
Typed Cartesian Genetic Programming for Image
Classification

Phil T. Cattani and Colin G. Johnson
Computing Laboratory

University of Kent
Canterbury

Abstract

This paper introduces an extension to
Cartesian Genetic Programming (CGP),
aimed at image classification problems.
Individuals in the population consist of
two layers of functions: image processing
functions, and traditional mathematical
functions. Information can be passed be-
tween these layers, and the final result can
either be an image or a numerical value.
This has been applied to image classi-
fication, by using CGP to evolve image
processing algorithms for feature extrac-
tion. This paper presents results which
show that these automatically extracted
features can substantially increase classi-
fication accuracy on a medical problem
concerned with the analysis of potentially
cancerous cells.

1 Introduction

Classification in data mining refers to the pro-
cess of building a model for the relationship be-
tween feature values and class membership, such
that previously unseen records can be assigned
class membership as accurately as possible. One
particular form of classification, important for
example in medical applications, is the classifi-
cation of images.

Feature extraction from images can be a long
and laborious process involving expert knowl-
edge. It is not necessarily self-evident which fea-
tures of an object help to discriminate between
one class and another class, so expert knowledge
is used to extract appropriate features. This
process can be time consuming because each of
these features must be either measured by hand,
or a specific program must be written to extract
each of the features individually. Extracting as
many features as possible and adding them to
a machine learning algorithm will not necessary
improve classification accuracy rates; it is the

quality, not the size, of the feature set which
most strongly influences the accuracy rate of a
machine learning algorithm 1. Because of these
difficulties, automating the feature extraction
process is an important research problem.

Beginning with Section 2, we will first briefly
discuss background research into Cartesian Ge-
netic Programming and how it has hitherto been
applied to image processing, image recognition,
and feature extraction. We will then very briefly
introduce our proposed novel method of ex-
tending the Cartesian Genetic Programming ap-
proach to feature extraction. In Section 3, we
will describe in detail how our CGP program
works and how it uses a novel method to ex-
tract ’useful’ features. In Section 4, we outline
the results of a classification experiment con-
ducted with a set of images of cancerous and
non-cancerous Pap Smear cells. Finally, in Sec-
tion 5, we discuss our results, the limitations of
the experiment and its implications.

2 Background

Our work is primarily based on a seminal paper
by Miller and Thomson titled Cartesian Genetic
Programming [6], written in 1998. This paper
introduces the concept of Cartesian Genetic Pro-
gramming, on which all other CGP programs
are founded. The program outlined in the pa-
per by Miller was used to solve symbolic regres-
sion problems and used a limited function set
of four algebraic functions: +,-,*,div. Similar
to other Genetic Programming (GP) methods,
CGP uses a population of candidate programs
and assesses their fitness by running them on a
training data. CGP uses an indexed graph rep-
resentation for the various functions involved in
the programs, and the strings that make up the
population represent the functions and connec-
tions between them.

1. Features which improve accuracy rates will
heretofore be known as ‘useful’ features.



A number of previous papers have applied
Genetic Programming methods to feature con-
struction, that is, the combination of existing
features in new ways that enhance the accuracy
of the classifier. Examples of these include the
work by Otero et al. [7], Smith and Bull [10],
and Krawiec [3]. This is a powerful application
of GP; however, it does not work with raw data,
but with a set of features that have already been
extracted by experts.

By contrast, the work described in this paper
is focused on feature extraction for data sets con-
sisting of image data. This means learning how
to derive numerical values from the properties
of the images. This means that we can provide
the feature extraction algorithm with raw im-
ages, and automatically create a new feature set
without needing expert knowledge.

A small number of papers have explored
the application of GP to image transformation.
Poli [8] uses GP to evolve programs, based on
low-level processing of pixel values in the im-
ages, in order to derive image transformation al-
gorithms for segmentation and image enhance-
ment; similarly, Harding [2] uses related meth-
ods to generate noise-reduction filters. Colton
and Torres [1] use a higher-level representation
in which parts of the function set are them-
selves image processing primitives e.g. median,
inverse and threshold. They apply these meth-
ods to evolve image filters, focused on the kinds
of “artistic” filters found in programs such as
Photoshop.

More directly relevant to our work are several
other papers that use GP for feature extraction.
Völk et al. [11] use CGP to extract features from
images, however, their work uses pixel-level op-
erations rather than higher-level image process-
ing primitives. Krawiec and Bhanu [4] use Lin-
ear Genetic Programming to evolve programs
comprised of compositions of image processing
functions. In this paper we use a similar ap-
proach, but we use CGP and we include a layer
a basic mathematical functions as well as image
processing functions.

Finally, Shirakawa et al. [9] apply a CGP-like
method to evolve acyclic networks consisting of
image transformations, feature extraction pro-
cesses and arithmetic operations. This is similar
to the work presented in this paper. However,
in our method we allow numerical values calcu-
lated during the program to be used as param-
eters for image transformation functions, rather
than using a fixed sequence of types. This means
that aspects of the images can be used during
the program to influence the details of subse-

quent image transformations. Furthermore, our
system allows numerical constants to be evolved
directly: for example, a threshold value could be
evolved.

3 Methods and Algorithms

3.1 Introduction to the Program

Our work is based on the paper Cartesian Ge-
netic Programming, by Julian Miller and Peter
Thomson [6]. In it they describe a novel method
of implementing a Genetic Programming where
a program is represented as an indexed graph.
The encoding for Miller’s program is a linear
sequence of integer numbers. These numbers
are grouped logically into sets of four numbers.
Each set of these four numbers pertains to one
node in the graph. The first three numbers rep-
resent the three input nodes, while the fourth
number represent the node function. This list
of node connections and node functions is the
Genotype, which is then translated to an in-
dexed graph and executed as a program.

In the paper written by Miller and Thomson,
they use an indexed graph with three rows and
four columns as an example. In our work, we
use a graph with the number of columns set by
a parameter (with a default length of 20) and
two rows.

Furthermore, our indexed graph differs in
that each row is typed : the first row of mod-
ules contains only image functions, called Im-
age Modules, and the second row contains only
mathematical functions, called Math Modules.
An Image Function is a function which returns
an Image when executed. A Math Function is a
function which returns a number (Java Double)
when executed. Either type of module can ac-
cept a combination of Image or Double as inputs
in theory. The row which contains the Image
Modules shall herein be referred to as the Image
Platform; whereas the row which contains the
Math Modules shall be known as the Math Plat-
form. The two Platforms together constitute a
Station.

An example Image Module is one which we
have named AddToImageXAmount. This mod-
ule accepts an Image as its first input, and a
Java Double as its second input. It takes the
value of the second input and adds this amount
to every pixel in the Image passed in the first
input.

An example Math Module is one which we
have named MeanPixel. This module accepts an
Image as its first input and discards its second



input. It determines the mean intensity value of
all the pixels in the image and returns this as its
output as a Double.

Any node in the program may accept inputs
from any node(s) which are in a column position
preceding the current node.

The first module on both the Image and
Math Platforms are Starter Modules. Starter
Modules simply return a constant when its func-
tion is called using the compute() function. In
the case of the Image Platform, the Starter Mod-
ule returns an image. In the case of the Math
Platform, the Start Module returns a numeric
constant (default value is 2). If an experimenter
is performing image classification, then the pro-
gram will recursively set the image constant of
the Starter Module to each image in the data
set. The CGP program currently accepts 8-bit
grayscale images as input.

When the program is run, a method called
collectValues() is called on each of the nodes in
each platform, starting with the Starter Module
(node 0), and then proceeding to the next node,
and so on until the final node is reached. The
collectValues() method contains instructions to
collect the values it needs to compute the out-
put of the primary function of that module. It
collects these values by determining which nodes
on the graph are input nodes for that Module. It
then calls the compute() function on each of the
modules which are located at that node. These
modules then return a value (image or number)
which are then used as input values for the cur-
rent module. The answer to the current module
is now available using the compute() method.

The final value of the Station is determined
by calling the compute() method on the last
node on either the Image Platform or Math
Platform, depending on the task at hand. If
classification is the objective, then the compute
function is called on the last node of the Math
Platform, where this numerical value is stored
and associated with the Image from the dataset
currently stored in the Image Starter Module.
These values then form a feature for that set of
images.

This process is summarised in figure 1.

3.2 Typed Cartestian Genetic
Programming

Our Typed CGP program contains two sets of
modules; one set of Image Modules and one set
of Math Modules. These sets are interchange-
able with other sets. The Image Modules cur-
rently use three different interfaces. These are

the following:

• First input value is an Image, second input
value is a Double, output value is an Image

• First input value is an Image, second input
value is an Image, output value is an Image

• First input value is an Image, second input
value is ignored, output values is an Image.

The Math Modules current also use three differ-
ent interfaces. They are the following:

• First input value is Image, second input
value is a Double, output value is a Dou-
ble.

• First input value is Image, second input
value is ignored, output value is a Double.

• First input value is a Double, second input
value is a Double, ouput value is a Double.

3.3 The Fitness Function

The usefulness of any individual genome encod-
ing is determined by how it scores on the fitness
function being used at the time.

The default fitness function which we used
for our program is called Fisher’s Ratio [5]. The
program was built to be able to plug and play
fitness test modules. The second fitness function
module which we used in our test is the entropy
test (see e.g. [12]). We implemented our own
version of the entropy test which we describe
below.

3.3.1 The Fisher’s Ratio

The Fisher’s Ratio is the ratio of the square
of the difference in mean values between two
groups divided by the sum of the variances of
two groups:

Fisher’s Ratio = (m1−m2)2

v1+v2

This statistically estimates the separate-
ness of the two distributions. A low value
indicates poor separateness, whilst a high value
indicates that the two distributions are well
separated.

3.3.2 The Entropy ratio

Entropy is a measure of the disorder or uncer-
tainty in any system. For a system which poten-
tially contains two classes, the entropy value is
0 when there is no uncertainty about the prob-
ability of the next value being of a certain class.



Station

Image Platform

Math Platform

Starter
Module
(input image)

Starter
Module
(constant)

Output
Value

Image
Module

Image
Module

Image
Module

Image
Module

Image
Module

Math
Module

Math
Module

Math
Module

Math
Module

Math
Module

Output
Value

Output
Image

Input
Image

Figure 1: Example of a candidate program.

This would occur in a set of items which is com-
prised entirely of one class. Entropy would reach
it’s maximum value of 1 when there is maxi-
mum uncertainty about the probability of the
next value being of a certain class. This would
occur in a set of items where there is an equal
distribution of items from both classes in the
predicted classes.

The formula we used to calculate Entropy in
our Entropy Fitness Test module was:

Entropy = (−(p1) log2(p1))− ((p2) log2(p2))

Where the p1 and p2 are the probabilities
of the first and second class respectively ap-
pearing in the first half of a list of sorted values
for the images of both classes.

In other words, the feature values associated
with each image and the known image class is
stored in an array of size N . This array is then
sorted according to feature value and precisely
half of the array is then discarded to form a new
array with size N/2. This new array contains
the N/2 largest feature values.

The probability p1 is equal to the ratio of
images from one class to total number of images
in the new array. While the probability p2 is 1 -
p1. The Entropy value is then calculated using
these two probabilities2.

3.4 Overall Process

In this section we have described the various
components of the Typed CGP system for im-
age classification. We now describe how these
are put together.

The initial population of size n consists of
a randomly generated set of strings of digits,
each of which defines a Station. This popula-
tion is then evolved by a standard evolutionary
algorithm process: i.e. we calculate the fitness
of each member of the population, select the
best b members of the population, and form a
new population by first making a direct copy of
these b members and then filling the remainder
of the population with mutants of these mem-
bers. This process is then iterated many times,
until either x generations have passed or a fit-
ness threshold has been exceeded. Features are
stored whenever the fitness both exceeds a mini-
mum threshold and exceeds the current best fit-
ness value.

In the experiments below, n = 20, b = 3,
x = 100000. This is typical for CGP, which uses
small population sizes, high selection pressure
and a large number of generations.

4 Results

In our first test, we chose two groups of dif-
ferent type of cells from a database of images
of Pap Smear cells. The Pap-Smear database
used for this test is a set of 917 images which
were scanned at The Department of Pathology
at the Herlev University Hospital (Patalogisk
Anatomisk Institut). Twenty features were orig-
inally manually extracted and the cells classi-
fied by two cyto-clinicians. It has been made
available on the web for public use for research

2. This implementation of Entropy will only work
in the special case where the size of the number of
images from each class is equal.



Class Type Class Name Number of Images Subtotal
Group 1 Normal Normal Superficial 74
Group 2 Normal Normal Intermediate 70
Group 3 Normal Normal Columnar 98 242
Group 4 Abnormal Light Dysplastic 182
Group 5 Abnormal Moderate Dysplastic 146
Group 6 Abnormal Severe Dysplastic 197
Group 7 Abnormal Carcinoma in Situ 150 675

Table 1: The Pap Smear Data Set

Original 20 features Orig. + 3 Fisher Orig. + 1 Entropy Orig. + All 4
Classifier No f.s. F.s. No f.s. F.s. No f.s. F.s. No f.s. F.s.
NaiveBayes 68.33% 73.33% 73.33% 78.88% 70.00% 75.00% 75.55% 82.22%
MLP 82.77% 73.33% 84.44% 76.66% 82.22% 80.00% 90.00% 86.11%
SMO 81.11% 76.66% 81.11% 82.22% 82.22% 78.88% 80.55% 80.00%
IBK1 71.11% 71.66% 78.33% 83.33% 71.66% 74.44% 78.33% 82.77%
IBK2 72.77% 71.11% 77.22% 80.00% 73.33% 74.44% 77.22% 78.33%
IBK3 74.44% 76.66% 82.77% 83.88% 73.33% 78.33% 81.66% 83.88%
IBK4 74.44% 78.33% 80.55% 79.44% 73.33% 80.55% 80.55% 80.55%
J48 72.22% 75.55% 80.55% 78.88% 77.22% 78.88% 81.66% 79.44%
JRIP 69.44% 68.88% 74.44% 76.11% 78.33% 73.88% 78.88% 76.66%

Table 2: Results for the four experiments. Column 1 describes the classifier used. The remaining
columns consist of two columns per experiment, the first without feature selection (No f.s), the
second with (F.s.). The four experiments are: the original 20 features alone (columns 2 and 3); the
original 20 features plus 3 features generated using the Fisher test (columns 4 and 5); the original 20
features plus 1 feature generated by the Entropy test (columns 6 and 7); and, finally, the original 20
features plus all 4 of the generated features (columns 8 and 9). Highest accuracy for each experiment
is highlighted in grey.

into automated classification systems.3 The
database divides the cell images into seven dif-
ferent classes; three classes for normal cells and
four classes in total for three levels of dyspla-
sia and carcinoma in situ. We chose 180 images
(the first 90 images from each class) in total from
groups 3 and 6 from the database. Group 3 is the
set of ’Normal Columnar’ cells which are classi-
fied as Normal. Group 6 is the set of ’Severe
Dysplastic’ cells which are classified as Abnor-
mal (see table 1).

The reason for this choice is that we wanted
to see how well the system could differentiate be-
tween normal and abnormal cells. Specifically,
groups 3 and 6 were chosen because group 3 has
a similar cellular morphology to group 6, which
means the groups are difficult to distinguish. A
non-expert human would find it difficult or im-
possible to differentiate between the two groups
of cells.

Our setup consists of the following: The
program we use for classification is the
open source data-mining software Weka

(http://www.cs.waikato.ac.nz/ml/weka/) We
use a varied set of classification algorithms
included in the Weka program. These are:
MLP, SMO, IBK (using with nearest neighbour
setting set of [1..4]), J48 and JRIP. For an
explanation of each of these algorithms, see the
Weka documentation in the program.

Each test is run with a different set of fea-
tures. The baseline test uses only the original
20 features measured by human experts. Each
subsequent test uses a combination of the origi-
nal features and newly extracted features. The
newly extracted features were selected by the
CGP program as being the most fit according
to either the Fisher’s test or an entropy test.
Which one is used for that particular test is in-
dicated in the title.

For each test run, we run two trials: one
without using any feature selection algorithm,
another with the CSFSubsetEval feature selec-
tion algorithm included in Weka using the de-
fault parameters. Our data set is the collection

3. http://fuzzy.iau.dtu.dk/smear/download.html



of 180 cell images as described above.
The results (classification accuracies) are

given in Table 2.

5 Discussion

The results using the image dataset of Pap
Smear cells are encouraging. The program was
able to generate new features using the Fisher’s
test fitness test which immediately improved the
maximum accuracy rate across our set of clas-
sifiers. Interestingly, the Entropy test did not
yield any features which improved maximum ac-
curacy when combined with the original set of 20
features. However, when the two sets of newly
generated features were combined with the orig-
inal 20, accuracy rates improved dramatically
across all of the classifiers. The maximum accu-
racy rate went from 82.77% with the original 20
features to 90% with the combined feature set,
thus demonstrating the quality of the generated
attributes.

More classification experiments need to be
done with large image sets. This could include
data sets that already have hand-extracted fea-
tures, and data sets that do not.

The Typed CGP program allows an exper-
imenter to plug and play different fitness test
modules. Because the nature of the fitness test
modules is that they only test for the ‘useful-
ness’ of a feature in isolation, using this modu-
lar capability to generate features using different
fitness test modules is more likely to improve
accuracy rates than using only one fitness test
module. Using several fitness test modules is
likely to produce a complimentary features set.

In the future, we hope to alter our program
to maintain a database of extracted features so
that more sophisticated fitness test algorithms
can be incorporated into fitness modules which
take into account the potentially complimentary
aspects of newly extracted features.

References

[1] Simon Colton and Pedro Torres. Evolving
approximate image filters. In Applications
of Evolutionary Computing, EvoWorkshops
2009, volume LNCS 5484, pages 467–477,
2009.

[2] Simon Harding. Evolution of image fil-
ters on graphics processor units using carte-
sian genetic programming. In 2008 IEEE
Congress on Evolutionary Computation,
2008.

[3] Krzysztof Krawiec. Genetic programming-
based construction of features for machine
learning and knowledge discovery tasks.
Genetic Programming and Evolvable Ma-
chines, 3(4):329–344, 2002.

[4] Krzysztof Krawiec. Visual learning by evo-
lutionary feature synthesis. In Proceedings
of the Twentieth International Conference
on Machine Learning, pages 376–383, 2003.

[5] H. Lohninger. Teach Me Data Analysis.
Springer, 1999.

[6] Julian F. Miller and Peter Thomson. Carte-
sian genetic programming. In Genetic Pro-
gramming: Proceedings of the 2000 Euro-
pean Conference on Genetic Programming,
pages 121–131. Springer, 2000. LNCS, Vol.
1802.

[7] Fernando E.B. Otero, Monique M.S. Silva,
Alex A. Freitas, and Julio C. Nievola. Ge-
netic programming for attribute construc-
tion in data mining. In Genetic Program-
ming: Proceedings of the 2003 European
Conference on Genetic Programming, pages
384–393. Springer, 2003. LNCS 2610.

[8] Ricardo Poli. Genetic programming for fea-
ture detection and image segmentation. In
Selected Papers from AISB Workshop on
Evolutionary Computing. Lecture Notes in
Computer Science, volume 1143, pages 110–
125. Springer, 1996.

[9] Shinichi Shirakawa, Shiro Nakayama, and
Tomoharu Nagao. Genetic image network
for image classification. In Applications
of Evolutionary Computing: EvoWorkshops
2009, volume LNCS 5484, pages 395–404,
2009.

[10] Matthew G. Smith and Larry Bull. Us-
ing genetic progrmming for feature cre-
ation with a genetic algorithm feature se-
lector. In Proc. Parallel Problem Solving
From Nature (PPSN-2004), volume LNCS
3242, pages 1163–1171, 2004.

[11] Katharina Volk, Julian F. Miller, and
Stephen L. Smith. Multiple network cgp
for the classification of mammograms. In
Applications of Evolutionary Computing,
EvoWorkshops 2009, pages 405–413, 2009.
LNCS 5484.

[12] Sholom M. Weiss and Nitin Indurkhya. Pre-
dictive data mining: a practical guide. Mor-
gan Kaufmann, 1998.


	10-cattani

