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Abstract. Some message-passing concurrent systems, such as occam 2, prohibit alias-
ing of data objects. Communicated data must thus be copied, which can be time-
intensive for large data packets such as video frames. We introduce automatic mobil-
ity, a compiler optimisation that performs communications by reference and deduces
when these communications can be performed without copying. We discuss bounds
for speed-up and memory use, and benchmark the automatic mobility optimisation.
We show that in the best case it can transform an operation from being linear with
respect to packet size into constant-time.
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Introduction

Aliasing in concurrent systems can lead to data race-hazards when two or more concur-
rently executing processes are able to modify the same data without restriction. The non-
deterministic order of the modifications affects the program’s subsequent behaviour. Process-
oriented programming eliminates this aliasing of mutable objects in favour of message-
passing: self-contained processes communicate data between each other without any sharing.

In implementations of the occam 2 programming language, all communicated data is
copied, which can be expensive for large messages (for example, video frames). The concept
of mobility was introduced in occam-π [1], which (amongst other things) allows data to be
mobile – that is, held by reference [2]. Aliasing is prevented by a transferral or movement
semantics that guarantees that the reference is never held by more than one variable. Move-
ment semantics state that after an assignment or communication, the source variable becomes
undefined, because the reference has moved to the destination variable. Communication of
mobile data is much more efficient, as only the reference to the data need be communicated.
(In this paper we assume a common, uniform memory architecture.)

Data mobility increases the burden on the programmer by requiring the addition of anno-
tations to designate data as mobile, and requiring the use of the simple but unusual movement
semantics. Thus, the efficiency of mobile data comes at a price to the programmer and can
be a barrier to learning the language for newcomers.

In this paper we present a technique for gaining the efficiency advantages of data mo-
bility without any deviation from the standard copy semantics and unadorned syntax of oc-
cam 2. We call this technique automatic mobility. Automatic mobility is a compiler optimisa-
tion for occam 2 programs that requires no change to the original code and neither syntactic
nor semantic changes to the occam 2 language. Automatic mobility also generalises to other
message-passing languages; it is not a technique specific to occam 2.
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PROC id (CHAN LARGE.DATA in,
CHAN LARGE.DATA out)

LARGE.DATA s:
SEQ i = 0 FOR 1000
SEQ
in ? s
out ! s

:

PROC id (CHAN MOBILE LARGE.DATA in,
CHAN MOBILE LARGE.DATA out)

INITIAL MOBILE LARGE.DATA s IS
MOBILE LARGE.DATA:

SEQ i = 0 FOR 1000
SEQ
in ? s
out ! CLONE s

:

(a) (b)
scope in: s

SEQ i = ..

in ? s

out ! s

scope out: s

done

PROC id (CHAN MOBILE LARGE.DATA in,
CHAN MOBILE LARGE.DATA out)

INITIAL MOBILE LARGE.DATA s IS
MOBILE LARGE.DATA:

SEQ i = 0 FOR 1000
SEQ
in ? s
out ! s

:

(c) (d)

Figure 1. An example of converting a variant of the occam 2 identity process (a), first into its exact mobile
occam-π semantic equivalent (b). The flow graph of the process (c) is then used to turn this into the auto-mobile
version (d), based on the observation that the data is not needed inbetween the output and being overwritten.
This can be observed by following the dotted lines in the flow graph (c) which lead to an overwrite via an input
or to going out of scope.

1. Automatic Mobility

Automatic mobility comprises two compiler transformations. The first mobilisation trans-
formation is to store all large1 data items in the program’s shared heap, rather than the usual
occam 2 implementation of storing them in the workspace/stack. If these arrays are allocated
at the point of declaration, freed when they go out of scope, and copied on assignment and
output, the occam 2 semantics are directly preserved by this transformation. This transforma-
tion can be thought of as turning all data mobile, but always CLONEing2 it rather than moving
it. An example of converting a slightly modified identity process is given in figures 1a (the
original) and 1b (the transformed version).

The key insight of automatic mobility is that once all the inputting processes are ex-
pecting to receive a reference, the outputting process has the option to either allocate a new
copy of the data and send that (i.e. to send a CLONE), or to send the original reference. If the
outputting process will not use the data again after the output, it can therefore send the orig-
inal reference and discard it. This is the second transformation: the copy/move decision.
We continue the earlier example, with the control-flow graph in figure 1c and the final trans-
formed version in figure 1d. The details of the move/copy decision are discussed in section
2.

We will consider in this paper how to mobilise arrays in the most general case. Records
can be conceived of as arrays (albeit heterogeneous), and other data (e.g. integers) can be
considered to be an array with one element. In occam 2, arrays are the typical way to store
large amounts of data.

1What we determine to be large will be guided by the benchmarks in section 8.
2CLONE is the occam-π syntax for making a copy of an item of mobile data.
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2. Mobility Rule

Our rule for deciding whether an outputting process should move or copy is simple: An array
can be moved iff no array element can possibly be subsequently read from, before being
overwritten or the array going out of scope. Otherwise, it should be copied. We will first
consider implementing the mobility rule for operations that involve the entire array such as
reading an array from a channel; operations on individual elements are discussed in section
5.

The first step to implementing the mobility rule is to generate a control-flow graph
for the occam PROCedure. This graph is processed to calculate two sets for each node: the
sequentially-later set of variables, and the in-parallel set of variables.

Discovering information about sequentially-later uses of a variable involves an iterative
data-flow algorithm [3, pp 231]. A set of variables is calculated at each node by taking the
union of all the variables read at that node and variable-sets from future-sequential nodes,
minus the set of all variables written to at that node. The algorithm iterates to a fixed point.

The occam compiler enforces a CREW (Concurrent-Read, Exclusive-Write) safety rule,
but this permits concurrent reads. Therefore it is possible that even though a variable will
not be read from by code that is sequentially later in the flow-graph, it may be read from by
a node in parallel that happens to execute later. We deal with this by also finding all nodes
that are in parallel with each other (trivial from the abstract syntax tree of a program) and
recording the read-from variables.

Determining whether an array is read-from after it is sent on a channel is a matter of
examining the two sets (sequentially-later and in-parallel reads) at the corresponding node. If
the variable is in neither set, it can be moved. If it is in either or both sets, it must be copied.

The analysis for the move/copy decision is performed solely by examining the writer
process for a particular channel-end. No information is known nor assumed about the read-
ing process. This means that the analysis is robust in the face of separate compilation, pro-
viding all compilation units have the automatic mobility feature enabled, as the mobilisation
transformation must have been performed on the reader.

3. Allocations

For occam 2 the semantics are that an array is available from the point of its definition, with
undefined contents, and continues to be available for reads and writes until the last use. This
can be emulated with dynamic arrays by allocating an array at the point of definition and
following the automatic mobility rules.

Allocating an array at the point of definition can be inefficient, however. For example,
consider:

1 [64]INT array:
2 SEQ
3 in ? array

The array would be allocated on line 1, and then immediately deallocated when the new array
is received from the channel on line 3. To avoid this, we use the control-flow graph. If an
array is not used before it is written-to in its entirety (for example, by reading from
a channel), the array does not need to be allocated. In all other cases, it must still be
allocated.
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4. Examples

In this section we present several example processes and explain the automatic mobility
transformation’s effect on the processes.

4.1. Identity Process

The simplest example is that of the identity process that forwards values from one channel to
another:

4 PROC id (CHAN [64]INT in, CHAN [64]INT out)
5 [64]INT s: -- Definition outside the loop,

6 WHILE TRUE
7 [64]INT s: -- or inside the loop

8 SEQ
9 in ? s

10 out ! s -- becomes a move

11 :

The flow analysis is subtly different if the array is defined outside the loop, but the result
is the same. With the definition inside the loop, s is analysed as never being used again after
its output. With the definition outside the loop, s is analysed as not being used again before
being completely overwritten. Either way, s is moved during the output, and will also not be
allocated at the point of definition (in both cases, it will be overwritten entirely by the input).
The same results apply to transformation processes, such as this amplifier process:

12 PROC amp (CHAN [64]INT in, VAL INT factor, CHAN [64]INT out)
13 WHILE TRUE
14 [64]INT s:
15 SEQ
16 in ? s
17 SEQ i = 0 FOR 64
18 s[i] := s[i] * factor
19 out ! s -- becomes a move

20 :

Automatic mobility is not just for communications (although that is the most common
case), but also works for assignments. Thus if we reimplement the identity process as follows:

21 PROC id.2 (CHAN [64]INT in, CHAN [64]INT out)
22 WHILE TRUE
23 [64]INT s, t:
24 SEQ
25 in ? s
26 t := s -- becomes a move

27 out ! t -- becomes a move

28 :

Both the assignment and the output become moves, and thus this process is no more
expensive than the original identity process, even though there is an extra assignment of the
array.

4.2. Delta Process

A delta process is one that reads in data from one channel and sends out the same data on
several channels. Its definition is:
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29 PROC delta (CHAN [64]INT in, []CHAN [64]INT out!)
30 WHILE TRUE
31 [64]INT s:
32 SEQ
33 in ? s
34 PAR i = 0 FOR SIZE out
35 out[i] ! s -- becomes a copy

36 :

This will result in cloning for all the outputs, because they are in parallel with each other.
Knowing which process is the last to output (and could thus perform a move) is difficult when
the outputs are in parallel – but this would be a worthwhile goal, especially if there are only
two output channels, as is commonly the case. With two output channels, two clones could
become one clone and one move. There are several possible solutions. One is to make the
outputs sequential, at which point the compiler could unroll the last loop iteration and turn
that into a move. Another solution would be to pull out the copying of the data to outside the
PAR3:

37 PROC delta (CHAN [64]INT in, []CHAN [64]INT out!)
38 [SIZE out][64]INT ss:
39 WHILE TRUE
40 SEQ
41 in ? ss[0]
42 SEQ i = 1 FOR (SIZE out) - 1
43 ss[i] := ss[0]
44 PAR i = 0 FOR SIZE out
45 out[i] ! ss[i]
46 :

For the compiler to spot the necessary optimisations, it must be able to handle the ar-
ray indexing to spot that the assignments (line 43) must be clones, but that the communica-
tions (line 45) can be moves. In this case, it is straightforward as the array is not used again
(in whole nor in part) after the communications before an overwrite. It is possible that this
transformation could be performed by the compiler, where it spots a delta-like pattern in a
PROC.

4.3. Merging Process

A merging process is one that reads in data from several channels, and somehow turns them
into a single output using a folding operation. For example, this sum process zips together
many arrays using addition:

47 PROC sum ([]CHAN [64]INT ins, CHAN [64]INT out)
48 WHILE TRUE
49 [64]INT acc, s:
50 SEQ
51 SEQ i = 0 FOR 64
52 acc[i] := 0
53 SEQ j = 0 FOR SIZE ins
54 SEQ
55 ins[j] ? s
56 SEQ i = 0 FOR 64
57 acc[i] := acc[i] + s[i]
58 out ! acc
59 :

3Note that the dynamic array dimension is not legal occam 2.1, but see the appendix.
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This process receives many arrays, and will deallocate them all before the next is read.
The new accumulated total will be allocated on each iteration of the loop and sent out with
a move (as with the identity process, this is true regardless of whether the accumulator is
declared inside or outside the loop).

There is an opportunity to prevent this allocation, by re-using one of the incoming arrays.
This can be done as follows (for brevity, we ignore the possibility that ins is size zero):

60 PROC sum ([]CHAN [64]INT ins, CHAN [64]INT out)
61 WHILE TRUE
62 [64]INT acc, s:
63 SEQ
64 ins[0] ? acc
65 SEQ j = 1 FOR (SIZE ins) - 1
66 SEQ
67 ins[j] ? s
68 SEQ i = 0 FOR 64
69 acc[i] := acc[i] + s[i]
70 out ! acc
71 :

Note that this is also more efficient than the original even without automatic mobility, as
it avoids the initialisation of acc with zeroes, and avoids the first loop execution of additions.

5. Individual Elements

We have so far considered how to implement automatic mobility for entire arrays. For exam-
ple, we can determine that the output should be a movement in, for example:

72 SEQ
73 out ! array.x
74 array.x := some.other.array

We will now consider the code:

75 SEQ
76 out ! array.x
77 SEQ i = 0 FOR SIZE array.x
78 array.x[i] := some.other.array[i]

One option would be to have an optimisation rule to transform lines 77 and 78 into an
assignment of the entire array. However, for now we will consider the general principle of
what must be done with individual array accesses such as these. There are two options for
the rules we could adopt to transform this code with automatic mobility.

5.1. Copying

The code could be transformed by changing the output to a copy when individual elements
are written-to after the output:

79 SEQ
80 out ! CLONE array.x
81 SEQ i = 0 FOR SIZE array.x
82 array.x[i] := some.other.array[i]

This comprises one allocation (during the CLONE on line 80), and two copies of the array
(one as part of the CLONE on line 80, one from the loop on lines 81 and 82).
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5.2. Moving and Allocating

If the individual array elements needed to be read afterwards we would have to make the
output a copy as explained. However, an alternative rule would be to make the output a move,
and then allocate a fresh array if the array elements are only written-to.

1 SEQ
2 out ! array.x
3 array.x := MOBILE ARRAY.X.TYPE

4 SEQ i = 0 FOR SIZE array.x
5 array.x[i] := some.other.array[i]

This comprises one allocation (line 3), and one copy (lines 4 and 5), and is therefore
more efficient than the first option. This rule can only be applied if all the array elements
are written-to before being read-from (and thus none of the data present before the output is
required after the output). This relies upon the compiler being able to detect that no elements
of the array are read from before being written to.

5.3. Dynamic Index Reasoning

Detecting whether array elements are read-from before being written-to in the presence of
dynamic indices can be done with the Omega Test [4]. To explain this, we will consider a
more subtle problem:

1 SEQ
2 out ! array.x
3 SEQ i = 0 FOR (SIZE array.x / 2)
4 array.x[2*i] := some.other.array[2*i]
5 SEQ j = 0 FOR SIZE array.x
6 IF
7 j \ 2 == 1
8 array.x[j] := array.x[j-1]
9 TRUE

10 SKIP

The portion of the array written-to by the first loop can be described by the index 2i and
the compiler-derived inequalities:

0 ≤ i < SIZE array.x / 2

The portion of the array read-from in the second loop can be described by the index j−1
and the compiler-derived inequalities:

0 ≤ j < SIZE array.x

j \ 2 = 1

The modulo expression is transformed into further inequalities, and the whole system can
then be solved by the Omega Test to show that there is no solution to the equation 2i 6= j− 1
that satisfies the other equations, i.e. that none of the read-from portion in the second loop is
not written-to by the the first loop.

6. Efficiency Bounds

We can examine the bounds for the speed-up with automatic mobility. Given the number
of communications of same-size data in a process network with consistent communication
behaviour, we can determine what proportion, M , are mobile (0 ≤M ≤ 1).
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If we assume that copying data is expensive, but that allocation of memory is potentially
cheap enough to be negligible, the maximum speed-up of communications in the mobile
version is:

1

1−M
(1)

Therefore, if no communications are mobile the maximum speed-up is 1× (i.e. no speed-
up), if 3

4
of the communications are mobile the maximum speed-up is 4×, and if all of the

communications are mobile, the maximum speed-up is infinite (i.e. unbounded).
This gives us an optimistic maximum speed-up bound. However, memory allocation is

unlikely to be negligible. In fact, the improvement in performance of the automatic mobility
technique is reliant on memory allocation being cheaper than copying. We can instead assume
that the time taken to allocate a block of memory of size S is a(S) and label the time to copy
a block of the same size as c(S). Under automatic mobility, the time for copying operations
is a(S) + c(S), while the time for movement operations is a constant V . The speed-up of
automatic mobility (all data being size S) can thus be more accurately estimated as:

c(S)

MV + (1−M)(a(S) + c(S))

The denominator is the time for the moves multiplied by the proportion of moves (MV ) plus
the time for allocation and copying multiplied by the proportion of copies ((1−M)(a(S) +
c(S))) – the numerator is the time for copying everything.

If we assume that C (time for communicating a reference) approximates zero, and con-
sider when this speed-up factor will be greater than one, we can rearrange to:

M

1−M
>
a(S)

c(S)
(2)

So automatic mobility gives a speed-up iff the factor by which the mobile communications
outweigh the non-mobile is greater than the saving in time of allocation over copying. If only
1
10

of communications in a system were mobile, automatic mobility would only be worthwhile
if allocating blocks was at least 9 times faster than copying them. If at least half of the
communications in a system are mobile, automatic mobility will give a speed-up if allocation
is faster than copying.

7. Memory Usage

One problem with occam 2’s static allocations, in the absence of automatically growing
stacks, is that memory must be allocated in a process’s stack/workspace ready for the max-
imum memory use of a process rather than the current use. Thus an identity process that
copies values of 1MB will always have 1MB of stack allocated to it, even if it is idle for most
of its lifetime. In contrast, the same process under automatic mobility will have a small stack,
and the space for the data is only allocated if the identity process is currently holding a data
packet.

More generally, data in occam 2 lives only in the stacks of processes. Data is never held
in a channel; the synchronous communications are simply a direct copy from one process’s
stack to another’s. Thus if P processes all have a stack variable of size S, the total memory
allocated is slightly larger than PS.

In an automatic mobility setting, all large data lives in the heap, not on the stack. If D
items of data of size S are allocated in the heap, the memory use is slightly larger than DS.
It can be seen that in a non-deadlocking system with synchronous channels, the number of
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Figure 2. Timings for the ring benchmark, with N communications in a ring. Each line illustrates timings for
a different value of N , where the overall number of communications is held constant. The X-axis is the size of
each data packet, and the Y-axis is time; both axes are logarithmic. Times are shown for the original copying
version (a) and the mobile version (b).

data items allocated, D, must be less than or equal to the number of processes in the system
that might be communicating those values, P . Since D ≤ P and S is positive, DS ≤ PS,
and thus the system will always have better or equal memory use under automatic mobility
than with fixed stacks.

8. Benchmarks

To investigate the speed-up that automatic mobility can provide, we benchmarked several
programs on an AMD Athlon 64 3000+ with 512KB cache, using our Tock compiler to
generate CCSP code compiled by GCC.

8.1. Ring

To estimate the maximum speed-up that could be achieved through automatic mobility, we
first benchmark simple rings. Each pipeline has one prefix and one recorder, connected by
N−2 identity processes. The prefix process sends out one array and then acts like an identity
process. The recorder acts like an identity process, but times the running of the network. In a
classic setting, there will beN copy-communications of the data per iteration. In an automatic
mobility setting, there will be N move-communications. Thus the difference in times will
reveal the difference in cost between the two communication types.

We benchmarked the system with several sizes of data and lengths of pipeline. The
results are given in table 1a and depicted in figure 2. It can easily be seen from the graph that
the mobile version operates in constant time (w.r.t. to the data size) whereas the copy version
is linearly proportional to the amount of bytes being communicated (once the cache size
is exceeded). Thus, the speed-up is also linearly proportional to the amount of bytes being
communicated. Referring to our earlier measure in equation 1, here M = 1, and thus the
potential speed-up is unbounded. For this benchmark, automatic mobility provides a benefit
even at the lowest size of 64 bytes per data packet.

8.2. Twin Pipeline

To investigate speed-up in a program involving copying and movement, we benchmarked a
program with two pipelines. The first pipeline has a producer, followed byN delta processes.
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Producer

Producer

Delta0

Merge0

Consumer

Delta1

Merge1

DeltaN-1

MergeN-1

...

...

Figure 3. The twin pipeline benchmark: two producers, a dual consumer, and N connected delta and merge
processes inbetween.
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Figure 4. Speed-up factors for the twin pipeline benchmark, depicted in figure 3. Each line illustrates the
speed-up for a different value of N , where the overall number of communications is held constant. The loga-
rithmic X-axis is the size of each data packet and the Y-axis is speed-up (a factor greater than one indicates the
mobile version is faster). The data point for a pipeline of 64 with 16 megabyte packets could not be carried out
due to address-space limitations.

The second pipeline has a producer, followed by N merge processes. The delta processes
are connected to the merge processes. The two pipelines both feed into a recorder process
responsible for timing. The benchmark is depicted in figure 3.

There will be 2 + 3N communications in the benchmark, of which 2 +N will be copies
and 2N will be moves. In the case where N = 1 (one delta and one merge process), M = 2

5

in equation 1, and thus the maximum speed-up is 5
3
. As N increases, the proportion M will

tend to 2
3
. Therefore the maximum speed-up for larger pipelines is 3.

We benchmarked the system with several sizes of data and lengths of pipeline. The
results are given in table 1b and depicted in figure 4. It can be seen that for packet sizes up
to 256KB, the speed-up is slightly chaotic, and larger than our theoretical upper bound! This
is due to the processor cache, which can be better taken advantage of in the mobile version,
due to the smaller amounts of data allocated in the program. For sizes of 1MB upwards (i.e.
that are larger than the cache) the speed-up is stable. In this benchmark, automatic mobility
provides a benefit for sizes of 256 bytes and upwards.

8.3. Occam Audio Kit

The occam audio kit (oak) is a library of useful processes for performing audio generation
and manipulation in occam 2, written by Adam Sampson. Almost all the processes use chan-
nels of blocks of audio data. Aside from common utility processes such as delta and the
sum-like mixer process, there are processes for generating sine waves, process networks for
performing simple feedback effects and amplifier processes.

The oak library thus represents a real use case of communicating occam arrays, in a
stream-processing setting. It is not a purely linear pipeline, and has diverging and merging
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version is faster.

processes. We benchmark a music-generating program, with the final passing-to-hardware
step replaced with a timing process, and some of the more expensive floating-point operations
removed to avoid a confound.

Profiling revealed that each iteration has 55 communications, of which 11 are from pro-
ducer processes (and thus involve allocations and copies), and a further 10 of which are copy-
communications as part of a delta process. The remaining 34 are all move-communications,
meaning that M is 34

55
.

The results of the benchmark are given in table 1c and graphed in figure 5. This bench-
mark, unlike the other two, features a computational component alongside the communica-
tion, and as would be expected, the speed-up is fairly low. However, the speed-up is still
larger than one; it does improve the speed of the program, for packets of 256 bytes and larger.

9. Alternative Approaches

The analysis is currently performed on individual procedures. This means that pulling out
common code into sub-procedures can interfere with the analysis. For example, this modified
identity procedure is currently not optimised as the normal identity procedure is:

1 PROC send (CHAN [64]INT out, VAL [64]INT x)
2 out ! x
3 :
4
5 PROC foo (CHAN [64]INT in, CHAN [64]INT out)
6 [64]INT x:
7 WHILE TRUE
8 SEQ
9 in ? x

10 send(out, x)
11 :

In future it would be better to perform whole-system analysis, which could avoid this
problem – and also allow the optimisations to take into account the behaviour of the reader,
not just the writer (a more complex topic).

An additional possibility to the approach described here is the use of copy-on-write
references. Instead of sending a reference on a channel that the reader owns (as in this paper),
some run-time support could be added to support the sending of read-only references. If
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the reader needs to write to the data, it must make a modified copy of the data. This could
potentially allow even less copies than the current conservative approach, as copies would
only be made when actually necessary at run-time.

The cost of copy-on-write references is that co-ordination will also be required in the
run-time to destroy data at the right time. Once a read-only reference has been created to a
piece of data (in addition to the original reference), there must be some way of ensuring that
the data is not destroyed until all the references to it have been overwritten or gone out of
scope. In a concurrent system, the cost of this coordination can be high as it must involve
locks or atomic operations. Thus we have chosen the simplest approach, that relies only on
static analysis and not on costly run-time support.

9.1. Linked Lists

This paper has focused on simple blocks of data, such as arrays. An alternative data structure
is linked lists. In languages without automatic run-time memory management, linked lists
have O(n) preserving concatenation (copying the two lists into a new list, leaving the old
lists intact) but O(1) destructive concatenation (transferring the two lists into a new list, and
joining the head of one to the tail of the other) if both head and tail pointers are maintained.

Consider this pseudo-code for occam with linked-lists:

1 PROC merger (CHAN LIST INT inA, CHAN LIST INT inB, CHAN LIST INT out)
2 WHILE TRUE
3 LIST INT a, b:
4 SEQ
5 PAR
6 inA ? a
7 inB ? b
8 out ! (a ++ b)
9 :

With a standard implementation, this process would recieve the two lists, concatenate
them in an O(n) operation and send out this new copy on the channel. Using our automatic
mobility optimisation, this O(n) concatenation could be transformed into an O(1) destruc-
tive concatenation, destroying a and b because they are not used again after the output. As
concatenation is a very common operation on linked lists, it could be that automatic mobility
is more beneficial for linked lists than it is for arrays.

10. Conclusions

We have introduced automatic mobility, an optimisation for concurrent message-passing sys-
tems. Under automatic mobility, data items of 256 bytes or larger are allocated on the heap.
They are communicated by reference wherever possible, and by cloning (allocating a new
copy) otherwise. This should typically provide speed-up of 1–2×, but in the ideal case it can
turn a program that is linear in the size of data being communicated into one that executes in
constant time.

Automatic mobility requires no changes to occam 2 programs, and is simply an optimi-
sation flag in our Tock compiler. Wherever it provides a speed-up, it should be enabled and
has no disadvantages. However, automatic mobility is not supported on embedded systems
that lack support for dynamically allocating memory.

Based on our results, we expect that for most programs automatic mobility will be faster
than the original application. The speed-up is particularly dependent on the speed of the mem-
ory allocator, so fast memory allocators would be worth investigating in future. Automatic
mobility also has the potential to reduce the overall memory allocation for a program.
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Dynamically-Sized Arrays

The occam language was originally designed for the Transputer hardware. Each process had a
statically allocated workspace. The size of the workspace needed for an occam process could
be determined at compile-time. This was possible because all array bounds were constant.
For embedded applications, this is still a useful feature of occam programs, but for modern
desktop or server hardware this is a cumbersome, prohibitive restriction.

The occam-π language allows dynamic arrays through mobiles that are allocated on the
heap. With our new automatic mobility transformation that also stores arrays on the heap,
we may offer dynamically sized arrays. The problem is no longer one of implementation, but
instead one of language design, which is beyond the scope of this paper.

Algorithms Summary

The first step in auto-mobilising a program is to convert all data items beyond a threshold size
(we recommend 256 bytes, based on benchmarks) to being mobile. They should (at this point)
become allocated at the point of declaration, and all the communications should become
clone communications. All the subsequent steps refer solely to these mobilised variables.

The next step is to perform program analysis. A control-flow graph must be derived from
the program. This is then used as part of a backwards iterative data flow algorithm [3, pp 231].
Each node begins with an associated empty set of variables. The algorithm then processes
each directly connected node pair A and B (where A is followed by B). The new value for
A is the union of three sets: its old value, B’s current value and all variables read from at B,
minus the set of all variables written to at B. The algorithm repeatedly processes all directly
connected node pairs until the values for the nodes no longer change. The resulting value
for each node is the set of all values that are read afterwards. This is the sequentially-later
set; the program is also analysed to form sets of variables used in-parallel (trivial from the
abstract syntax tree) for each node. Also generated is a used-before-overwrite set which is
almost identical to the sequentially-later set but the union of three things becomes a union of
four – it also adds any variables that are partially written to at B.

The next step is to process the declarations. Each declaration is checked against the
used-before-overwrite set at that node. If the variable is in the set, it must remain allocated
at the point of declaration. If it is not in the set (and thus is entirely overwritten before being
accessed) the allocation of memory can be removed in favour of leaving it undefined (i.e. a
null reference).

Finally, each output and assignment where the source (right-hand side) is a mobile vari-
able is checked. If that source variable is in either the in-parallel or sequentially-later sets at
that node, it remains as a clone. If it is in neither set, the output/assignment is modified to
become a movement rather than a clone.
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Table 1. Times for the (a) ring benchmark, (b) twin benchmark and (c) oak benchmark, showing the means
and standard deviations (S.D.) for 30 runs of each condition, measured in milliseconds, given to 4 significant
figures, for each number of processes N and packet size. Note: KB=210, MB=220.

N Size
(bytes)

Plain
Mean

Plain
S.D.

Mobile
Mean

Mobile
S.D.

2 64 2564 94.34 1394 15.15
2 256 4586 20 1405 61.15
2 1KB 13020 108.1 1389 8.678
2 4KB 47190 257.3 1389 8.161
2 16KB 223900 551.8 1389 8.257
2 64KB 1134000 2119 1395 22.26
2 256KB 5722000 61350 1404 29.05
2 1MB 25570000 67420 1391 10.12
8 64 1419 82.62 784.3 26.86
8 256 2948 39.79 778.2 6.344
8 1KB 8066 28.88 780.7 13.21
8 4KB 29600 257.7 778 5.776
8 16KB 157300 509.4 778.2 6.023
8 64KB 818300 6986 780.2 7.383
8 256KB 3716000 18510 778.5 7.154
8 1MB 16190000 31240 779.7 7.203

64 64 1216 40.58 660 7.532
64 256 2554 249.5 659.5 7.907
64 1KB 8341 15.37 658 7.118
64 4KB 33300 24.83 660 6.411
64 16KB 173600 846.9 660.4 7.297
64 64KB 788800 1662 659.3 8.559
64 256KB 3429000 12320 660.5 7.415
64 1MB 14830000 23350 660.9 8.138

N Size
(bytes)

Plain
Mean

Plain
S.D.

Mobile
Mean

Mobile
S.D.

1 64 636.7 27.56 993.3 16.74
1 256 1237 12.68 1087 11.43
1 1KB 4148 15.26 1520 12.75
1 4KB 15310 441.8 3195 29.05
1 16KB 65710 186.7 17620 280.6
1 64KB 325100 689.7 81480 1360
1 256KB 1668000 8667 957900 3764
1 1MB 6830000 13660 5581000 59210
1 4MB 27360000 41890 22540000 254100
1 16MB 109500000 131200 90240000 1039000
8 64 453.3 243.1 497 9.471
8 256 770.6 8.01 537.5 10.1
8 1KB 2385 75.21 723.6 14.9
8 4KB 10180 512.2 1818 8.528
8 16KB 43920 350.3 7991 124.8
8 64KB 277300 4678 77420 1336
8 256KB 1139000 25980 362800 8817
8 1MB 4568000 68190 2285000 64340
8 4MB 18180000 231200 9099000 238800
8 16MB 71930000 234700 35740000 959700

64 64 201.5 6.344 230.5 7.442
64 256 362.9 4.582 250 11.07
64 1KB 1421 32.08 375.8 6.274
64 4KB 5039 53.51 1053 172.2
64 16KB 27550 2302 7058 2462
64 64KB 134500 21980 35830 6002
64 256KB 527100 1843 137700 2227
64 1MB 2113000 4969 865200 15760
64 4MB 8267000 54730 3396000 59160

(a) (b)

Size
(bytes)

Plain
Mean

Plain
S.D.

Mobile
Mean

Mobile
S.D.

64 1161 114.7 1446 84.64
256 2371 597.3 2056 90.95

1KB 7492 634.6 5182 103.5
4KB 34570 230.4 22860 155.7

16KB 153700 1325 95890 1400
64KB 860000 9057 593000 9443

256KB 3552000 38880 2434000 33080
1MB 14450000 162300 11800000 221300
4MB 57410000 566300 46580000 817900

(c)


