
Checking Process-Oriented Operating System
Behaviour using CSP and Refinement

Frederick R. M. Barnes and Carl G. Ritson
School of Computing, University of Kent

Canterbury, Kent, CT2 7NF, United Kingdom
frmb@kent.ac.uk, cgr@kent.ac.uk

ABSTRACT
Process orientation is an approach to concurrency that uses
concepts of processes and message-passing communication,
with whole systems constructed from layered and dynam-
ically evolving networks of communicating processes. The
work described in this paper relates to the automatic model
generation and verification of systems developed in process-
oriented languages. We discuss some early applications of
this technique to our experimental operating system, RMoX,
as a means to giving a guarantee of correct system behaviour
at a range of levels.

Keywords
occam-pi, RMoX, CSP, FDR, refinement

1. INTRODUCTION
Process orientation is an approach to concurrency using

processes and communication, with whole systems built from
layered networks of communicating processes. The occam-
π programming language [17] is an enhanced version of the
original ‘occam 2.1’ language, previously used for program-
ming Transputer based systems in the 1980s and 1990s.
Ideas underlying the Transputer programming model have
prevailed, and have been adapted to take advantage of mod-
ern shared-memory processors. Lightweight process schedul-
ing and efficient communication allow concurrency to be
used freely, without the concern of significant performance
overheads [14].

We have used the occam-π language to develop an ex-
perimental operating system, “RMoX”, for x86 based hard-
ware [1]. Within RMoX are hundreds to thousands of con-
current processes, organised into layered networks, commu-
nicating and synchronising through channel communication
(message passing). In addition to communicating data with
copying semantics, data and mobile channel-ends may be
communicated with movement semantics, transferring the
‘ownership’ of them and incurring only a small fixed over-
head on shared-memory systems (communicating a pointer).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLOS ’09,October 11, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-844-5/09/10 ...$10.00.

Use of the occam-π language itself eliminates many po-
tential sources of programmer error, such as those arising
from dereferencing null or undefined pointers, as well as the
more serious issue of race-hazards on shared data and uncon-
trolled aliasing. Whilst we do support various forms of low-
level manipulation in the language (necessary for hardware
interaction), these are clearly identified. The static checks
employed by the compiler give some guarantee of correct
component operation (e.g. freedom from aliasing and race-
hazard errors), but cannot guarantee that inter-process in-
teractions (by channel communication) do not lead to dead-
lock. This is one of the issues investigated here.

The formal models considered use the Communicating Se-
quential Processes (CSP) process algebra [10, 15], that al-
lows for reasoning about the behaviour of concurrent sys-
tems. The Transputer hardware and original occam lan-
guage were developed with CSP in mind [8], providing both
with a strong formal underpinning. Leveraging this formal
basis, a variety of tools were developed throughout the 1980s
and 1990s to aid in the development of provably correct
Transputer systems [12, 19, 3].

The work presented here takes this relationship ‘full-circle’,
with the generation of CSP formal models from occam-π
implementations, independent of any surrounding software
development environments and tools (that may be domain
specific or impose particular design constraints). Checking
and verifying the generated models requires specifications
and an environment in which to check them. For the lat-
ter, we use the ‘FDR’ tool (Failures-Divergence Refinement)
from Formal Systems [6], that accepts a machine-readable
form of the algebra, CSPM . This paper focuses on the model
checking of components within the RMoX OS, as a means
to guarantee our own and third-party implementations —
specifically that a process behaves correctly with respect to
the surrounding system.

Section 2 provides background on the technologies in-
volved. New ideas for the automatic modelling and checking
of occam-π programs are presented in Section 3, alongside
initial results for RMoX components. Section 4 provides
some concluding remarks, including benefits and limitations,
and outlines our plans for future work.

2. BACKGROUND
The RMoX OS is constructed as a network of communi-

cating processes, the top-level of which is shown in Figure 1.
Some components such as the ‘idle.task’ are single sequen-
tial processes. Whereas others such as the ‘driver.core’, are
networks of sub-processes, as shown in Figure 2, a layering

console log.buffer

kernel

fs.core

driver.core

idle.task
network.core

service.core

Figure 1: RMoX top-level process network.

i8042 mouse

keyboard pcserialserial

driver.core

usb−mouse

Figure 2: Driver processes and interconnects.

that continues downwards as appropriate. Instead of rout-
ing messages around the static infrastructure of the system,
direct communication links between components are dynam-
ically established — with the existing infrastructure routing
these mobile channel-bundles. As a result, the connectivity
of components changes at run-time, consequently making
traditional ‘top-down’ static analysis difficult or impossible.

The connecting lines in Figure 1 and Figure 2 represent
mobile channel-bundles; unbroken lines show the static lay-
out, dashed lines the dynamic. Each of these bundles con-
tains one or more individual channels, that are synchronous
directed point-to-point communication links. A common us-
age pattern for these is client-server, and as a result, we refer
to the two ends as ‘client’ and ‘server’, the latter indicated
by the arrowhead. These bundles may also be shared, at
either end, where processes compete for access through a
mutual exclusion mechanism (claiming). The client-server
design pattern is used often, partly because it is appropriate
for this type of system, but also because we have an under-
standing of how this pattern can be used to build deadlock
free systems [19]. However, this can only guide the program-
mer — if errors are made when implementing, the result will
likely be a deadlocked system, or worse, a system that fails
in specific circumstances, hard to recreate in testing. By
automatically generating formal models of actual implemen-
tations, and checking these against design specifications, we
aim to avoid such errors.

2.1 The occam-pi language
The occam-π language extends classical occam with fea-

tures that provide dynamics and mobility. Some of the un-
derlying ideas, such as the ability to communicate channels

PROC driver (CT.UPORT? link , SHARED LOG! log)
INT info:
SEQ

CLAIM log!
out.string ("driver starting ..*n", log[b]!)

... local initialisation
CHAN INT notify:

PAR
watchdog (notify!, log!)

WHILE TRUE
INT port , dir, start , len , val:

PRI ALT
link[in] ? CASE

get.info

link[out] ! info; info
set.dir; port; dir

... set port direction
rd.dig; start; len

IF
(start + len) > max.ports

link[out] ! error

TRUE
SEQ

... read port values
link[out] ! dig; val

wr.dig; start; len; val

... write port values
INT v:

notify ? v
... handle notification

:

Figure 3: Example occam-pi source code.

over channels, stem from the π-calculus [13]. Although we
do not use the π-calculus directly, we do have a CSP model
of the mobile channel mechanism present in the occam-π
language [18].

Figure 3 shows an example of the occam-π code within
RMoX. This partial implementation of a ‘user-port’ driver
handles requests on the ‘in’ channel inside its ‘link’ channel-
bundle, and responds on the ‘out’ channel in that same bun-
dle. The code shown also services a local ‘notify’ channel by
selecting between inputs from this and the ‘link[in]’ chan-
nel, with priority given to the ‘notify’ channel (‘PRI ALT’ con-
struct). Scope in occam-π is denoted using indentation; both
parallel and sequential code must be explicitly identified, by
‘PAR’ and ‘SEQ’ respectively.

The individual channels within channel-bundles are re-
ferred to by name, using an array subscript syntax. The
ends of these bundles have distinct types, e.g. ‘CT.UPORT?’ for
the server-end and ‘CT.UPORT!’ for the client. As shown in Fig-
ure 3, before the channels within a shared end (‘log!’) may
be used, they must be claimed. This adds opportunities for
deadlock arising from improperly ordered claims, and from
communication on other channels within these blocks.

2.2 CSP and FDR
The CSP algebra describes concurrent processes and their

interactions [10, 15]. At the simplest level, processes engage
(or synchronise) on individual events. This synchronisation
can extend to more than two processes in CSP, however,
occam-π channel communication always involves exactly two
processes (sender and receiver).

To give a flavour of the algebra, equation (1) shows a
simplified model of the WHILE loop from Figure 3. The in-
ternal choice operator, ⊓, is used to model the branches of
the IF. External choice, 2, models the ‘ALT’ construct which
chooses between available events. The event-prefix operator,

→ (‘then’), engages on the event on its left, then behaves as
the process on its right. Sequential composition is expressed
with ‘;’ and SKIP is a primitive process that does nothing
except terminates successfully.

P =
`

(l .get → l .inf → SKIP) 2 (l .set → SKIP) 2

(l .rd → ((l .err → SKIP) ⊓ (l .rd → SKIP))) 2

(l .wr → SKIP) 2 (n → SKIP)
´

; P (1)

Those developing occam-π components for RMoX (and
other systems) do not need to be CSP experts to gain bene-
fit from the work described here. While behavioural specifi-
cations, for example describing legitimate patterns of com-
munication over occam-π channel bundles, are needed for
verifying implementations, these can be automatically gen-
erated from occam-π source code. However, an appreciation
of certain aspects of CSP and related model-checking is nec-
essary to understand the validity of our approach.

2.2.1 Traces, failures, divergence and refinement
For any CSP process, there are three behavioural mod-

els: traces, failures and divergences. Traces describe what
sequences of events a process might perform, roughly equiv-
alent to tracing out all possible paths of execution. The six
obvious traces for the process P in (1) are:

〈l .get , l .inf 〉, 〈l .set〉, 〈l .rd , l .err〉, 〈l .rd , l .dig〉, 〈l .wr〉, 〈n〉

Because the process P is recursive, the above shows only
partial traces (from one cycle of its execution). The traces
here also indicate that P is non-deterministic — after ac-
cepting l .rd , it responds with either l .err or l .dig .

Failures describe what sequences of actions must have
been performed (observed behaviour) and what events may
next be offered (or not offered) to cause deadlock. This is
represented as a set of pairs of traces and event sets. For
example:

˘

(〈〉, {}), (〈l .get〉, {l .get , l .set}), (〈l .get , l .inf 〉, {l .dig})
¯

The first is straightforward — if the process has not per-
formed any actions, and none are offered, it will deadlock.
The second states that if the process has accepted the l .get
event, and only l .get and l .set are offered, then it will dead-
lock — it can be seen in (1) that the process will only engage
with l .inf once it has accepted l .get .

Divergences are similar to failures, except that these de-
scribe under what conditions the process will livelock. The
process P , as it stands, is non-divergent.

A primary use of CSP is for refinement checking. Based
on traces, failures and divergences are refinement relations,
effectively subset relations on these models. For traces, these
indicate that one process can perform at least the same se-
quences of events as another; for failures and divergences,
these indicate whether one process is more deterministic
than another. In practice, refinement checks are used to
verify that a particular implementation meets a given spec-
ification, and to ensure that these are deadlock and livelock
free. For this we use the FDR tool, whose input is a CSPM

script.

3. MODEL CHECKING OS COMPONENTS
We have modified the occam-π compiler to generate a

CSP-like representation of a program’s behaviour. Within
the compiler itself, a simplified semantic model is constructed,

using CSP-style operators, ultimately resulting in an XML
file containing models for the various source-level proce-
dures. This is further processed using an XML stylesheet to
generate CSPM for FDR. The intermediate XML can addi-
tionally be used to produce input for other tools that check
different properties of the system (that are not CSP and
unsuitable for FDR). An assortment of compiler flags give
specific control over model generation from occam-π source.

A complete ‘top-down’ model-check of the whole RMoX
system is unrealistic given the state-space size involved (aris-
ing from dynamic extensions). Checks are instead limited to
individual components and parallel compositions of a few.
As our primary goal is to verify the correct behaviour of in-
dividual components with respect to the rest of the system,
this ‘bottom-up’ approach is sufficient, and is a necessary
step towards verifying the correct behaviour of the entire
system (future work).

3.1 Model generation
The RMoX OS makes extensive use of variant protocols

and channel-bundle types, so our early work concentrates on
these. At the language level, protocol declarations are es-
sentially separate, and are combined only within individual
channel-bundle type declarations. The formal model pulls
these together, generating single data-types (an FDR ab-
straction) that represent all the variant actions that can be
performed. For example, from the simplified declarations:

PROTOCOL P.UPORT.IN -- protocol definition
CASE

get.info

set.dir; INT; INT
rd.dig; INT; INT

wr.dig; INT; INT; INT
:

PROTOCOL P.UPORT.OUT -- protocol definition
CASE

info; INT

dig; INT
error

:
CHAN TYPE CT.UPORT -- channel -bundle type

MOBILE RECORD

CHAN P.UPORT.IN in?:
CHAN P.UPORT.OUT out!:

:

we (automatically) produce the following FDR definition:

datatype CTPROT_CT_UPORT = InPUpInGetInf |
InPUpInSetDir | InPUpInRdDig | InPUpInWrDig |

OutPUpOutInf | OutPUpOutDig | OutPUpOutErr |
DoClaimCtUp | DoReleaseCtUp

This models communication events on the channels within
a CT.UPORT bundle in terms of the individual variant names.
Also included are events for the claiming and releasing of
shared channel-ends.

We also construct a CSP model for the behaviour of a
process using this channel-type (in occam-π, converted to
CSPM). For the above protocol this model is:

SPEC_CT_UPORT(s) =
(((s.InPUpInGetInf -> s.OutPUpOutInf -> SKIP) []

(s.InPUpInSetDir -> SKIP) []
(s.InPUpInRdDig -> ((s.OutPUpOutErr -> SKIP) |~|
(s.OutPUpOutDig -> SKIP))) []

(s.InPUpInWrDig -> SKIP));
SPEC_CT_UPORT(s))

The SPEC_CT_UPORT specification is how we expect a server im-
plementation to behave (e.g. the code in Figure 3). That
is, loop continuously processing requests from a client. The

majority of choices in the above specification are external
(‘[]’), i.e. made by the ‘client’ process. The single internal
choice (‘|~|’) is made by the server, between data or error
output.

The corresponding behaviour of a ‘client’ process is sim-
ilarly described, against which particular implementations
are checked. For the user-port protocol ‘CT.UPORT’, implemen-
tations will typically be application-level processes or other
(higher level) drivers and services:

SPEC_CLI_CT_UPORT(c) =
(((c.InPUpInGetInf -> c.OutPUpOutInf -> SKIP) |~|

(c.InPUpInSetDir -> SKIP) |~|
(c.InPUpInRdDig -> ((c.OutPUpOutDig -> SKIP) []

(c.OutPUpOutErr -> SKIP))) |~|
(c.InPUpInWrDig -> SKIP));

SPEC_CLI_CT_UPORT(c))

In contrast with the server model, the majority of choices
here are internal, i.e. the client decides what action it per-
forms on the server. The single external choice indicates that
the client must be prepared to accept either of the specified
responses from the server. Although not encountered here,
both the client and the server can make external choices over
the same events safely. The same is not true where both
make internal choices over the same events (the client could
choose one event, whilst the server chooses another, leading
to deadlock). Algebraically, external choice is a refinement
of internal choice, because it is more deterministic.

3.2 Model checks
To ensure that behavioural models for particular channel-

types are consistent, the respective client and server models
are composed in parallel. This must currently be done by
hand, as it requires some additional knowledge regarding
connectivity between the models:

channel c : CTPROT_CT_UPORT

SYSTEM =
(SPEC_CLI_CT_UPORT(c) [|{|c|}|] SPEC_CT_UPORT(c))

assert SYSTEM :[deadlock free]

The definition of ‘SYSTEM’ is where the two models are com-
posed in parallel, synchronising on the set of events referred
to by ‘c’. The last line in this CSPM script is intended for
batch mode checking, instructing FDR to check that the par-
allel composition of these processes is deadlock free. FDR
correctly reports that this system is both deadlock and live-
lock free. When run interactively, FDR can be used to
examine specific examples of deadlock, livelock and non-
determinism to determine where faults lie (if any). Deadlock
or livelock reported for these composed client-server models
would normally indicate an error in the specification.

3.3 Component checks
To ensure the correctness of particular client and server

implementations, refinement checks are used. For example,
from the following sample client implementation:

WHILE TRUE
SEQ i = 0 FOR nports

SEQ
cli[in] ! rd.dig; i; 1 -- read port ’i’
cli[out] ? CASE

INT v:
dig; v -- incoming value

... process data
error -- read error

SKIP

the following model is generated:

PMYCLIENT_L0(c) =

(SKIP |~|
((c.InPUpInRdDig -> ((c.OutPUpOutDig -> SKIP) []

(c.OutPUpOutErr -> SKIP))); PMYCLIENT_L0(c)))

PMYCLIENT(c) =

(PMYCLIENT_L0(c); PMYCLIENT(c))

With this model of the implementation, and the previous
specification, we create the following refinement checks:

channel d : CTPROT_CT_UPORT

THESPEC = SPEC_CLI_CT_UPORT(d)
THEIMPL = PMYCLIENT(d)

assert THESPEC [T= THEIMPL
assert THESPEC [F= THEIMPL

assert THESPEC [FD= THEIMPL

The first two assertions, traces and failures refinements, are
reported as correct. The third failures-divergences refine-
ment check fails as expected — if the value of ‘nports’ hap-
pened to be zero, the implementation would behave as live-
lock. In such cases, the counter-examples generated by FDR
can be examined to determine where the error, if it is indeed
an error, lies. An incorrectly programmed client implemen-
tation, e.g. one that does not accept the ‘error’ response
from the server, does not pass the failures refinement check,
clearly indicated in the counter-examples produced.

By independently checking client and server implemen-
tations against the given specifications, and checking those
specifications against each other, we can guarantee that the
interaction of these particular components does not lead to
deadlock or livelock.

4. CONCLUSIONS
We have shown how formal models of occam-π processes

may be constructed and used to perform correctness checks.
These currently include checking that a process behaves cor-
rectly with respect to its environment (not leading to dead-
lock or livelock) and that our models of interprocess inter-
action (over strongly typed channel-bundles) are themselves
correct. In the context of the RMoX OS, this work provides
a method for guaranteeing the correct operation of compo-
nents with respect to the rest of the system, without neces-
sarily having full knowledge about that system. Although
this paper shows a trivial example, we have successfully ver-
ified properties for several actual implementations.

The benefits of this work to RMoX include providing guar-
antees about the correct operation of our own and third-
party components (currently to the extent of their interac-
tion with the rest of the system). While this does not guar-
antee the overall correct behaviour of the system, including
global deadlock freedom, it is an important first step towards
this. Although still at an early stage, this work has already
proved useful for finding previously undiscovered bugs in ex-
isting components (caused by incorrect channel I/O in sel-
dom executed error handling paths). Also, this approach
cannot be used to guarantee the correctness of the run-time
system [14], currently around 10,000 lines of C code — this
run-time has been throughly tested, however.

While more work is required to transparently bring the
benefits of these techniques to occam-π developers in gen-
eral, and RMoX component authors in particular, we have
established that the approach is both valid and feasible. The
approach is not without its limitations, however. Firstly, to
make the checking process feasible, computation-only state-
ments are modelled as SKIP . However, run-time errors

can (and do) occur in practice (e.g. arithmetic overflow,
array-bounds, etc.), which behave as STOP (local dead-
lock). Rather than model each computation as SKIP ⊓
STOP (might deadlock), we are investigating language-level
exception handling constructs. Here, computations would ei-
ther behave as SKIP or the appropriate error-handler. Sec-
ond, to make the size of the generated models manageable,
we do not model the communication of mobile channel bun-
dles (i.e. the restructuring of the process network) beyond
the fact that a communication occurs. Instead, all possible
mobile channel interactions are captured — each distinct
channel-end variable is hoisted into the model’s parameter
list. This is not a particular issue for individual components,
but it does limit global checking (deadlock freedom in partic-
ular). We are currently investigating other formal analyses
that can model mobile channel movement more easily than
in CSP [2].

Lastly, the limited data and control flow analyses per-
formed by the current occam-π compiler leads to less deter-
ministic models than we might otherwise like. This is being
addressed in the ongoing development of new compilers.

4.1 Related work
Guaranteeing the correct behaviour of software systems

is very much an area of active research (and industrial) in-
terest. Within the field of concurrency, approaches such as
those employed by the ‘Singularity’ OS use language ex-
tensions to describe sequences of interactions between pro-
cesses [5] (OS components), in a way not dissimilar to the
traces described here. A mixture of compile-time static
checks and run-time state-machine based checks are used.
Other language and type-system based approaches such as
session-types use related ideas [11] (programmatic descrip-
tions of interactions). A number of other systems take simi-
lar approaches to OS construction (from processes and com-
munication), partly to take advantage of modern multi-core
processors, e.g. Corey [4], Barrelfish [16] and K42/Tornado
[7]. Some of the ideas discussed here could potentially be
applied to these systems.

For mission-critical systems, where software failure is in-
tolerable, validation and certification through the whole soft-
ware stack is necessary. This is present in industrial systems
such as Integrity RTOS [9]. Although we are a long way from
such validation, we are steadily moving in that direction.

5. ACKNOWLEDGEMENTS
This work was funded by EPSRC grants EP/D061822/1

and EP/E049419/1. We would also like to thank the anony-
mous reviewers for their constructive feedback.

6. REFERENCES
[1] F. Barnes, C. Jacobsen, and B. Vinter. RMoX: a Raw

Metal occam Experiment. In J. Broenink and
G. Hilderink, editors, Proceedings of Communicating
Process Architectures 2003. IOS Press, Sept. 2003.

[2] F. R. M. Barnes. Mobile escape analysis for occam-pi.
In CPA 2009. IOS Press. To Appear.

[3] D. Beckett and P. Welch. A Strict occam Design Tool.
In Proceedings of UK Parallel ’96. Springer-Verlag,
July 1996.

[4] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,

Y. D. Y. Zhang, and Z. Zhang. Corey: An operating
system for many cores. In Proceedings of the
Symposium on Operating Systems Design and
Implementation, Dec. 2008.

[5] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. Hunt, J. Larus, and S. Levi. Language support for
Fast and Reliable Message-based Communication in
Singularity OS. In Proceedings of EuroSys 2006,
Leuven, Belgium, Apr. 2006.

[6] Formal Systems (Europe) Ltd., 3, Alfred Street,
Oxford. OX1 4EH, UK. FDR2 User Manual, May
2000.

[7] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: Maximizing locality and concurrency in a
shared memory multiprocessor operating system. In
Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation, New Orleans,
Louisiana, Feb. 1999. USENIX.

[8] M. Goldsmith, A. Roscoe, and B. Scott. Denotational
Semantics for occam2, Part 2. In Transputer
Communications, volume 2 (1), pages 25–67. Wiley
and Sons Ltd., UK, Mar. 1994.

[9] Green Hills Software Inc. Integrity RTOS. URL:
http://www.ghs.com/.

[10] C. Hoare. Communicating Sequential Processes.
Prentice-Hall, London, 1985. ISBN: 0-13-153271-5.

[11] K. Honda, V. T. Vasconcelos, and M. Kubo. Language
primitives and type discipline for structured
communication-based programming. In Proceedings of
ESOP’98, volume 1381/1998 of Lecture Notes in
Computer Science. Springer, 1998.

[12] INMOS Limited. Transputer development system (2nd
ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1990.

[13] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, 1999. ISBN:
0-52165-869-1.

[14] C. G. Ritson, A. T. Sampson, and F. R. M. Barnes.
Multicore scheduling for lightweight communicating
processes. In Proceedings of COORDINATION 2009,
volume 5521 of LNCS, pages 163–183. Springer, June
2009.

[15] A. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall, 1997. ISBN: 0-13-674409-5.

[16] A. Schüpback, S. Peter, A. Baumann, T. Roscoe,
P. Barham, T. Harris, and R. Isaacs. Embracing
diversity in the Barrelfish manycore operating system.
In Proceedings of the Workshop on Managed
Many-Core Systems (MMCS) 2008. ACM, June 2008.

[17] P. Welch and F. Barnes. Communicating mobile
processes: introducing occam-pi. In A. Abdallah,
C. Jones, and J. Sanders, editors, 25 Years of CSP,
volume 3525 of Lecture Notes in Computer Science,
pages 175–210. Springer Verlag, Apr. 2005.

[18] P. Welch and F. Barnes. A CSP model for mobile
channels. In Proceedings of Communicating Process
Architectures 2008. IOS Press, Sept. 2008.

[19] P. Welch, G. Justo, and C. Willcock. Higher-Level
Paradigms for Deadlock-Free High-Performance
Systems. In Proceedings of the 1993 World Transputer
Congress. IOS Press, Netherlands, September 1993.

