);
9: while Cons 6= [] do

10: p′ := null;
11: while Cons 6= [] ∧ p′ = null do
12: Cons ≡ f :: Rest, f ≡ c · x ≤ d;
13: p′ := maximise(C ∧ ¬f, c · x);
14: Cons := Rest;
15: end while

16: if p′ = null then
17: return Ineqs;
18: else
19: lastrank := rank;
20: Ineqs′ := convexhull(p′, Ineqs);
21: rank := rank(Ineqs′);
22: if rank > lastrank then
23: Ineqs := Ineqs′;
24: Cons := sort(Ineqs);
25: Ps := Ps ∪ {p′};
26: else
27: return worklisthull(Ps, Ineqs, C);
28: end if
29: end if
30: end while

The purpose of this procedure is to calculate a first approximation (impor-
tantly, a simplex) of the integer hull that reaches the dimension of the final
solution. Note that the integer hull might well be a hyperplane of lower dimen-
sion than n, the number of varibles. On line 2, a first integer point in the hull is
calculated. This uses the auxiliary function maximise(C, c) that takes a system
of constraints C and a cost function c and returns an integer solution to C that
maximises c. If no such point exists it returns null. The choice of the first cost
function is arbitrary. Ineqs is a set of linear inequalities describing the current
approximation and Ps is the set of points so far calculated. Ineqs is then sorted
by the number of points in Ps that lie on the boundary of an inequality. This
ensures that the next discovered point will raise the dimension, if full dimen-
sionality is not yet reached. The dimension of a set of inequalities is determined



by function rank. The next point is determined on line 13 and (the topological
closure of) the convex hull of this point with the previous hull is calculated on
line 20 using an appropriate method. This process is repeated through lines 9 to
30 until either the integer hull is calculated or full dimensionality is reached.

Before passing on to worklisthull, it is worth noting that replacing lines 18-28
(and the rank variables and calculations) of integerhull with

Ineqs := convexhull(p′, Ineqs);
Cons := sort(Ineqs);

will give a complete algorithm not using the following two procedures. This will
be referred to later as integerhull′. This is essentially what is given in [10] and the
additional procedures detail the use of simplicial faces to control the generation
of new inequalities (which in integerhull′ result from the call to convexhull).

Procedure worklisthull is passed a set of points, a set of inequalities describing
their integer hull and the input constraints. This procedure works on a simplicial
input and the final point calculated by the integerhull is not included in the set
of points; worklisthull provides the main loop and is given below:
1: procedure worklisthull(Ps, Ineqs, C)
2: Hull = dimred(Ps, Ineqs);
3: Worklist = faces(Ps, Ineqs);
4: while Worklist 6= φ do
5: f(V s, ineq) ∈ Worklist;
6: p := maximise(C ∧ ¬ineq, c · x) where ineq ≡ (c · x ≤ d);
7: if p = null then
8: Hull := Hull ∪ {ineq};
9: Worklist := Worklist \ {f(V s, ineq)}

10: else
11: Ps := Ps ∪ {p};
12: Worklist := hull(p, Worklist, Ps);
13: end if
14: end while
15: return Hull;

In worklisthull a worklist of consists of faces, where a face f(V s, ineq) is a
set of integer points V s, with |V s| equal to the dimension of the integer hull,
and inequality ineq with each point in V s lying on the boundary of ineq. Each
face is a simplex of dimension |V s| − 1. Hull represents the inequalities in the
integer hull. It is initialised with any dimension reducing inequalities, determined
by auxiliary dimred – every point in Ps will be on the boundary of such an
inequality. The auxiliary faces sets up the initial worklist. Whilst there are faces
in the worklist a face f(V s, ineq) is selected and the oracle is asked for a point
p satisfying C, but not ineq, line 6. If there is no such point, then ineq is added
to Hull, line 7. If there is, line 10, the procedure hull determines a new worklist,
replacing any face not satisfied by p with a set of new faces whose determining
points will include the new point. Note that the call to hull will remove the
current face from the worklist.

Procedure hull, below, takes the place of a convex hull calculation in worklisthull:
1: procedure hull(p, Worklist, Ps)



2: NewWorklist = φ;
3: for all f(V s, ineq) ∈ Worklist do
4: if p |= ineq then
5: NewWorklist := NewWorklist ∪ {f(V s, ineq)};
6: else
7: for all v ∈ V s do
8: V s′ := (V s \ {v}) ∪ {p};
9: ineq′ := ineq(V s′, v);

10: if ∀q ∈ Ps.q |= ineq′ then
11: NewWorklist := NewWorklist ∪ {f(V s′, ineq′)};
12: end if
13: end for
14: end if
15: end for
16: return NewWorklist;

The procedure will retain any face satisfied by the new point p, line 4 (|=
denotes the satisfaction relation). An unsatisfied face forms the base of a simpli-
cial cone whose pinacle is p. The faces of this cone are the simplicies obtained
by replacing one of the points defining the base by p, line 8. The inequality
for this new face can be calculated (see below), from these points, plus the dis-
carded point, line 9. Finally, the worklist need only retain faces that are currently
satisfied by all discovered points, others are discarded, line 10.

The plane through a set of d independent points, p1, ...,pd, can be calculated
in constant time for fixed d by solving the parametric description of the plane
using Gaussian elimination. That is, plane = p1 +

∑d
i=2 λi.vec(p1,pi) where

vec(pi,pj) is the vector from point pi to point pj . Set up a matrix where the
first d− 1 columns are given by vec(p1,pi+1), the next d columns are the unit
vectors for each dimension and the final column is the entries of p1. Use Gaussian
elimination to set the first d − 1 entries of the final row to 0 and read off the
equation of the plane from the entries in the remaining columns of this row. The
discarded point can then be used to determine the desired inequality.

Anytime Approximations During execution of worklisthull at any point the
accumulated inequalities of Hull and Worklist determine an integer polyhe-
dron that is an underapproximation of the integer hull, allowing anytime ap-
proximation from below. Further, note that at any point Hull is a potentially
unbounded polyhedron (but not necessarily an integer polyhedron) that is an
over-approximation of the integer hull, allowing anytime approximation from
above. Algorithms with anytime approximation are paricularly attractive for
program analysis when attempting to bound the time the analysis takes. Both
under and over-approximations are useful, depending the whether analysis is for
properties that definitely hold, or potentially hold.

Example 1. Consider the following linear constraints, C = {−11x+y ≤ −8, 2x+
8y ≤ 71, 8x+4y ≤ 67, 19x+2y ≤ 116,−4x−11y ≤ −35}. This is represented by
the dotted lines in Fig. 1. The initial call to maximise gives p1, subsequent calls
from integerhull give the points p2 and p3 and the simplicial under-approximation
of the integer hull given by the continuous lines in Fig. 1 a).
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Fig. 1. Integer hull of a set of linear constraints

In worklisthull, the face with inequality c1 ≡ −2x − 5y ≤ −17 will be first
selected. The call maximise(C, c1) will return null and c1 will be added to Hull.
Next consider face({(6, 1), (3, 8)}, d2), giving the call to maximise(C, d2) that
will return (5, 6). In hull, the face with inequality d1 is satisfied by the new point
and will remain in the worklist. The new faces are face({(5, 6), (3, 8)}, c4) and
face({(6, 1), (5, 6)}, c5). To determine c4 consider the matrix on the left, which
with one elimination step gives that on the right:[

−2 1 0 5
2 0 1 6

] [
−2 1 0 5
0 1 1 11

]
This allows the result to be read off: c4 ≡ x + y ≤ 11 (the point (6,1) has been
used to determine the inequality). Similarly, c5 ≡ 5x+y ≤ 31. Further iterations
give c2 ≡ −5x + y ≤ −2 and c3 ≡ y ≤ 8. Since there are no further external
points satisfying C these will be added to Hull which will finally be returned.

Note that a tightening has been achieved. The input C projected onto x gives
range [0.984,6] whereas the integer hull gives [1,6], and for y [1,8.5] becomes [1,8].

2.2 Working in a projected space and non-linear constraints

This section builds upon two observations on the algorithm presented in the
previous section to highlight its suitability for use in program analysis. The first
observation is that the algorithm is easily adapted to compute the integer hull of
a k-dimensional projection of constraints C, that is, the smallest polyhedron that
contains those points 〈v1, . . . , vk〉 for which C possesses a corresponding integer
solution 〈v1, . . . , vn〉. Restriction to a subset of variables of interest is an opera-
tion commonly required for program analysis. The adaptation is simply achieved
by restricting the points p, determined by calls to maximise, to the variables of
interest. The second observation is that C may contain non-linear constraints,



as long as the point oracle can deal with these. Both of these observations are
illustrated with a well-known problem from program analysis.

Although the seminal paper on polyhedral analysis [6] identified the prob-
lem of approximating non-linear constraints, a widely accepted solution to the
problem has not been found. Consider the example of [6, Sect. 4.2.1] to illus-
trate how to compute a polyhedral approximation of a non-linear assignment.
Specifically, suppose the constraint S = {−x + y ≤ 1,−y ≤ −1,−x − y ≤ −5},
holds when the non-linear assignment y := xy is encountered. The problem
is how to systematically compute a polyhedral approximation of the ensuing
non-linear space. This problem can be addressed by augmenting S with the con-
straint y′ = xy, thereby raising the dimension, then symbolically projecting out
y, and replacing y′ with y. This gives the shaded space in Fig. 2(a) defined by
{−x ≤ −2, y ≤ x + x2,−y ≤ −x,−y ≤ x2 − 5x, y ≤ 32767}. This approach
presupposes that a symbolic projection algorithm is known for the system of
augmented constraints, which of course, is not guaranteed in general [7]. Note
that the y ≤ 32767 constraint is imposed by an underlying 16-bit representation
where variables range over [−32768, 32767]; other machine representations would
likewise ensure that integer variables can only lie within a finite range. Note too
that the manually derived non-linear constraint suggested in [6, Sect. 4.2.1] omits
the inequality −x ≤ −2 that is necessary to exclude the origin. This inequality
follows from a linear combination of −x+y ≤ 1 and −x−y ≤ −5, and illustrates
the subtlety of manually abstracting non-linear constraints.

Now consider a run of the algorithm where C is instantiated to S ∧ y′ = xy
and the variables are totally ordered as in the sequence x, y′, y. Putting k = 2
then eliminates the variable y so that the algorithm computes the integer hull of
the projection of C onto the x, y′ plane. An initial solution u = 〈32767, 32767, 1〉
is computed at line 2 of integerhull. The projection of u onto the x, y′ plane is
merely u′ = 〈32767, 32767〉 which can be represented as a system of inequali-
ties {x ≤ 32767,−x ≤ −32767, y′ ≤ 32767,−y′ ≤ −32767}, which defines the
polyhedra P at line 4 and can be seen in Fig. 2(b).

On the first iteration f is chosen to be −x ≤ −32767, then the cost function
at line 8 is −x. The net effect is to find the solution v = 〈2, 6, 3〉 that minimises
the x coordinate whilst satisfying C ∧ ¬f ≡ C ∧ x < 32767. Projecting v onto
the x, y′ plane yields v′ = 〈2, 6〉. Extending the polyhedra P in Fig. 2(a) with
this point by computing the convex hull at line 9 gives the line segment {−x ≤
−2, x ≤ 32767, 32765y′ = 32761x + 131068} depicted as P in Fig. 2(b).

On the second iteration, f is chosen to be 32765y′ ≤ 32761x + 131068, lead-
ing to the triangle depicted in Fig. 2(c). At this stage P has reached full di-
mensionality and worklisthull will be called. Here, a call to maximise with ineq
as −32765y′ ≤ −32761x− 131068 will lead to the polyhedra in Fig. 2(d). After
this, further iterations will fail to find further points and P will be returned.
Notice that P is formulated in terms of y′ which represents the value of y after
the assignment. The state of the x, y variables after the assignment is obtained
by merely replacing y′ with y. Again notice that symbolic computation of the
projection has been replaced by an integer hull calculation.
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Fig. 2. Polyhedral approximation of a feasible region defined by non-linear constraints

3 Curbing Growth of the Integer Hull

Earlier it was noted that the integer hull algorithm presented allows for anytime
approximation from above and below. This is advantageous when the algorithm
fails to perform quickly enough, however an approach that allows selected in-
equalities to be dropped is desirable for a different kind of problem. As the
polyhedron representing a solution space grows, the number of inequalities may
also grow. This growth can be curbed by either relaxing inequalities in the final
polyhedron or dropping them on-the-fly whilst the integer hull algorithm pro-
ceeds. These two approaches will henceforth be referred to as off-line and on-line
integer hull relaxation. Here, the focus is on off-line relaxation. These techniques
can be used to limit the growth of a system of inequalities, ameliorating any
ensuing tractability issues (with possible precision cost).



Suppose that S = {0 ≤ x, 0 ≤ y, y ≤ −x+6}, describes the relative values of
variables x and y when the non-linear assignment y := xy is reached. Applying
the integer hull algorithm to the system of non-linear constraints S ∧ y′ = xy
with the variable ordering x, y′, y and k = 2 gives the projected integer hull, H,
enclosing only those integer points that satisfy both the linear inequality −y′ ≤ 0
and the non-linear inequality y′ ≤ −x2 + 6x. H is defined by 7 inequalities
c1: −y′ ≤ 0, c2: y′ ≤ 5x, c3: y′ ≤ 3x+2, c4: y′ ≤ x+6, c5: y′ ≤ −x+12, c6: −3x+
20, c7: y′ ≤ −5x + 30. Rank these inequalities according to some measure of
their suitability for relaxation, and discard as appropriate. For example, if the
ranking was c3, c6, c4, c5, c2, c7, c1 then relaxing the highest two ranked would
give a small increase the volume, but this slightly larger polytope contains no
additional integer points. Reranking, this process could be continued to a final
result given by c2, c7, c1.

This approach is parameterised by the function ranking the inequalities. The
method chosen here for ranking is to calculate a Monte Carlo approximation,
[15], of the volume of H∧¬ci that represents the increase in volume resulting from
the relaxation. A bounding box is constructed and sampled until the sampling
error (σ/

√
n, where σ2 = (r2 + n2)/(r + n)2, r is the number of samples in the

region and n the number of samples not in the region) is beneath a given value.
The proportion of sample within the polytope multiplied by the volume of the
bounding box gives an approximation to the volume, as required.

Alternative rankings are possible: the volume of a polytope (with rational
vertices) can be computed in polynomial time [2] and, rather surprisingly, so can
the number of integer points in such a polytope [3, 8, 22], which is exactly what is
required when describing integral properties. However, despite their complexity
these remain difficult problems, particularly in high dimension and sampling
based methods seem more suitable to guiding the quick relaxation of constraints.

A natural generalisation of off-line relaxation is on-line relaxation which dis-
cards inequalities as soon as their number exceeds some pre-defined threshold
in the main loop of the integer hull algorithm. This approach is problematic for
the integerhull algorithm given earlier as relaxation will lead to faces whose ver-
tices are not known and the hull method will not work. However, the integerhull′

method with its reliance on a more general convex hull algorithm can incorpo-
rate this – simply follow the call to convexhull with as many relaxation steps
as required. Anecdotal evidence suggests that this might useful, particularly in
discarding inequalities with large coefficients that are both problematic for per-
formance and less likely to be useful for program analysis.

4 Experimental Evaluation

The algorithm described in Section 2 and the off-line approximation technique
described in Section 3 were implemented and tested.

As mentioned in the introduction, the target of this work is abstract interpre-
tation based analyses, where a fixpoint describing the values and relationships
between program variables is calculated. This fixpoint is a point in the meet



semi-lattice of polyhedra over the variables. Fixpoints arise because of loops:
the values of the variables after an iteration of a loop serve as the values that
are input to the next iteration. The semantic equations that express the values
that variables can assume are thus recursive. A fixpoint of these equations can
be interpreted as expressing invariants that hold over all iterations of a loop.
The fixpoint may not necessarily be the unique least fixpoint; the requirement
for correctness is merely that if the fixpoint summarises values that hold in one
iteration, then it also summarises values that hold in the next. By tightening
to integer polyhedra at certain analysis points the analysis is strengthened. The
tightening to the integer hull could be applied with differing levels of granularity:
after each domain operation, at the end of the fixpoint calculation, or after the
analysis of each loop structure. The benchmarks best represent the last of these.

The benchmarks come from the Stanford Invariant Generator (Sting) and
FAST [17, 1]. The Sting analyser discovers linear invariants of transition systems
that represent iterations of loops where all the variables are integer. The bench-
marks are invariants generated by Sting and are representive of the program
analysis problems that this work is aimed at. The implementation is in Java and
the experiments were run on a single core of a MacBook with a 2.4GHz Intel
Core 2 Duo processor and 4GB of memory.

Calculating Integer Hulls The algorithm is coded in Java, with the oracle
provided by the CBC MILP solver [13]. CBC is coded in C++ and called via
the Java Native Interface. The integer hull is only defined for bounded problems
and as noted earlier inequalities need to be augmented with variable bounds.
In these experiments the problem constraints were augmented with variables
bounds of [0,64]. The results can be seen in Fig. 3: for each named benchmark,
Var gives the number of variables in the benchmarks, Ineqs the number of input
constraints (including the variable bounds), Time gives the execution time in
seconds for calculating the integer hull, Opts the number of calls to the ILP
solver and Sol Size the number of inequalities in the integer hull.

The barvinok package for integer point counting [22] and the Polylib package
for manipulating integer polyhedra [23] have been used to check the integer hull
calculations given in this paper. barvinok has been run on the input constraints
and the calculated integer hull to check that the number of lattice points are in-
dentical for both and Polylib has been used to convert the calculated constraints
to a vertices and rays representation, the test being that the vertices are all at
integer points.

Off-line Approximation Fig. 4 tabulates results from applying the Monte
Carlo approximation of Section 3 to the results of the integer hull calculations.
Benchmarks with no bounded relaxation have been omitted. The first set of
results gives data on ranking and relaxing one constraint: T1 is the time taken
in seconds, Best is the number of sample points needed to calculate the volume
associated with the constraint dropped, Total is the total number of sample
points and Max is the largest sample size needed to approximate a volume arising



Problem Var Ineqs Time Opts Sol Size

barber.inv 8 29 3.417 207 15
berkeley-nat.inv 4 13 0.075 29 9
berkeley.inv 4 11 0.069 28 9
cars.inv 5 19 0.15 61 13
efm.inv 6 22 0.111 39 12
efm1.inv 6 21 0.086 19 9
heap.inv 5 16 0.08 26 10
lifo-nat.inv 7 24 0.297 87 13
lifo.inv 4 14 0.047 15 6
robot.inv 3 10 0.031 10 5
scheduler-2p.invl1 7 27 0.15 46 15
scheduler-2p.invl2 7 27 0.279 65 17
scheduler-3p.invl1 10 40 10.881 273 42
scheduler-3p.invl2 10 46 194.022 1037 125
scheduler-3p.invl3 10 38 23.034 388 26
see-saw.inv 2 6 0.022 10 5
swim-pool-1.inv 9 32 0.255 62 16
swim-pool.inv 9 31 0.248 57 15
train-beacon.invlate1 3 11 0.026 12 7
train-beacon.invonbrake 3 10 0.037 14 6
train-beacon.invontime 3 12 0.027 14 8
train-beacon.invstopped 3 11 0.026 12 7
train-rm03.inv 6 20 0.12 38 12

Fig. 3. Benchmarking of the integer hull algorithm

from a single constraint. The second set of results details relaxing as many
constraints as possible, recalculating the ranking at each step: TM is the time
taken in seconds, Cons is the number of constraints in the input, Size is the final
number of constraints and Sam is total number of samples taken in this process.

Discussion The results are promising. The implementation (not tuned to the
problems) returns the integer hull for all benchmarks up to 10 dimensions in
an acceptable time. These are the first experiments of this kind performed on
program analysis benchmarks (indeed, the authors know of no integer hull bench-
marking work at all). However, at 10 dimensions and beyond performance degen-
erates (the implementation was unable to solve nine further suitable benchmarks
over more than 10 variables in a reasonable time). This is in part because some
calls to the ILP oracle become slow, in part owing to the amount of factoring
performed and in part owing to the growth in the number of simplicies to be
handled. The largest benchmarks in the suite have 15 variables; this is real loop
data and being able to handle between 10 to 20 variable problems would al-
low the analysis of many programs. The authors believe that further work on
the implementation will yield improvements in scalability. Size of the constraint
coefficients is also a problem as the bounding box increases in size – most bench-
marks run equally well with larger bounding boxes, but not all.



Problem T1 Best Total Max Volume TM Cons Size Sam

berkeley-nat.inv 0.061 100 401 101 260.0 0.089 9 8 405
berkeley.inv 0.049 107 518 108 5.981 0.084 9 8 514
cars.inv 0.099 134 1403 190 0.0 0.455 13 8 4596
efm.inv 0.114 200 635 200 0.0 0.255 12 10 973
efm1.inv 0.080 200 200 200 0.0 0.127 9 8 200
heap.inv 0.077 200 594 200 0.0 0.179 10 8 984
lifo-nat.inv 0.132 184 560 184 5.565 0.235 13 12 525
robot.inv 0.022 148 148 148 11000.372 0.032 5 4 149
scheduler-2p.invl1 0.155 200 1368 200 0.0 0.709 15 10 3673
scheduler-2p.invl2 0.198 200 1586 200 0.0 1.076 17 10 6776
scheduler-3p.invl1 1.025 200 6170 200 0.0 16.282 42 14 92934
scheduler-3p.invl2 47.755 200 22848 200 0.0 1556.5 125 14 1326519
scheduler-3p.invl3 0.499 200 2572 200 0.0 4.312 26 14 17962
see-saw.inv 0.012 107 452 142 2.505 0.027 5 3 639
swim-pool-1.inv 0.223 200 800 200 0.0 0.745 16 13 1598
swim-pool.inv 0.208 200 400 200 0.0 0.521 15 13 600
train-beacon.invlate1 0.026 109 331 112 1.431 0.045 7 6 349
train-beacon.invonbrake 0.030 104 206 104 3.308 0.038 6 5 214
train-beacon.invontime 0.034 134 716 134 30.09 0.100 8 5 1205
train-beacon.invstopped 0.031 114 346 120 1.263 0.064 7 5 441
train-rm03.inv 0.095 179 710 182 4.148E9 0.305 12 9 1219

Fig. 4. Off-line relaxation of constraints

With two or three exceptions approximation results give the desired be-
haviour – sensible constraints to relax can be quickly identified. The slower
benchmarks indicate a need to augment ranking with a timeout. A further issue
is that when relaxing more than one constraint, dropping one or other equally
ranked constraint can change the total number of constraints relaxed.

5 Related Work

The algorithm presented in Section 2 was first outlined by Hartmann in [4, 10]
and is also mentioned in [9]. However, its relationship with projection, non-
linearity and program analysis have not previously been commented on. An
alternative algorithm has been proposed by Meister based on the concept of
periodic polyhedra [14]. Eisenbrand’s work [9] also deals with approximating the
integer hull from above, a counterpart to the work here that is also useful for
program analysis. In terms of implementation, the barvinok package for integer
point counting [22] includes an integer hull algorithm also based on [10]; initial
experimentation suggests that this does not scale as well as the implementation
described here. The iB4e system [11] implements the beneath/beyond convex
hull algorithm over reals and uses similar concepts; it is also presented with an
oracle for solving LP problems, this could be an ILP solver.



The work on polynomial algorithms for lattice point counting from Barvinok
and others [2, 3, 8, 12, 22] gives precisely what is required for assessing the im-
portance of a candidate constraint for relaxation. This work has been extended
to count points in the projection of a constrained space [21]. The results of these
systems are impressive, but are still slower than sampling based techniques for
estimating the number of integer points in a polytope as used in the approxima-
tion thread of this work. Recent work on loop nest analysis [19, 22] utilises the
algorithmic results on point counting. However, abstract interpretation based
analysis requires constraints between variables, not lattice point counts.

6 Conclusion

This paper has presented work on the application of algorithms from computa-
tional geometry and linear programming to data arising in program analysis. An
existing algorithm has been detailed and elucidated, and features that make its
adaptation to problems of non-linearity and integrality in program analysis easy
and natural have been identified. It has also been implemented and empirically
evaluated. The results of this evaluation underline that this novel approach to
dealing with integer variables and non-linear constraints in program analysis is
promising. The approach is coupled with a method for approximating the in-
crease in volume associated with relaxing a constraint from a system in order to
control the size of that system. This too has been implemented and again the
results suggests that the methods will be of importance in program analysis.

The implementation described in this paper represents the state-of-the-art
for integer hull calculation. The results are promising, but also invite further
work on increasing the speed of the implementation and the size of problem
that can be dealt with. Future work will focus on improvements to the current
implementation, whilst also investigating alternative approaches avoiding large
numbers of calls to an ILP solver. The current implementation is not tuned to
program analysis benchmarks and a further line of work is to investigate whether
the structure of these lead to practical or theoretical improvements.
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9. F. Eisenbrand. Gomory-Chvátal Cutting Planes and the Elementary Closure of
Polyhedra. PhD thesis, Universität des Saarlandes, 2000.

10. M. E. Hartmann. Cutting Planes and the Complexity of the Integer Hull. PhD the-
sis, School of Operations Research and Industrial Engineering, Cornell University,
1988. Technical Report 819.

11. P. Huggins. iB4e: A Software Framework for Parametrizing Specialized LP Prob-
lems. In International Congress on Mathematical Software, volume 4151 of Lecture
Notes in Computer Science, pages 245–247. Springer-Verlag, 2006.
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