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Abstract

We present a compositional analysis to detect Zeno behavior in Timed Automata with Deadlines.
A syntactic analysis is defined, based on Tripakis’ strong non-Zenoness property, which identifies
all elementary cycles where Zeno behavior may occur. This analysis is complemented by TCTL
reachability properties, which characterize the occurrence Zeno behavior in potentially unsafe cycles.

1 Introduction

Timelocks [6, 7] are anomalous states in timed transition systems, where time divergence is prevented
along all execution paths. Hence, timelocks may prevent the exploration of interesting behaviors (e.g.,
erroneous behaviors), which makes the verification of correctness properties unreliable.

Timed Automata with Deadlines (TAD) [18, 5, 6] are a variant of timed automata [2], where dead-
lines express the time progress conditions. Deadlines are clock constraints associated with transitions
in the automaton, which determine when the transition must be executed. Importantly, neither in-
ternal actions nor synchronization on observable actions are made urgent unless they can be executed
(TAD are time-reactive [4]). Hence, TAD avoid the most common form of timelocks, where neither
actions nor delays may occur (time-actionlocks [6]). On the other hand, Zeno behavior may occur in
TAD models, which refers to the anomalous behavior where actions occur infinitely often in finite time.
Unfortunately, unlike time-actionlocks, Zeno behavior cannot be prevented at the semantic level.

Zeno behavior may adopt the form of Zeno runs or Zeno-timelocks. A Zeno run is an infinite
run that is not time-divergent (i.e., a run where actions occur infinitely often in finite time). A Zeno
timelock is a timelock, s, where a Zeno run exists from any state that is reachable from s. Zeno behavior
compromises the verification of correctness properties, where the progress of time is inherently assumed.
It is known that time divergence (and thus, the absence of Zeno behavior) can be characterized by
liveness properties in TCTL [14] (e.g., see [22]). However, there is little tool support for the analysis
of TAD models (the IF toolset [8], and the TAD2TA tool [10], are the notable exceptions), and the
verification liveness properties (and in particular, time-divergence) is computationally expensive.

Our contribution. We offer an efficient method to guarantee the absence of Zeno behavior in TAD
networks. The method is based on an improved, compositional application of Stripakis’ original strong
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non-Zenoness analysis [20]. The method is compositional and works on the syntax of network com-
ponents, which makes it potentially more efficient than liveness analysis of time-divergence [14, 19].
Moreover, it provides the additional benefit of identifying all possible sources of Zeno behavior directly
on the TAD network, which facilitates model debugging. The tradeoff, which is inherent to the analysis
being applied at syntax level, is that the occurrence of Zeno behavior cannot be confirmed. False pos-
itives may be returned in the form of cycles in the component automata where Zeno behavior may (or
may not) occur. In order to reduce, or even eliminate such false positives, we also derive simple TCTL
reachability formulae, which characterize the occurrence of Zeno behavior in the offending cycles.

The combined syntactic and reachability analysis, as proposed in this paper, may potentially elim-
inate the need to perform liveness analysis. In addition, this approach can be easily implemented in
verification tools for TAD models: the syntactic analysis works on the structure of automata, and the
proposed TCTL reachability formulae express a simple class of safety properties (e.g., these can be
verified in the IF toolset [8] and the TAD2TA tool [10]).

Related Work. Timelocks have been studied extensively in the literature of formal notations for
timed systems, e.g. in timed process algebras [16, 17] and timed automata [14, 18, 5, 20, 6, 7, 11]. In
particular, [20] and (more recently) [7, 11] provide detailed studies of Zeno behavior in timed safety
automata [13]. Also, liveness analysis of time-divergence can be performed in a few model-checkers
for timed automata, including Kronos [22], Uppaal [3] and RED [21]. However, to the best of our
knowledge, this is the first time that Zeno behavior is studied on timed automata with deadlines, and
the first attempt to propose feasible alternatives to liveness analysis.

The analysis presented in this paper is a compositional extension of our previous analysis of Zeno
behavior on networks of timed safety automata [7], in the sense that the network’s product automaton
need not be constructed. In particular, compositionality is facilitated by the semantics of urgency in
TAD.

Organization of this paper. Section 2 presents the formal syntax and semantics of Timed Automata
with Deadlines, and defines Zeno behavior. Section 3 and 4 resp. present the compositional methods
to detect (or rule out) Zeno behavior. Conclusions are given in Section 5.

2 Timed Automata with Deadlines

This section presents a common form of Timed Automata with Deadlines [18, 5, 6], where transitions
are classified either as lazy actions (non-urgent), eager actions (urgent as soon as they are enabled), or
delayable actions (urgent on their upper bounds). Formally, we will define the model using eager and
lazy actions as the only primitives; delayable actions can be derived from these [5].

Preliminaries. Let CA = {a, b, . . .} and HA = {a?, a! | a ∈ CA} (we define complementary labels, s.t.
a! = a? and a? = a!). Let D = {lazy , eager}. Let C be the set of clocks (variables that range in the
non-negative reals, R

+0). Let Φ be the set of clock constraints over C, s.t.

φ ∈ Φ ::= true |x ∼ c |x− y ∼ c |φ ∧ φ

where x, y ∈ C, ∼ ∈ {<,>,=,≤,≥} and c ∈ N. A valuation is a mapping from C to R
+0. Let V be

the set of valuations. Let |= denote the satisfiability of clock constraints over valuations. Let v ∈ V,
δ ∈ R and r ⊆ C. The valuation v + δ ∈ V is defined s.t. (v + δ)(x) = v(x) + δ if v(x) + δ ≥ 0, and
(v + δ)(x) = 0 otherwise, for all x ∈ C. The valuation r(v) ∈ V is defined s.t. r(v)(x) = 0 for all x ∈ r,
and r(v)(x) = v(x) for all x /∈ r.
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Syntax and semantics. A timed automaton with deadlines (TAD) is a tuple of the form A =
(L, l0,Lab, T, C), where L is a set of locations; l0 ∈ L is the initial location; Lab ⊆ CA ∪HA is a set of
labels; T ⊆ L× Φ × Lab ×D × 2C × L is a set of transitions (edges) and C ∈ C is a set of clocks.

Given a transition t = (l, a, g, d, r, l′) ∈ T , l is the source location, a is the label; g is the guard; d
is the deadline, r is the reset set and l′ is the target location (resp., src(t), lab(t), g(t), d(t), r(t) and
tgt(t)). Transitions labeled with a ∈ CA (resp. a ∈ HA) will be referred to as completed actions (resp.
half actions). Transitions with deadline lazy (resp. eager) will be referred to as lazy actions (resp. eager
actions).

A TAD network is a tuple |A = 〈A1, . . . , An〉, where Ai = (Li, li,0,Labi, Ti, Ci) is a TAD (i : 1..n).
Let C =

⋃n
i=1Ci (we say that x ∈ C is a shared clock if x ∈ Ci ∪ Cj for some 1 ≤ i 6= j ≤ n; otherwise

x is a local clock). The behavior of |A is given by the timed transition system [15] (S, s0,Lab ∪R
+, T ),

where S ⊆ (
∏n

i=1 Li) × V is the set of states (states are denoted s =
〈

l̄, v
〉

, where l̄ ∈
∏n

i=1 Li and
v ∈ V); s0 ∈ S is the initial state (s0 = 〈l̄0, v0〉, s.t. l̄0 = 〈l1,0, . . . , ln,0〉 and ∀x ∈ C. v0(x) = 0);
Lab = CA is the set of action labels and T ⊆ S × Lab ∪ R

+ × S is the smallest set of transitions that
satisfies the following conditions.

(Transitions in T may be action transitions, (s, a, s′) where a ∈ Lab, or delay transitions, (s, δ, s′),
where δ ∈ R

+. We refer to elements of
∏n

i=1 Li as location vectors. We use l̄[l′i/li] to denote substitution
of l′i for li in the location vector l̄ = 〈l1, . . . , ln〉.)

1. (completed actions)
(〈

l̄, v
〉

, a,
〈

l̄ [l′i/li], ri(v)
〉)

∈ T if
(li, a, gi, di, ri, l

′
i) ∈ Ti, a ∈ CA and v |= gi

2. (synchronization)
(

〈

l̄, v
〉

, a,
〈

l̄ [l′i/li][l
′
j/lj ], (ri ∪ rj)(v)

〉)

∈ T if

(li, a!, gi, di, ri, l
′
i) ∈ Ti, (lj , a?, gj , dj , rj , l

′
j) ∈ Tj and v |= gi ∧ gj (i 6= j)

3. (delays)
(〈

l̄, v
〉

, δ,
〈

l̄, v + δ
〉)

∈ T if
δ ∈ R

+ and for all δ′ ∈ R
+0, δ′ < δ: (1) (v + δ′) 2 g(t) for all t ∈ Ti (i : 1..n) s.t. lab(t) ∈ CA,

src(t) = li and d(t) = eager ; and (2) (v+ δ′) 2 g(ti)∧ g(tj) for all ti ∈ Ti, tj ∈ Tj (i, j : 1..n, i 6= j)

s.t. lab(ti) = lab(tj), src(ti) = li, src(tj) = lj and d(ti) = eager .

where
〈

l̄, v
〉

∈ S and l̄ = 〈l1, . . . , ln〉.
A run is a finite or countably infinite sequence of transitions in the timed transition system. We

say that a run is infinite if action transitions occur infinitely often. The accumulated delay of a run is
the limit of the sum of all delays in the sequence. A run is time-divergent if its accumulated delay is
infinite. The projection of a run ρ over a network component A, is the sequence of actions of A that
are embedded in the transitions of ρ.

We say that an action is enabled (in a given state) if its source location is in the current location
vector, and its guard holds true in the current valuation. We use the term matching actions to refer
to any pair of half actions, t and t̄, s.t. t and t̄ are in different components of the network and have
complementary labels. We say that an action is executable (in a given state) if it is enabled and either
is a completed action, or is a half action and there exists an enabled matching action. Matching actions
must be executed simultaneously, and half actions cannot be executed autonomously.

Definition 2.1. (Loop) Let A be an automaton, and T be the set of all actions in A. A loop in
A is an elementary cycle in the graph of A, i.e., a sequence lp = t0 . . . tn−1 where ti ∈ T , tgt(ti) =
src(t(i+1) mod n) and src(ti) 6= src(tj), for all 0 ≤ i 6= j < n.
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Figure 1: Time-actionlocks in TAD networks

Let lp be a loop in automaton A. Let l0,A denote the initial location of A. Let TA denote the set of
actions in A. Locs(lp) and Act(S) are the sets of all locations and actions in lp, resp. An entry location
of lp is a location l ∈ Locs(lp) s.t. l = l0,A or there exists t ∈ TA \Act(lp) s.t. tgt(t) = l. EntryLocs(lp)
is the set of entry locations of lp. CA(lp) and HA(lp) are the sets of completed actions and half actions
in lp, resp. We say that lp is a synchronizing loop if HA(lp) 6= ∅, and a completed loop otherwise.
Guards(lp) and Resets(lp) are the sets of guards and clocks that are reset in lp, resp. Given a set of
loops S, we define the generalized sets Locs(S), Act(S), EntryLocs(S), CA(S), HA(S), Guards(S) and
Resets(S), as expected.

Definition 2.2. (Traversal) Let |A be a TAD network. Let A be a component automaton of |A, and
let lp be a loop in A. Let ρ be a run in the TAD network. We say that ρ traverses lp if the sequence
of actions that defines lp is a subsequence in the projection of ρ over A (note that, delays and other
components’ actions may occur while ρ is traversing lp). Given a set of loops S, a run ρ traverses S if
ρ traverses each loop in S.

Definition 2.3. (Zeno run, Time-actionlock and Zeno timelock) A Zeno run is an infinite run
that is not time-divergent (i.e., a run where actions occur infinitely often in finite time). A timelock
is a state where time-divergent runs do not exist. We distinguish between time-actionlocks and Zeno
timelocks. A time-actionlock is a timelock where all runs are finite. A Zeno timelock is a timelock, s,
where a Zeno run exists from any state that is reachable from s.

Examples. Figure 1 shows a TAD network with two components, S and T, where x and y are local
clocks, a! is an eager action and a? is a lazy action (we have omitted the labels of completed actions,
as these are not relevant to the example). Consider any state s = 〈l̄, v〉, where l̄ = 〈S1, T1〉, v(x) ≥ 1
and v(y) ≤ 1. By semantics of eager actions (see the rule for generating delays in the timed transition
system), time cannot pass whenever eager actions can be executed, thus the maximum allowed delay
from s is δ ∈ R

+0 s.t. (v+ δ)(y) = 1 (note that, any δ′ > δ would make the eager action a! executable).
However, neither delays nor actions may occur at s + δ, because a? is not yet enabled. By definition,
the state s (and any s′ reachable from s) is a time-actionlock.

Consider the TAD model shown in fig. 2 (this example is adapted from [3]). The automaton Lamp

models the behavior of a 3-state lamp. At the pressing of a button (press?), the lamp changes from
Off to Dim. If the button is pressed again quickly (in less than 5 t.u.), the state changes to Bright.
Instead, if the button is pressed after the lamp has been Dim for at least 5 t.u., the lamp is switched
off. Pressing the button while the lamp is Bright also switches it off. Timing constraints are expressed
on the clock x.

LazyUser and EagerUser are two different environments for the lamp. The automaton LazyUser

models a user who can press the button at any time. This is modeled by making press! a lazy action.
The automaton EagerUser models a user who continuously attempts to press the button, asap. This is
modeled by making press! an eager action. (The automaton Clock will help us illustrate the nature
of Zeno behavior).

Consider the network |Alazy = 〈Lamp, LazyUser, Clock〉. This network exhibits a Zeno run that
cycles through Off, Dim and Bright in less than 5 t.u. (the user can be arbitrarily fast). However,
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Figure 2: Zeno runs and Zeno-timelocks in TAD

delays are not prevented in any state. Thus, from any state in the behavior of |Alazy, there is at least
one infinite, time-divergent run where Clock ticks once every time unit. On the other hand, Zeno
runs are possible in the network |Aeager = 〈Lamp, EagerUser, Clock〉, but here the passage of time is
prevented in all states. Thus, by definition, all states in the behavior of |Aeager are Zeno-timelocks.
Moreover, as components synchronize implicitly on the passage of time, Clock never ticks (even though
it is conceptually independent from the rest of the network). The global effect of Zeno-timelocks may
also be seen in the network |Ausers = 〈Lamp, LazyUser, EagerUser〉, where the behavior of EagerUser
and LazyUser can no longer be distinguished (users’ actions may interleave but no delay is allowed
between consecutive moves).

In order to see the effect of Zeno behavior on verification, consider the following liveness formulae
in TCTL [1].

ψweak = ∀2∃3≥1true ψstrong = ∀2∀3≥1true

The formula ψweak expresses a weak form of time-divergence: ψweak is satisfiable (in the behavior of
a TAD network) if there exists at least one time-divergent run at any reachable state. Note that, the
satisfiability of ψweak on the network characterizes the absence of Zeno-timelocks (|Alazy |= ψweak and
|Aeager 2 ψweak). However, Zeno runs may occur even when ψweak holds true. Absence of Zeno runs
is expressed by the formula ψstrong, which holds true when all infinite runs are time-divergent and all
finite runs can be extended to time-divergent runs (|Alazy 2 ψstrong and |Aeager 2 ψstrong).

2.1 Prevention of Timelocks and Zeno Behavior in TAD networks

Time-reactivity [4] is a desirable property of timed transition systems. This property holds if, from any
state, either time may pass or actions can be executed. The following syntactic restriction guarantees
the time-reactivity of TAD networks: For any action t, if either d(t) = eager or there exists t̄ s.t.
d(t̄) = eager , then g(t) must be left-closed.1 This restriction guarantees that delays are prevented only
when eager actions can be executed (see the semantic rule for delays). We assume, in this paper, that
TAD networks satisfy this requirement. (Note that, action a? in fig. 1 is guarded with y>1, which is
not left-closed.)

On the other hand, Zeno runs and Zeno timelocks are difficult to prevent in TAD networks. Any
solution that is implemented at the level of semantics is likely to enforce minimum delays between the
consecutive executions of actions, which would severely constrain the set of abstract models that can
be written in the formalism.

3 Compositional Detection of Zeno Runs

This section explains how to exploit the syntax of loops in components of a TAD network, in order
to discover all possible sources of Zeno runs. This analysis is complemented by TCTL reachability

1A guard g is left-closed if the interval {δ ∈ R | (v + δ) |= g} is either left-closed or left-unbounded, for all v ∈ V. v |= g.
For conjunctions of single-clock constraints, g is left-closed if x > c does not occur in g, for any x ∈ C and c ∈ N.
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Figure 3: Infinite synchronization between SNZ and NSNZ loops is time-divergent

formulae, which characterize the occurrence of Zeno runs on unsafe loops (i.e., those loops where the
absence of Zeno runs could not be guaranteed by the syntactic analysis). The main results are stated
in Theorems 3.1 and 3.3.

3.1 A syntactic analysis to confirm the absence of Zeno behavior

We apply Tripakis’ strong non-Zenoness property [20] to discover those loops which cannot be traversed
infinitely often by Zeno runs, i.e., those whose syntax force at least one time unit to pass between
consecutive iterations.

Definition 3.1. (Strong non-Zenoness) A loop is strongly non-Zeno (or SNZ, for short) if there
is a clock that is both reset and bounded from below in the loop. Formally, a loop lp = t0 . . . tn−1 is a
SNZ loop if there exists x ∈ C, 0 ≤ i, j < n, m ∈ N, m > 0, s.t. x ∈ r(ti) and g(tj) ⇒ x ≥ m. (We
refer to loops that are not SNZ as NSNZ loops.)

Tripakis proved that Zeno runs cannot occur in timed safety automata [14] if all cycles in the automaton
(but not necessarily elementary cycles) are SNZ [20, 19]. In previous work, we exploited synchronization
to derive a weaker sufficient condition for the absence of Zeno runs in networks of timed automata
[7, 12], which allows NSNZ loops in the network as long as those loops cannot be traversed without
simultaneously traversing SNZ loops. This analysis was more efficient and precise than the one originally
proposed in [20, 19]; more efficient, because only elementary cycles needed to be considered; more
precise, in the sense that it produced fewer false positives, because a bigger class of interactions among
loops could be recognized as safe (i.e., time-divergent in the presence of infinite iterations).

The idea in [7, 12] was to identify which groups of NSNZ loops (either completed loops of groups
of synchronizing loops with matching actions) could possibly complete an iteration without necessarily
synchronizing with SNZ loops. If no such offending group was found, the analysis guaranteed the
absence of Zeno runs (and therefore, by definition, the absence of Zeno-timelocks). Otherwise, the
occurrence of Zeno runs could not be confirmed. However, the analysis could confirm that, if Zeno runs
indeed occurred in the network, these runs must necessarily traverse (infinitely often) all loops in some
offending group. Hence, the syntactic analysis identified all loops in the network where Zeno runs could
possibly occur.

By way of example, Figure 3 shows a network |A = 〈S, T〉 with two synchronizing loops. The loop
in S is SNZ, because the clock x is bounded from below (x>1) and reset (x:=0) in the loop. The loop in
T is a NSNZ loop. However, the network is free from Zeno runs, because infinite runs must necessarily
traverse the SNZ loop infinitely often, i.e., they have infinite accumulated delay. Equivalently, through
synchronization, the SNZ loop prevents the NSNZ loop from being iterated arbitrarily fast.

In what follows, we show that a similar analysis can be applied to TAD networks. Compared to our
previous work [7, 12], here we add a simple syntactic check to improve the precision of the analysis. The
check aims to eliminate false positives that are produced by NSNZ synchronizing loops that have been
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Figure 4: Synchronizing loops with matching actions, which cannot synchronize jointly

grouped together based on their matching actions, but where the ordering of the half actions prevents
a complete joint iteration. This class of false positives is illustrated by fig. 4. This figure shows two
NSNZ synchronizing loops, one in component S and the other in component T, which can be grouped
together based on matching actions. However, given that the only entry locations are S0 and T0, these
loops cannot synchronize jointly to produce complete iterations.

Definition 3.2. (NSNZ group) Let |A be a TAD network. A NSNZ group is a finite, non-empty
set of loops in the component automata of |A, S, s.t. (a) either all loops in S are NSNZ synchronizing
loops or S is a singleton which contains a NSNZ completed loop; (b) for any clock x ∈ C and action
t in some loop in S, if x ∈ r(t) then there is no action t′ in any loop in S s.t. g(t′) ⇒ x ≥ m, for
any m ∈ N, m > 0; (c) all loops in S, which belong to the same component automaton of |A, form a
strongly connected subgraph; and (d) t̄ ∈ HA(S) for all t ∈ HA(S).

Definition 3.3. (Entry vector) Let S be a NSNZ group. Let A1, . . . , Am be all distinct component
automata that have at least one loop in S. Let Li denote the set of locations of Ai, i : 1..m. An entry
vector of S is a location vector of the form 〈l1, . . . , lm〉, where li ∈ Li ∩ EntryLocs(S) for all i : 1..m.

Definition 3.4. (Unfolding) Let S be a NSNZ group. Let ℓ be an entry vector of S. An unfolding
of S from ℓ is a cycle σ of the form:

σ = ℓ1
α1−−→ ℓ2 . . . ℓk

αk−−→ ℓ1

where

1. ℓ = ℓ1 and ℓi ⊆ Locs(S) for all i : 1..k;

2. ℓi 6= ℓj for all i 6= j, i, j : 1..k;

3. either ℓi+1 = ℓi[tgt(t)/src(t)], αi = t, t ∈ CA(S) and src(t) ∈ ℓi, or ℓi+1 = ℓi[tgt(t)/src(t), tgt(t̄)/src(t̄)],
αi = (t, t̄), t, t̄ ∈ HA(S) and src(t), src(t̄) ∈ ℓi, for all i : 1..k; and

4. for each t ∈ Act(S), there is some i : 1..k s.t. αi = t or αi = (t, t̄).

Definition 3.5. (ZR group) A ZR group is a NSNZ group, S, s.t. (a) S admits at least one unfolding,
and (b) no proper subset S′ ⊂ S admits unfoldings.

theorem 3.1. In TAD networks, the absence of ZR groups implies the absence of Zeno behaviors.

Proof. We prove an equivalent claim: Zeno runs in TAD networks traverse ZR groups infinitely often.
Let ρ be a Zeno run. By definition of Zeno runs, ρ must traverse some loop infinitely often (because ρ
is an infinite run), but ρ cannot traverse SNZ loops infinitely often (because infinite traversals of SNZ
loops entails time-divergence). Then, (infinitely often) either ρ traverses a NSNZ completed loop or a
group of NSNZ synchronizing loops. Traversal implies unfolding, hence (by definition) such loops are
part of a ZR group.
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Figure 5: ZR groups

A note on complexity. The number of NSNZ loops in a given component is (at most) exponential in
the size of the component (i.e., in the number of locations and transitions in the automaton). However,
in practice, the majority of component loops will be SNZ loops, and most of the NSNZ loops will
synchronize only with SNZ loops. Hence, the number of NSNZ groups is usually small.

This leaves us with the problem of checking for existence of unfoldings in a given NSNZ group, S.
Note that, if S is a single NSNZ completed loop, then S trivially admits unfoldings; else, S is a group
of synchronizing NSNZ loops and the interleaving of completed actions in the loops is irrelevant to the
existence of unfoldings. Now, given an entry vector ℓ of S, the existence of unfoldings in S from ℓ can
be checked with a DFS-based algorithm, which attempts to traverse the loops in S (synchronizing on
half actions when necessary) to produce a non-empty sequence of actions that starts and ends in ℓ.
Therefore, checking whether S is a ZR group can be solved in space proportional to |Act(S)|, and in
time proportional to e ×mk, where e is the number of entry vectors of S, m is the maximum number
of matching actions t̄1, . . . t̄m ∈ HA(S) for any t ∈ HA(S) (where t̄i, t̄j are in different loops, for all
1 ≤ i 6= i ≤ m), and k is the number of different output actions in HA(S).

Example. Figure 5 shows four components Sa, Ta, Sb and Tb. Consider the network |A = 〈Sa, Ta〉.
There are two NSNZ loops in Sa, with entry locations S1a and S2a, and one NSNZ loop in Ta, with
entry location T1a. This is a ZR group with a single unfolding, σa.

2

σa = 〈S1a, T1a〉 (a?,a!)−−−−−→ (b?,b!)−−−−→ (c?,c!)−−−−→ (d?,d!)−−−−−→〈S1a, T1a〉

Now, consider the network |B = 〈Sb, Tb〉. There are two NSNZ synchronizing loops in Sb, with entry
locations S1b and S2b, and one NSNZ loop in Tb, with two entry locations, T1b and T3b. There are
two possible unfoldings here, σb from 〈S1b, T1b〉 and σ′b from 〈S2b, T3b〉, as follows.

σb = 〈S1b, T1b〉 (a?,a!)−−−−−→ c1−−→ (a?,a!)−−−−−→ (b?,b!)−−−−→ c1−−→〈S1b, T1b〉

σ′b = 〈S2b, T3b〉 (b?,b!)−−−−→ c1−−→ (a?,a!)−−−−−→ c1−−→ (a?,a!)−−−−−→〈S2b, T3b〉

The previous examples showed that, the existence of unfoldings depend on entry locations, and that
a loop may synchronize with many interconnected loops in different components of the network (or with
a single loop, more than once) in order to complete an unfolding. The following example shows that
several different unfoldings may exist starting in the same entry vector. Figure 6 shows a TAD network
with three components R, S, and T. This network exhibits a single ZR group, which is formed by all the
component loops and has ℓ = 〈R0, S0, T0〉 as its only entry vector. Two unfoldings are possible from ℓ,
σR and σT , depending on which with component, R or T, S synchronizes first.

2When the unfolding in question is clear, we will omit the intermediate location vectors, and we will refer to the actions
involved by their labels.

8



R1R0 (eager)
a?

(eager)
b?

S2S1S0

(lazy)
b!

(lazy)
a!

(lazy)
a!

T0

(lazy)
a?

R S T

Figure 6: Multiple unfoldings from the same entry vector

σR = 〈R0, S0, T0〉 (a?,a!)−−−−−→〈R1, S1, T0〉 (a?,a!)−−−−−→〈R1, S2, T0〉 (b?,b!)−−−−→〈R0, S0, T0〉

σT = 〈R0, S0, T0〉 (a?,a!)−−−−−→〈R0, S1, T0〉 (a?,a!)−−−−−→〈R1, S2, T0〉 (b?,b!)−−−−→〈R0, S0, T0〉

3.2 A reachability analysis to confirm the occurrence of Zeno runs

The existence of ZR groups in the network does not imply the occurrence of Zeno runs (i.e., the converse
of Theorem 3.1 does not hold). However, for a large class of ZR groups (convergent ZR groups), it is
possible to obtain a sufficient and necessary condition for the occurrence of Zeno runs, which itself can
be expressed by simple reachability formulae in TCTL [14].3 This is stated in Theorem 3.3.

Definition 3.6. (Convergent ZR group) A ZR group S is convergent if the conjunct x > 0 does
not occur in any g ∈ Guards(S), for any x ∈ Resets(S).

lemma 3.2. Let S be a convergent ZR group, and ρ a Zeno run that traverses S infinitely often. Then,
there exists a Zeno run ρ′ that traverses S infinitely often, s.t. delay(ρ′) = 0.

Proof. Let ρ be a Zeno run that traverses S infinitely often. Let s be any state in ρ that is reachable
after ρ has traversed S at least once. W.l.o.g., choose s s.t. s δ−→ s′ a−→ s′′ are the next two transitions
in ρ, where δ ∈ R

+ and a ∈ CA. Assume that t ∈ Act(S) is the completed action in S whose execution
is represented by the action transition s′ a−→ s′′ (the argument holds also if s′ a−→ s′′ represents the
synchronization of half actions in S). Note that, action t is also enabled in s; otherwise g(t) ⇒ x > 0
for some clock x which was reset in ρ after the last previous execution of t and before s was reached
(which contradicts the premise that S is a convergent ZR group). Then, from s, no delay transition in
ρ is necessary for the execution of action transitions (i.e., the valuation at s ensures the traversal of S
regardless of delays). Therefore there exists a Zeno run ρ′ that traverses S infinitely often, starts in s,
s.t. delay(ρ′) = 0.

Definition 3.7. (Reachability formula ϕZR) Let |A be a TAD network. Let S be a ZR group in
|A. Let ℓ = 〈l1, . . . , lm〉 be an entry vector of S. Let A(j) denote the component in |A that contains lj ,
for each j : 1..m. We define a TCTL reachability formula, ϕZR(S, ℓ), as follows.

ϕZR(S, ℓ) , ∃3 (
∧

j:1..mA(j).lj ∧
∧

g∈Guards(S) g)

theorem 3.3. Let |A be a TAD network. Let S be a convergent ZR group in |A. The following
conditions are equivalent.

1. There exists a Zeno run that traverses S infinitely often.

3We consider reachability formulae of the form ∃3φ, where φ is a state formula built from clock constraints, references
to automata locations, and Boolean operators.
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Figure 7: Detecting the occurrence of Zeno runs with reachability formulae

2. ϕZR(S, ℓ) holds true in |A, for some entry vector ℓ that admits an unfolding of S.

Proof. ((1) ⇒ (2)). Let ρ be a Zeno run that traverses S infinitely often. We can choose ρ s.t. it has
zero accumulated delay, by Lemma 3.2. Let s be any state in ρ that is reachable after ρ has traversed
S at least once, and s.t. the location vector in s contains some entry vector ℓ of S (note that, ℓ admits
the unfolding of S that is represented by the next traversal of S by ρ from s). Necessarily, all states
in ρ after s (including s) have the same valuation, which simultaneously satisfies all g ∈ Guards(S).
Hence, s |= ϕZR(S, ℓ).

((2) ⇒ (1)). Let ℓ be an entry vector which admits an unfolding of S. Let s = 〈l̄, v〉 |= ϕZR(S, ℓ),
i.e., l̄ includes ℓ and v satisfies all g ∈ Guards(S). Necessarily, a state s0 can be reached from s
by traversing S without delay. (Otherwise, given that ℓ admits an unfolding of S and v satisfies all
g ∈ Guards(S), it must be the case that g ⇒ x > 0 for some x ∈ Resets(S) and g ∈ Guards(S), which
contradicts the premise that S is a convergent ZR group.) Then, there must exist an elementary cycle
in the timed transition system of |A, of the form: s0

a0−−→ s1 . . . sn−1
an−1−−−−→ sn, where s0 = sn, each

transition si
ai−−→ si+1 represents the execution of some action in S, and v0 = . . . = vn = Resets(S)(v).

This cycle represents a Zeno run.

Example. Figure 7 shows five components, S, Ta, Tb, Tc and R. Consider the TAD network |A = 〈S, Ta〉,
the ZR group Sa defined by the loops at S1 and T1a, and the entry vector ℓa = 〈S1, T1a〉. For Sa to
exhibit Zeno runs, ℓa = 〈S1, T1a〉 should be reachable with a valuation v that satisfies v(x) > 2 and
v(y) < 1. This state witnesses ϕZR(Sa, ℓa), which is defined as follows.

ϕZR(Sa, ℓa) = ∃3(S.S1 ∧ Ta.T1a) ∧ x > 2 ∧ y < 1)

On the other hand, consider the network |B = 〈S, Tb〉, the ZR group Sb defined by the loops at S1 and
T1b, and the entry vector ℓb = 〈S1, T1b〉. Zeno runs cannot occur in Sb, because ℓb cannot be reached
with a valuation v that satisfies v(x) > 2 and v(y) < 1 (this is prevented by the guard y<1 in completed
action c3). Correspondingly, the formula ϕZR(Sb, ℓb) fails to hold in |B.

ϕZR(Sb, ℓb) = ∃3(S.S1 ∧ Tb.T1b ∧ x > 2 ∧ y < 1)

Finally, let us show an example that justifies the restriction imposed by convergent ZR groups. consider
the network |C = 〈S, Tc, R〉. This network contains a non-convergent ZR group, Sc, defined by the loops
at S1 and T1c (note that, y>0 and y:=0 occur in the self loop at T1c). Sc has a single entry vector,
ℓc = 〈S1, T1b〉. The formula ϕZR(Sc, ℓc) holds true in |A; however, Zeno runs do not occur on Sc

because delays are prevented by the eager loop in R0. Thus, in general, ϕZR cannot be applied over
non-convergent ZR groups.

4 Compositional detection of Zeno-timelocks

This section presents a syntactic and compositional analysis to identify all sources of Zeno-timelocks
in a TAD network, based on the syntax of ZR groups. This is complemented by TCTL reachability
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Figure 8: ZT groups

formulae, which characterize the occurrence of Zeno-timelocks that are local to the ZR group (i.e.,
Zeno-timelocks whose witness Zeno runs are confined to the loops in the ZR group). The main results
are stated in Theorems 4.1 and 4.2.

4.1 A syntactic analysis to confirm the absence of Zeno-timelocks

We prove that, the occurrence of Zeno-timelocks in TAD networks imply the existence of ZR groups,
which admit unfoldings where eager actions are executed at every step. (We refer to such groups as
ZT groups.) This yields a syntactic analysis that guarantees the absence (but not the occurrence) of
Zeno-timelocks in a TAD network.

Definition 4.1. (ZT group) Let |A be a TAD network. Let S be a ZR group in |A. We say that S
is a ZT group if S admits an unfolding, σ, s.t. σ is of the form:

σ = ℓ1
α1−−→ ℓ2 . . . ℓk

αk−−→ ℓ1

where, for all i : 1..k, there is some eager action t ∈ Act(S) s.t. αi = t or αi = (t, t̄). We will refer to
σ as an eager unfolding of S from ℓ1.

theorem 4.1. In TAD networks, the absence of ZT groups implies the absence of Zeno-timelocks.

Proof. We prove an equivalent claim: The occurrence of Zeno-timelocks in TAD networks imply the
existence of ZT groups. Let s be a Zeno-timelock in the TAD network. By definition of Zeno-timelocks,
(a) there are no time-divergent runs from s, and (b) there are Zeno runs starting in any state that is
reachable from s. From (a), it follows that, from any s′ that is reachable from s, there exists some
eager action t in the TAD network, and some δ ∈ R

+0, s.t. t is executable in s′ + δ. From (b) and
the latter observation, there exists a set of eager actions in the TAD network, E say, which may be
executed infinitely often from s. By definition, there exists a ZT group S s.t. Act(S) ⊆ E.

Example. Figure 8 shows three components, R, S and T. Two ZR groups can be formed, SRT , with
the loops in R and T, and SST , with the loops in S and T. Note that, only SRT is a ZT group, which
admits the eager unfolding σRT . Instead, the only unfolding of SST contains moves that do not involve
eager actions.

σRT = 〈R1, T1〉
a?||a!

−−−−→
b?||b!

−−−−→
c?||c!

−−−−→
d?||d!

−−−−→〈R1, T1〉

Note that, once a Zeno-timelock s is reached, it is possible that some of the Zeno runs starting
in s do not execute eager actions. Nonetheless, Theorem 4.1 guarantees the existence of Zeno runs
that traverse at least one ZT group infinitely often. Thus, we focus our syntactic analysis (and the
reachability analysis discussed in the next section) on the construction of ZT groups.
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4.2 A reachability analysis to confirm the occurrence of Zeno-timelocks

The existence of ZT groups does not imply the occurrence of Zeno-timelocks (the converse of Theo-
rem 4.1 does not hold). There are several reasons why a given ZT group, S say, may not induce a
Zeno-timelock. Clearly, as for ZR groups, S may not be reachable with valuations that permit Zeno
runs. A less obvious reason is that S may contain non-eager unfoldings, which may be executed by
time-divergent runs. In addition, even if S is traversed by Zeno runs and it only admits eager unfold-
ings, time-divergent runs may exist which start in some location of S but are not confined to the loops
in S, thus escaping the urgency constraints. Unfortunately, whether Zeno runs are confined to S cannot
be characterized as a reachability property.

Nonetheless, reachability analysis suffices to confirm that a given ZT group, S, can be reached with
a valuation, v, s.t. (a) v allows S to be traversed by Zeno runs with zero accumulated delay, and (b) v
simultaneously disables all actions t s.t. src(t) ∈ Locs(S) and tgt(t) /∈ Locs(S). Thus, once S is reached
with v, all runs thereafter are confined to S. We will derive a TCTL reachability property from the
syntax of ZT groups, for those ZT groups that only admit eager unfoldings. This property guarantees
the occurrence of Zeno-timelocks in the group when it holds true (however, in general, nothing can be
concluded when the property fails to hold).

Definition 4.2. (Escape action) Let |A be a TAD network. Let T be the set of all actions in
|A. Let S be a ZT group in |A. An escape action of S is an action t ∈ T s.t. src(t) ∈ Loc(S) and
tgt(t) /∈ Loc(S).

Let S be a ZT group. Let EscAct(S) ⊆ Act(S) be the set of escape actions in S. Let EscCA(S),EscHA(S) ⊆
EscAct(S) be the subsets of escape completed actions and escape eager actions in S, respectively.

Definition 4.3. (Local Zeno-timelock) Let S be a ZT group. A Zeno-timelock, s, is local in S
if (a) a Zeno run exists that starts in s and traverses S infinitely often, and (b) no escape action
t ∈ EscAct(S) is executable in any state s′ that is reachable from s.

Definition 4.4. (Reachability formula ϕZT) Let |A be a TAD network, and T be the set of actions
in |A. Let S be a ZT group of |A. Let ℓ = 〈l1, . . . , lm〉 be an entry vector of S. Let A(j) denote the
component in |A that contains lj , for each j : 1..m. We define the reachability formula, ϕZT(S, ℓ), as
follows.

ϕZT(S, ℓ) = ∃3 (
∧

j:1..mA(j).lj ∧
∧

g∈Guards(S) g∧
∧

t∈EscCA(S) ¬ g(t) ∧
∧

t∈EscHA(S),t∈T ¬ (g(t) ∧ g(t̄)))

theorem 4.2. Let S be a ZT group. Let ℓ be an entry vector of S that only admits eager unfoldings.
If ϕZT(S, ℓ) holds true in |A, then a Zeno-timelock occurs that is local in S.

Proof. Let s = 〈l̄, v〉 be any state s.t. s |= ϕZT(S, ℓ). Note that, (a) ϕZT(S, ℓ) implies ϕZR(S, ℓ), and
(b) S is a convergent ZR group. (Suppose S is not a convergent ZR group. By definition, there exists
some t ∈ Act(S) and x ∈ C s.t. x > 0 is a conjunct in g(t). Also, either t or t̄ ∈ Act(S) is an eager
action, because only eager unfoldings exist from ℓ. But t is not left-closed, which contradicts our well-
formedness assumption on TAD networks § 2). Thus, by Theorem 3.3, there exists a Zeno run, ρ, which
starts in s, traverses S infinitely often, s.t. delay(ρ) = 0. Now, consider any state s′ = 〈l′, v′〉 that is
reachable from s. The projection of l̄′ over the component automata of S is a location vector in some
eager unfolding of S from ℓ, because v disables all escape actions from S. In addition, time cannot pass
from s′, because the existence of eager unfoldings (and the fact that v satisfies all clock constraints of
actions in S) ensures that eager actions exist that are executable in s′. Hence, by definition, s is a
Zeno-timelock that is local to S.
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Figure 9: Detecting the occurrence of Zeno-timelocks with reachability formulae

Example. Figure 9 shows four components, S, Ta, Tb and Tc. Consider the TAD network |A = 〈S, Ta〉
and the ZT group Sa, formed by the loops synchronizing on a! and a?. The entry vector is ℓa =
〈S1, T1a〉. Zeno-timelocks occur in Sa with valuation v s.t. v(x) > 1 and v(y) = 0 (Zeno runs occur that
disable the escape actions b? and b!). This is confirmed by the reachability analysis, as ϕZT(Sa, ℓa)
holds true in |A.

ϕZT(Sa, ℓa) = ∃3(S.S1 ∧ Ta.T1a ∧ x > 1 ∧ y < 2 ∧ ¬ (true ∧ y ≥ 2))

In contrast, consider the TAD network |B = 〈S, Tb〉 and the ZT group Sb, formed by the loops synchro-
nizing on a! and a?. The entry vector is ℓb = 〈S1, T1b〉. Zeno-timelocks cannot occur in Sb, because
any valuation that reaches ℓb and allows the traversal of Sb, also enables the escape actions b! and
b? (the synchronization b!||b? leads back to 〈S0, T0b〉, where time may pass again). The reachability
formula, ϕZT(Sb, ℓb), fails to hold in |B (it is, in fact, trivially unsatisfiable).

ϕZT(Sb, ℓb) = ∃3(S.S1 ∧ Tb.T1b ∧ x > 1 ∧ y < 2 ∧ ¬ (true ∧ true)) = false

The previous example showed a case where the characteristic reachability formula failed to hold, and no
Zeno-timelock occurred in the network. The following example shows that, in general, nothing can be
inferred when the reachability formula fails to hold. Consider the TAD network |C = 〈S, Tc〉 and the ZT
group Sc, formed by the loops synchronizing on a! and a?. The entry vector is ℓc = 〈S1, T1c〉. Here, a
Zeno-timelock occurs that is not local to Sc, and this cannot be inferred by reachability analysis. Note
that, when ℓc is reached with a valuation v, s.t. v(x) > 1 and v(y) = 0, Zeno runs exist that traverse
Sc but also the loops on b!||b?, and the passage of time is prevented in all states because b! is eager
(here, b? is the only escape action of Sc). However, the reachability formula, ϕZT(Sc, ℓc), fails to hold
in |C because any valuation that allows the traversal of Sc also enables synchronization on b!||b?.

ϕZT(Sc, ℓc) = ∃3(S.S1 ∧ Tc.T1c ∧ x > 1 ∧ y < 2 ∧ ¬ (true ∧ true)) = false

5 Conclusions and Future Work

We proposed a number of methods to check for Zeno behavior in TAD networks. These methods are
based on a compositional application of Tripakis’ strong non-Zenoness property, which works on the
syntax of loops (elementary cycles) in component automata. These methods are compositional, in the
sense that they are informed by the syntax of loops in component automata and do not require the
construction of the network’s product automaton.

A purely syntactic analysis was proposed to confirm the absence of Zeno runs, which either guaran-
tees that the TAD network is free from Zeno runs, or it identifies all groups of loops that can potentially
be traversed by Zeno runs, infinitely often. This method is complemented by TCTL reachability for-
mulae, which are derived from the syntax of offending loops (i.e., those groups of loops identified by the
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syntactic analysis), and which hold true when Zeno runs occur in the loops. Thus, reachability analysis
offers a way to reduce false positives. These methods were extended to check for Zeno-timelocks, based
on the identification of groups of NSNZ loops, which both may be traversed by Zeno runs and iterate
using eager actions at every step. However, reachability analysis could only characterize the occurrence
of certain classes of Zeno-timelocks, namely, those whose Zeno runs are confined to a given set of loops.

We would argue that, compositionality was facilitated by the semantics of deadlines. Although, it
is possible to port these methods to TA networks, such analysis would be more difficult to implement
because invariants express urgency indirectly.

Future work will consider the implementation of these methods, and the integration with available
tools for the analysis of TAD models. We believe that, this combined approach is more efficient than
verification of time divergence by liveness properties. Moreover, the proposed TCTL formulae can be
verified with the simplest form of reachability analysis supported in verification tools (for instance,
these formulae can be verified in the IF toolset; and also in Uppaal, given the translation suggested
in [10, 9]). Our syntactic analysis can also be applied to TAD models with discrete variables on finite
domains (i.e., similar to the extensions of timed automata supported by Uppaal). On the other hand,
due to interactions between data variables, the reachability formulae no longer characterize Zeno runs.
For instance, these formulae may be satisfiable by valuations that allow only finitely many consecutive
iterations (which prevents the occurrence of Zeno runs). Some form of termination analysis may help
to identify such cases, but this is subject of further research.
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