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We present a differential equation model and a computer simulation of particle de-agglomertion in
suspensions. The models are qualitative in nature, that is they do not assume specific parameters. Instead,
this article investigates whether qualitative features of a series of transient volume–size distributions can
give an insight into the underlying dynamics of particle de-agglomeration. We find that this is indeed
possible and provide a table summarizing how various breakdown processes can be distinguished by
considering the qualitative features of the transient volume–size distributions only.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

De-agglomeration of particles in solutions has important applica-
tions in scientific and industrial contexts. Correspondingly, there have
been some significant experimental efforts [1–4] to understand the
specifics of how agglomerates of particles (the secondary particles)
can be broken down into smaller units, possibly even into their
constituent particles (usually called the primary particles). Breakdown
of particles is either a fragmentation process (i.e. a particular
secondary particle is broken down into many much smaller frag-
ments) or an erosion process (i.e. a secondary is asymmetrically split
into two particles of unequal size). The process of breaking down
particles usually involves some kind of energy input into the
dispersion that causes the de-agglomeration process. The efficiency
of this process and its details depend on the conditions of the medium
(temperature, pH-value, etc…), the nature of the particles to be
dispersed and the source of the dispersion energy (mechanical input,
or sonification) [6]. In this article, wewill not be concerned with these
details, but rather investigate the dynamics of de-agglomeration
processes, independent of the detailed circumstances that cause them.
Also, we will not report any experimental data, but exclusively
concentrate on modeling the dispersion process.

The size distribution of secondary particles is normally well
modeled by a log-normal distribution (this distribution is either the
number of particles of size x or the proportion of total dry-mass
volume contained in secondary particles of size x versus the size) with
some distribution parameters μ and σ (the precise numbers depend

on the experimental conditions and the particles used). Input of
dispersion energy will eventually result in a dispersion with particles
being distributed according to a different μ and σ (the new μ typically
being significantly smaller). This final distribution is reached via a
transient bi-modal particle size distribution that can be described as
the sum of two log-normal distributions with different parameters.
The first (or small) mode can be approximated by a log-normal
distribution around a median value (given by eμ in log normal dis-
tributions) that is significantly smaller than the median around the
second (or large)mode that is at or near the median of the original
distribution before energy input started. The small mode indicates the
part of the particle mix that has been broken down by the energy
input; given sufficient energy input, the large mode will eventually
disappear restoring the mono-modal nature of the distribution.

In experimental setups it is possible to take snapshots of the
transient particle-size distributions. These snapshots hold informa-
tion about the underlying processes that lead to the breakdown of
secondary particles. However, interpreting these by mere verbal
reasoning is difficult and prone to errors. For this reason, formal
modeling methods have been proposed to describe the process of
breaking down particles (see for example [5]). A fairly general model
has been described by Kusters et al. [7]; this model is formulated as a
integro-differential equation. Kuster's model is sufficiently general to
represent most scenarios likely to be of practical relevance; however,
integro-differential equations are technically very difficult to analyze,
and can normally not be solved analytically. Solving such equations is
possible but requires significant knowledge of numerical solution
techniques (see for example Sommer et al. [8]).

The aim of the present contribution is twofold. Firstly, in Section 2
we present a simplified version of Kuster's model (along with an
analytical solution) that covers a limited (but arguably important) set
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of cases, namely fragmentation of secondary particles. Secondly, we
present a stochastic simulation model of particle de-agglomeration
that directly models the breakdown of secondary particles in a
simulationmodel. Thismodel is described in Section 3. Themain focus
of this article is on qualitative models that aid the interpretation of
sequences of transient volume distributions as they arise in de-
agglomeration processes, rather than model a specific set of experi-
ments. We will therefore not make any attempt to relate the input
parameters of the models to any specific system parameters (e.g.
energy input, particle size, charge, pH-value and the like). Instead, in
this contribution we are mainly concerned with the qualitative
features of the transient particle size distributions and what they
reveal about the underlying processes.

2. Differential equation model

The original model by Kusters [7] describes both fragmentation
and erosion in a single integro-differential equationmodel.While very
descriptive, this original model is rather complicated, analytically not
solvable and non-trivial to solve numerically. The difficulty when
modeling erosion (or fragmentation) of particles using differential
equations is that the breakup of a secondary particle into two
fragments results in particles that are significantly different in size to
the original. For example, a newly created particle of size x1 can be the
fragment of a particle of any size x2>x1. Hence, in order to model the
change of the number (or “concentration”) of particles of size x1 one
needs to sum (or integrate) over the probabilities of any of the larger
particles to be broken down into a fragment of size x1. This is a source
of complication of the full Kusters model. Reducing the complexity of
the model to include only decay of the large mode, but not the small
mode removes this difficulty and can significantly simplify the model.
However, this comes at the cost of a reduced generality of the model.
As will become clear in this section the simplified model can still be
useful to interpret data from particle de-agglomeration experiments,
under some circumstances. In this section we will formulate the
model, derive an analytic solution and present some numerical
examples that give insight into the qualitative behavior of the system.

Assume n(x,t) is the number (or rather “concentration”) of
agglomerates of size x at time t. If we ignore particles of sizes that
are typical of the fragments (i.e. the small mode) and if we further
assume that fragments are typically much smaller than the particles of
the original distribution, thenwe can ignore the addition of fragments.
This simplifies the Kusters model significantly and leads to a
differential equation of a decay process:

ṅ x; tð Þ = − n x; tð Þ · f xð Þ: ð1Þ

Here f(x) is a function that determines how the fragmentation of
secondary particles depends on their size x; note that we assume f(x)
to be independent of the time t. Such a differential equation is for
many choices of f(x) solvable by separating the variables, i.e. rewriting
Eq. (1) as:

Z
1

−nf
dn =

Z
dt ð2Þ

Here we omitted the functional dependencies of n and f to
improve readability. For the special case of f(x)=c, where c is some
constant, one obtains:

n = exp −tc − Kcð Þ: ð3Þ

Here K is an arbitrary integration constant arising from the
integration over t in Eq. (2). At this point only the time dependence
of n(x,t) is determined. The dependence on the particle size enters

the solution via the initial condition. This can be done by assuming
K=K(x) and forcing Eq. (3) to fulfill the initial condition

n x;0ð Þ = exp −cK xð Þð Þ = F xð Þ: ð4Þ

Here F(x) is the initial distribution of particles sizes before the
fragmentation process started. In what follows we assumed it to be a
log-normal distribution with parameters μ and σ.

F xð Þ = 1
xσ

ffiffiffiffiffiffi
2π

p exp − ln xð Þ−μð Þ2
2σ2

 !
ð5Þ

Solving Eq. (4) for K(x) and substituting the relevant expression in
Eq. (3) then leads to the sought solution for the time evolution of the
particle size distribution n(x,t). In the particular case of f(x)=c this
yields:

n x; tð Þ = 1ffiffiffi
2

p
xσ

exp −1
2
σ−2 ln2 xð Þ + σ −2 ln xð Þμ − 1

2
σ −2μ2 − tc

� �
ð6Þ

For this particular choice of f(x) the solution has the rather
interesting property that the position of the peak of the distribution
(and hence the median value) does not change over time. This can be
seen by determining the maximum of the distribution, i.e. solving the
following equation for x:

∂n x; tð Þ
∂x = 0 ð7Þ

Using n(x,t) from Eq. (6) this leads to the following expression for
the peak of the distribution:

xmax tð Þ = exp μ − σ2
� �

: ð8Þ

Note that this expression is independent of time; translated into
the language of transient volume distributions this means that the
position of the peak of the large mode does not change as the system
evolves. This conclusion changes when f(x) depends on x. We consider
as an example the case of f(x)=cx, i.e. a linear dependence of the
fragmentation rate on the particle size leads to:

n x; tð Þ = 1ffiffiffiffiffiffi
2π

p
xσ

exp −1
2
σ−2 ln xð Þð Þ2 + σ−2 ln xð Þμ − 1

2
σ−2μ2 − tcx

� �

xmax tð Þ =
σ−2LambertW tce−σ2 + μσ2

� �
tc

: ð9Þ

Here LambertW(x) is the Lambert W function.
We can also get solutions for more complicated cases; the

fragmentation rate might depend on the size in a number of ways.
Restricting our attention to the case of proportionality to some power
of x, i.e. f(x)=cxj, we get the following solution:

n x; tð Þ = 1ffiffiffiffiffiffi
2π

p
xσ

exp −1
2
σ−2 ln2 xð Þ + σ−2 ln xð Þμ − 1

2
σ−2μ2 − tcxj

� �

xmax = exp −
jσ2 − jμ + LambertW tcj2e− j σ2 −μð Þσ2

� �
j

0
B@

1
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ð10Þ

2.1. Numerical examples

Fig.1 shows the position of the peak of the largemode as a function
of time. The graph indicates that the higher the dependence of the
fragmentation rate on the particle size, the faster the displacement
of the peak of the large mode over time. In the special case of no
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dependence, the peak is not displaced at all; once the dependence is
inverted, i.e. smaller particles are more likely to be fragmented, the
mean displacement would accelerate again, but in the opposite
direction (i.e. the peak would be shifted towards larger secondary
particle sizes). In the linear and quadratic case, the speed of peak
displacement is not constant but fast at first and decelerating as time
progresses.

Fig. 2 shows the size of the peak (so essentially the volume per-
centage contained in the peak) over time. In the unbiased case there is
a linear dependence, whereas the linear and the quadratic cases show
a much faster decay of the peak; on the graph in Fig. 2 the decay curve
for the quadratic case is barely visible because of the fast pace of decay.
The observation that the size of the large mode decays very fast when
the dependence on the particle size is strong suggests that real data
would appear somewhat different to the results of the differential
equation model. One must assume that the measurement device
cannot detect very small peaks. In practice, one can therefore assume
that even in the quadratic (or higher order) case the speed of mean
displacement would appear to be constant; the area where the dis-
placement of the peak decelerates would most likely be undetectable.
The shape of the peak-displacement curve therefore contains only
limited information about the power of the size dependence on the
fragmentation, except in the case of a static peak which is a conclusive
indicator for a fragmentation curve that is independent of the size.

3. Computer model

In this section we present a computer simulation of the particle
de-agglomeration process. Unlike the differential equation model,
the computational model represents both the large and the small
mode and it can easily be used tomodel fragmentation and erosion of
particles. The main difference between the computer model and the
differential equation model is that the former assumes discrete
populations, i.e. every single secondary particle is explicitly counted.
In terms of its computational cost (and in consequence the feasibility
of it being fitted to real data) the computational model is clearly
inferior to formal mathematical approaches. However, its main
benefit is that it can easily be adapted to model a number of ap-
proaches that would be very difficult to model using equation-based
approaches.

The initial particle distribution is chosen according to a log-normal
distribution around a user-specified peak. The simulation model is
updated in discrete time steps. At every time-step the model updates
the number of secondary particles of a given size (as measured by the
number of primary particles); for example, a secondary particle of size
100 is the agglomerate of 100 primary particles. At every time-step the
particle numbers are updated according to the following algorithm:

(1) Initialise time to T=−1.
(2) Set the secondary particle size to be considered next to n=1

and set T=T+1.
(3) For secondary particles of size n determine the base rate of

fragmentation/erosion:

(a) Determine the base probability p(n) of a single secondary
particle of size n to be fragmented/eroded. In this article
we consider 3 functions, namely p(n)=c (henceforth
referred to as unbiased), and p(n)=c1n+c2 (henceforth
linear) and p(n)=c1n

2+c2 (henceforth quadratic); here c,
c1, c2 are constants to be set by the user.

(b) Calculate the number S of particles of size n to be
fragmented/eroded: S=p(n)·n.

(c) If S<1 then draw a random number f between 0 and 1 from
a uniform distribution. If f<S then set S=1, otherwise S=0.

(d) If S is not an integer, round S to the next lowest integer to
determine the numberof particles to be eroded/fragmented.

(4) Fragment/erode simultaneously S particles of size n using the
fragmentation/erosion subroutine described below.

(5) Increment n by 1.
(6) If n has reached a maximum number (determined by the

user in relation to the initial distribution), then go to step 3;
otherwise go to step 3.

Erosion is implemented using the following algorithm:

(1) To erode a particle of size n draw a random number f from an
exponential distribution around some user-determined para-
meters μ and σ.

(2) To determine the fragment size round f to the next integer i< f.
(3) If f≥n abort.
(4) Otherwise, remove a secondary particle of size n and add one

particle of size f and one of size n− f.

Fig. 1. The position of the peak of the large mode as predicted by the differential
equation model Eq. (1) as a function of time. We are not attempting to fit the model to
any specific data, so the graph here is to be understood as a numerical example only. The
figure shows three cases corresponding to an unbiased model, a linear and a quadratic
dependence of the fragmentation rate on the particle size. For the unbiased case, the
position of the peak does not change, as predicted above. For the linear and quadratic
case the graph shows what resembles an exponential fall of the peak of the large mode.
Here we assumed the following parameters: μ=7.5, σ=1, s=0.3, m=2.0, c=0.1.

Fig. 2. The height of the peak of the large mode as predicted by the differential equation
model Eq. (1) as a function of time. These are example solutions of Eq. (1) (for the same
parameters as those shown in Fig. 1. The graphs clearly show that a stronger
dependence on the particle size leads to a faster decay of the maximum. The quadratic
case is barely visible and only appears in the lower right corner of the graph; this means
that in the case of quadratic dependence the large mode is very quickly reduced if
compared to weaker dependencies.
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Fragmentation is implemented as follows:

(1) To fragment a particle of size n use the erosion algorithm to
create two particles of size f and n− f.

(2) Set n=n− f and go to step 3. (the procedure will stop when
the abort condition in step 3 in the erosion subroutine is
encountered.)

3.1. Simulation results

Fig. 3 shows the time evolution of the simulation. At time T=0
(bottom) the distribution is mono-modal. Here the peak of the large
mode is at around 1000. (Note that the parameters of the initial
particle distribution are user-defined). By time T=100 a secondmode
has appeared. Both the small and the large mode co-exist for a period
of time, but at time step T=500 the large mode has disappeared and
only the small mode is left. At this point the distribution does not
change any more. An example of the time evolution of an erosion
process is given by Fig. 4.

The particular position of the peak values can be varied by changing
the parameter settings of the simulation model. We consider here the
speed of the displacement of the peak positions over time because
this can give insight into the underlying processes of the particle de-
agglomeration. We performed a number of simulations with dif-
ferent assumptions about the bias of the de-agglomeration process
corresponding to complete independence of the de-agglomeration
probability of the secondary particle on its size, a linear dependence
and a quadratic dependence.

We consider fragmentation first. In this case onewould expect that
the peak of the large mode does not shift over time when particles are
fragmented and the fragmentation process is not biased. This is indeed
confirmed by Fig. 5. However, if there is a bias in the sense that larger
particles are more likely to be fragmented than smaller ones, then the
largemodewill shift to the left over time. The figure shows clearly that
the speed of peak displacement depends on the nature of the bias. If
the bias is merely linear, then the speed of displacement of the peak is
lower than if the dependence is quadratic. For more extreme biases
the speed of change will correspondingly increase (data not shown).

Fig. 3. An example simulation run of the computational mode. The lowest graph shows the initial distribution of secondary particles around a mean of about 1100. At time step 100
(middle graph) the distribution has become bi-modal; the small mode peaks at around 30. In the top graph (T=500) the largemode has disappeared and the small mode now peaks
at about 20. The simulation shown here used and unbiased fragmentation algorithm described in Section 3. The fragmentation rate for each particle is 0.01; the initial distribution
contained about 10 million secondary particles.

Fig. 4. As in Fig. 3 but with different parameters. The simulation shown here used and biased erosion algorithm described in Section 3. The fragmentation rate for each particle is 0.1.
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These simulation results are consistent with the observations from the
differential equation model. However, while the differential equation
model predicted a deceleration of the displacement of the peak as
time progresses, it also suggested a rapid decrease of the large mode.
Other than in the differential equation model, in the simulation sec-
ondary particles are represented as integer units (and not as con-
centrations). Hence, there is a minimum peak size (2 particles). Given
rapid decay finite elements can reduce to zero fast at which point the
large mode ceases to exist. In a continuous model (such as the
differential model above) a zero-height of the peak of the large mode
is only reached asymptotically. In this case, the deceleration of the
displacement of the large peak was only noticeable in the regions
where the peak size was very low as well; yet such small peak sizes do
not occur in the simulation model because of the discrete nature of
secondary particles. Hence, in stochastic models one observes a
constant displacement speed for the peak of the large mode even in
the quadratic case.

In the case of erosion the large modemoves even if there is no bias.
The process of erosion creates smaller agglomerates from larger ones
thus leading to an overall shift of the peak of the largemode to the left.
In this case, as in the case of fragmentation, the speed of the peak
displacement increases as the size bias of the fragmentation process
increases.

The dynamics of peak displacement of the small mode is quite
different from that of the large mode, namely opposite: For example,
Fig. 6 shows that in the case of unbiased fragmentation the peak of the
small mode moves to the left. This effect is reduced by introducing a
bias, which can be immediately explained by considering that a bias
will make it less likely that small secondary particles are further
fragmented resulting in an overall lower speed of displacement of the
small mode. A similar dynamics is observed in the case of erosion.

4. Discussion and conclusion

While differential equation models (such as the one proposed by
Kusters) potentially describe the dynamics of both the large and the
small mode, complete mathematical models are normally difficult to
formulate, solve and even harder to extend. We proposed a simplified
model that is amenable to analytic solutions, but only provides a
partial description of the system. We also presented a computational
model that is more general in its scope, and more direct in its
representation, but also much more demanding in terms of computa-
tional costs. Results obtained with this model show a qualitative

agreement with the differential equation model but also highlight a
crucial difference between discrete and continuous systems. The
former consist of a number of discrete particles whereas the latter
assumes “concentrations” of particles. In practice this will make a
difference in the case of very small peaks, i.e. when the distribution is
relatively flat. In continuous models very small peaks can still be
represented, but in reality they would be irrelevant. Peaks consisting
of a few hundreds of secondary particles are undetectable and perhaps
in a statistical sense non-existing in the context of the noise inherent
to the stochastic breakdown process. Given that computing power is
cheap, on balance, the computational cost of explicit computermodels
is outweighed by their intuitive appeal and their relative ease of
extension compared to differential equation models.

Considering the simulation results as a whole it is possible to
derive some qualitative features of the de-agglomeration process that
can help classify its underlying physical processes. Firstly, a large
mode that only decays but does not change the position of its peak
over time is a clear indication of a fragmentation process and is not
compatible with erosion. However, displacement of the large mode is
not in itself incompatible with fragmentation processes but could
indicate that the fragmentation rate depends on the size of the
secondary particles. Significant displacement of the large mode
would, in this case, correspond to a static small mode. Hence the
combination of a static and non-static small/large mode respectively
points to a size dependent fragmentation process.

On the other hand, if the small mode is static, then this indicates a
dependence of the underlying de-agglomeration process; coupled
with a static (or very slowly moving) large mode this could indicate a
weakly (linearly) biased fragmentation process. If the large mode
moves, however, then this would indicate either a strongly biased
fragmentation or a biased erosion process. The two processes cannot
be distinguished qualitatively, but require numerical modeling.

This suggests a simple scheme to gain insight into the underlying
mechanisms of particle de-agglomeration from qualitative features of

Fig. 5. The position of the peak of the large modes for fragmentation and erosion of
secondary particles and various assumptions about the dependence of the de-
agglomeration probability per time step on the particle size. “No dependence” denotes
the case where the de-agglomeration rate is independent of the particle size. The linear
and quadratic dependences are labeled accordingly. See Section 5 for numerical details
of the parameters.

Fig. 6. As Fig. 5 but for the small mode.

Table 1
This table summarizes the qualitative features of the transient volume distributions
caused by various de-agglomeration dynamics.

Large mode static Large mode moves

Small mode static (Weakly) biased
fragmentation

Biased erosion; strongly biased
fragmentation

Small mode moves Unbiased fragmentation Unbiased erosion

From these qualitative features it is possible to reach conclusions about the underlying
dynamics of the de-agglomeration process. The row labeled “static large row” contains
the features of experiments where the peak of the large mode in transient volume
distributions does not change position over time. The other rows and column have
respective interpretations.
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the time evolution of the small and large modes. Table 1 summarizes
what can be learned from a mere qualitative assessment of the
transient volume distributions in de-agglomeration processes about
the dynamics of the underlying erosion/fragmentation processes. For
example, from the table it is clear that if the peak of the large mode
does not change position, but the peak of the small mode does, then
this suggests that the underlying process was a fragmentation process
without size-bias.

It is conceivable that in practice de-agglomeration processes are
mixtures of both fragmentation and erosion processes. This is an
additional complication that can only be clearly recognized if the two
processes happen on different time-scales. For example, data from
particle de-agglomeration with a shear mixer reported by Pacek et al.
[1] indicates two fragmentation phases. In a first phase, large second-
ary particles are fragmented into smaller ones, which are then frag-
mented into even smaller ones in a second step. In this particular case,
the two steps are clearly visible from the data. In general, if frag-
mentation and erosion occur concurrently, then the two methods
might not be easily separated by qualitative methods only. Detailed
numerical models are then necessary.

Our main interest in this contribution is to understand qualitative
features of particle de-agglomeration as indicators of the underlying
processes.Wehave therefore notmade any attempts to fit ourmodels to
real data. However, at least for the differential equation model this can
be relatively easily done. Fitting of the computational model is much
more involved and requires good knowledge of the underlying
parameters. The model presented here represents a minimal base-
model that focuses on the core-features of the system. It is, however,
fully possible to modify this model to include more physically relevant
parameters, such as hydrophobicity and the pH value to make specific
predictionsaboutparticular systems; in the contextof the currentmodel
such changes would mainly enter the model via the parameter that
determines the fragmentation/erosion rate of secondary particles. One
could also include other types of interactions, particularly chemical
reactions, in the simulation. Extending thealgorithms to represent this is
beyond the scope of this contribution, but otherwise straightforward.
Thepossibilityof extension alsopoints to anadvantage of computational
modeling over differential equation models.

5. Methods

The simulation program was written in C++ and compiled using
the open source Gnu C++ compiler (v. 4.0.1) under Mac OS 10.5. As a
random number generator we used the implementation of the
Mersenne Twister by Lendl from the University of Salzburg, Austria.
This implementation is freely available at http://random.mat.sbg.ac.
at/ftp/pub/software/gen/. For exponentially distributed random
numbers we used the Gnu Scientific Library (http://www.gnu.org/
software/gsl).

The initial distribution was generated by creating n secondary
particles of size x. Here n was calculated as a function of x according
to:

n xð Þ = N
1

xσ
ffiffiffiffiffiffi
2π

p exp − log xð Þ−μð Þ2
2σ2

 !
ð11Þ

For all simulations reported here we used N=100,000,000 as the
approximate number of secondary particles, μ=7 and σ=0.05
determine the shape and median of the initial distribution. In the
fragmentation/erosion steps described in Section 3 we chose the
fragment sizes by drawing random numbers from an exponential
distribution with scale parameter 3.5 and exponent 0.3. The source
code can be obtained from the authors upon request.

The points in Figs. 5 and 6 were generated as follows: For each
point in the figure the relevant transient distribution was fitted to a
log-normal distribution using the Matlab curve-fitting tool. We only
considered the relevant data, that is for the largemodewe disregarded
the parts of the data that belonged to the small mode and vice-versa.
The parameters in the simulation model were chosen such that the
large and the small mode were clearly separated; hence choosing the
separation was unproblematic: for the large mode we considered
secondary particles of sizes between 500 and 1200; the small mode
we defined as being between 0 and 150. The values in the figures were
then taken from the curve fitting results.
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